BFILIPEK.COM

C++ Lambda
Story

(BF) Barttomiej Filipek

C++ Lambda Story

The evolution of a powerful modern C++ feature:
from C++03 to C++20

Barttomiej Filipek
This book is for sale at http://leanpub.com/cpplambda

This version was published on 2019-03-24

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook using
lightweight tools and many iterations to get reader feedback, pivot until you have the right
book and build traction once you do.

© 2019 Barttomiej Filipek

http://leanpub.com/cpplambda
http://leanpub.com/
http://leanpub.com/manifesto

Contents

AbouttheBook i
Who This BookisFor i
Reader Feedback ii

About the Author v

Acknowledgement L vi

Revision History vii

1. Lambdasin C++03
Issues e
Motivation fora New Feature 4

2. Lambdasin C++11. 6
The Syntax 7
The Typeofalambda 9
The Call Operator 10
Captures e 11
Return Type o o oo 20
IIFE - Immediately Invoked Function Expression 21
Conversion to a Function Pointer. 21
Summary 22

3. Lambdasin C++14. 23
Default Parameters for Lambdas 24
Return Type o o e 24
Captures With an Initializer 25
Capturing a Member Variable. 28

GenericLambdas 29

CONTENTS

Bonus - LIFTing withlambdas 30
Summary 32
4. Lambdasin C++17 33
constexpr Lambda Expressions L 34
Capture of xthis 36
SUMMATY . . . o o o e e e 38
5. Future with C++20 39
Quick Overview of the Changes 40
Template Lambdas 41
Summary 43

References e, 44

About the Book

This short book contains updated versions of two articles that appeared at bfilipek.com:

« Lambdas: From C++11 to C++20, Part 1*
« Lambdas: From C++11 to C++20, Part 22

I updated the blog posts and added more examples and better descriptions.

The articles also are based on a live coding presentation given by Tomasz Kaminski at our
local Cracow C++ User Group.

The book shows the story of lambda expressions, so we’ll start with C++03, and then we’ll
move into the latest C++ standards.

o C++11 - early days. You’ll learn about all the elements of a lambda expression and even
some tricks. This is the longest chapter as we need to cover a lot of this.

« C++14 - updates. Once lambdas were adopted, we saw some options to improve them.

« C++17 - more improvements, especially by handling this pointer and allowing
constexpr.

« C++20 - in this section we’ll have a glimpse overview of the future.

Who This Book is For

This book is intended for all C++ developers who like to learn all about a modern C++ feature:
lambda expressions.

'https://www.bfilipek.com/2019/02/lambdas-story-part1.html
*https://www.bfilipek.com/2019/03/lambdas- story-part2.html

https://www.bfilipek.com/2019/02/lambdas-story-part1.html
https://www.bfilipek.com/2019/03/lambdas-story-part2.html
https://www.bfilipek.com/2019/02/lambdas-story-part1.html
https://www.bfilipek.com/2019/03/lambdas-story-part2.html

About the Book ii

Reader Feedback

If you spot an error, typo, a grammar mistake... or anything else (especially some logical
issues!) that should be corrected, then please let us know!

Write your feedback to bartlomiej.filipek AT bfilipek.com.

You can also use this place:

+ Leanpub Book’s Feedback Page®

Code License

The code for the book is available under the Creative Commons License.

Formatting

The code is presented in a monospace font, similarly to the following example:

For longer examples:

title

#include <iostream>

int main() {
std::string text = "Hello World";
std::cout << text << '\n';

Or shorter snippets:

int foo() {
return std::clamp(100, 1000, 1001);

*https://leanpub.com/cpplambda/feedback

https://leanpub.com/cpplambda/feedback
https://leanpub.com/cpplambda/feedback

About the Book iii

Snippets of longer programs were usually shortened to present only the core mechanics.

Usually, source code uses full type names with namespaces, like std: : string, std: : filesystem::.
However, to make code compact and present it nicely on a book page the namespaces
sometimes might be removed, so they don’t use space. Also, to avoid line wrapping longer

lines might be manually split into two. In some cases, the code in the book might skip
include statements.

Syntax Highlighting Limitations

The current version of the book might show some limitations regarding syntax highlighting.

For example:

« if constexpr - Link to Pygments issue: #1432 - C++ if constexpr not recognized
(C++17)*

« The first menthod of a class is not highlighted - #1084 - First method of class not
highlighted in C++°

« Teplate method is not highlighted #1434 - C++ lexer doesn’t recognize function if return
type is templated®

+ Modern C++ attributes are sometimes not recognised properly

Other issues for C++ and Pygments: issues C++.

Online Compilers

Instead of creating local projects you can also leverage some online compilers. They offer a
basic text editor and usually allow you to compile only one source file (the code that you
edit). They are very handy if you want to play with a simple code example.

For example, many of the code samples for this book were created in Wandbox Online
compiler and then adapted adequately for the book content.

Here’s a list of some of the useful services:

“https://bitbucket.org/birkenfeld/pygments-main/issues/1432/c-if- constexpr-not-recognized-c- 17
*https://bitbucket.org/birkenfeld/pygments-main/issues/1084/first-method- of-class-not-highlighted-in-c
“https://bitbucket.org/birkenfeld/pygments- main/issues/1434/c-lexer- doesnt-recognize-function-if
"https://bitbucket.org/birkenfeld/pygments-main/issues?q=c%2B%2B

https://bitbucket.org/birkenfeld/pygments-main/issues/1432/c-if-constexpr-not-recognized-c-17
https://bitbucket.org/birkenfeld/pygments-main/issues/1432/c-if-constexpr-not-recognized-c-17
https://bitbucket.org/birkenfeld/pygments-main/issues/1084/first-method-of-class-not-highlighted-in-c
https://bitbucket.org/birkenfeld/pygments-main/issues/1084/first-method-of-class-not-highlighted-in-c
https://bitbucket.org/birkenfeld/pygments-main/issues/1434/c-lexer-doesnt-recognize-function-if
https://bitbucket.org/birkenfeld/pygments-main/issues/1434/c-lexer-doesnt-recognize-function-if
https://bitbucket.org/birkenfeld/pygments-main/issues?q=c%2B%2B
https://bitbucket.org/birkenfeld/pygments-main/issues/1432/c-if-constexpr-not-recognized-c-17
https://bitbucket.org/birkenfeld/pygments-main/issues/1084/first-method-of-class-not-highlighted-in-c
https://bitbucket.org/birkenfeld/pygments-main/issues/1434/c-lexer-doesnt-recognize-function-if
https://bitbucket.org/birkenfeld/pygments-main/issues?q=c%2B%2B

About the Book iv

« Coliru® - uses GCC 8.1.0 (as of July 2018), offers link sharing and a basic text editor, it’s
simple but very effective.

« Wandbox’ - it offers a lot of compilers - for example, most of Clang and GCC versions
- and also you can use boost libraries. Also offers link sharing.

« Compiler Explorer’ - shows the compiler output from your code! Has many compilers
to pick from.

« CppBench" - run a simple C++ performance tests (using google benchmark library).

« C++ Insights'® - it’s a Clang-based tool which does a source to source transformation.

It shows how the compiler sees the code, for example by expanding lambdas, auto,
structured bindings or range-based for loops.

There’s also a nice list of online compilers gathered on this website: List of Online C++
Compilers*.

®http://coliru.stacked-crooked.com/
*https://wandbox.org/
%https://gcc.godbolt.org/
“http://quick-bench.com/
*https://cppinsights.io/
*https://arnemertz.github.io/online-compilers/

http://coliru.stacked-crooked.com/
https://wandbox.org/
https://gcc.godbolt.org/
http://quick-bench.com/
https://cppinsights.io/
https://arnemertz.github.io/online-compilers/
https://arnemertz.github.io/online-compilers/
http://coliru.stacked-crooked.com/
https://wandbox.org/
https://gcc.godbolt.org/
http://quick-bench.com/
https://cppinsights.io/
https://arnemertz.github.io/online-compilers/

About the Author

Bartlomiej Filipek is a C++ software developer with more than 11 years of professional
experience. In 2010 he graduated from Jagiellonian University in Cracow with a Masters
Degree in Computer Science.

Bartek currently works at Xara, where he develops features for advanced document editors.
He also has experience with desktop graphics applications, game development, large-scale
systems for aviation, writing graphics drivers and even biofeedback. In the past, Bartek
has also taught programming (mostly game and graphics programming courses) at local
universities in Cracow.

Since 2011 Bartek has been regularly blogging at his website: bfilipek.com. In the early days
the topics revolved around graphics programming, and now the blog focuses on Core C++.
He also helps as co-organizer at C++ User Group in Krakow. You can hear Bartek in one
@CppCast episode where he talks about C++17, blogging and text processing.

Since October 2018, Bartek has been a C++ Expert for Polish National Body that works
directly with ISO/IEC JTC 1/SC 22 (C++ Standard Committee). In the same month, Bartek
was also awarded by Microsoft and got his first MVP title for years 2019/2020.

In his spare time, he loves assembling trains and Lego with his little son. And he’s a collector
of large Lego models.

Bartek is the author of C++17 In Detail

http://www.xara.com/
https://www.bfilipek.com/
https://www.meetup.com/C-User-Group-Cracow/
http://cppcast.com/2018/04/bartlomiej-filipek/
https://leanpub.com/cpp17indetail

Acknowledgement

This short book wouldn’t be possible without valuable input from C++ Expert Tomasz
Kaminski (see Tomek’s profile at Linkedin).

Tomek led a live coding presentation about “history” of lambdas at our local C++ User Group
in Cracow:

Lambdas: From C++11 to C++20 - C++ User Group Krakow
A lot of examples used in this book comes from that session.

Also, I'd like to thank Dawid Pilarski (panicsoftware.com/about-me) and JFT for helpful
feedback on many details of lambdas.

Last but not least, many updates to the book was possible because of the feedback and
comments I got under the initial English articles. So I'd like to express gratitude to all readers
of my blog!

https://www.linkedin.com/in/tomasz-kami%C5%84ski-208572b1/
https://www.meetup.com/pl-PL/C-User-Group-Cracow/events/258795519/
https://blog.panicsoftware.com/about-me/

Revision History

« 25th March 2019 - First Edition is live!

1. Lambdas in C++03

Since the early days of the Standard Library - algorithms like std: :sort could take any
callable object and call it on elements of the container. However, in C++03 it meant only
function pointers and functors.

For example:

A basic print functor

#include <algorithm>
#include <iostream>
#include <vector>

struct PrintFunctor {
void operator() (int x) const {
std::cout << x << std::endl;

s

int main() {
std: :vector<int> v;
v.push_back(1);
v.push_back(2);
std::for_each(v.begin(), v.end(), PrintFunctor());

Runnable code: @Wandbox®
The example defines a simple functor with operator ().

While function pointers were stateless, functors could do much more work and contain some
state. One example is to count the number of invocations:

"https://wandbox.org/permlink/70G]Jz]lfg40SSQUG

https://wandbox.org/permlink/7OGJzJlfg40SSQUG
https://wandbox.org/permlink/7OGJzJlfg40SSQUG

Lambdas in C++03 2

Functor with a state

#include <algorithm>
#include <iostream>
#include <vector>

struct PrintFunctor {
PrintFunctor(): numCalls(0) { }

void operator () (int x) const {
std::cout << x << '"\n'j;
++numCalls;

mutable 1int numCalls;

+s

int main() {
std::vector<int> v;
v.push_back(1);
v.push_back(2);
PrintFunctor visitor = std::for_each(v.begin(), v.end(), PrintFunctor());
std::cout << "num calls: " << visitor.numCalls << '\n'j;

Runnable code: @Wandbox?

In the above example, we used a member variable to count the number of invocations of the
call operator. Since the call operator is const, then I had to use a mutable variable.

We can also “capture” variables from the calling scope. To do that we have to create a member
variable in our functor and initialise it in the constructor.

*https://wandbox.org/permlink/14xW15TQ7K0G0nxv

https://wandbox.org/permlink/14xW15TQ7K0G0nxv
https://wandbox.org/permlink/14xW15TQ7K0G0nxv

Lambdas in C++03 3

Functor with a captured variable

#include <iostream>
#include <string>
#include <vector>

struct PrintFunctor {
PrintFunctor (const std::string& str):
strText(str), numCalls(0) { }

void operator() (int x) const {
std::cout << strText << x << '"\n';
++numCalls;

const std::string strText;
mutable int numCalls;

+s

int main() {
std::vector<int> v;
v.push_back(1);
v.push_back(2);
const std::string introText("Elem: ");
PrintFunctor visitor = std::for_each(v.begin(), v.end(),
PrintFunctor(introText));
std::cout << "num calls: " << visitor.numCalls << '\n'j;

Runnable code: @Wandbox®

In this iteration, PrintFunctor takes an extra parameter to initialise a member variable.
Then this variable is used in the call operator.

Issues

As you see functors are quite powerful. It’s a separate class so you can design them any way
you like.

*https://wandbox.org/permlink/Ogi8rPQbVGeCtYER

https://wandbox.org/permlink/Ogi8rPQbVGeCtYER
https://wandbox.org/permlink/Ogi8rPQbVGeCtYER

Lambdas in C++03 4

But the problem was that you had to write a separate function or a functor in a different
scope than the invocation of the algorithm.

As apotential solution, you could think about writing a local functor class - since C++ always
has support for that syntax. But that didn’t work...

See this code:

Local Functor

int main() {
struct PrintFunctor {
void operator () (int x) const {
std::cout << x << std::endl;

}s

std::vector<int> v;
std::for_each(v.begin(), v.end(), PrintFunctor());

Try to compile it with -std=c++98 and you’ll see the following error on GCC:

error: template argument for

'template<class _IIter, class _Funct> _Funct
std::for_each(_IIter, _IIter, _Funct)'

uses local type 'main()::PrintFunctor'

Basically, in C++98/03 you couldn’t instantiate a template with a local type.

Motivation for a New Feature

In C++11 the Committee lifted the limitation of the template instantiation with a local type.
So you can write your functor that is close to the use of it.

But C++11 also brought another idea to life: what if the compiler could “write” such small
functor for developers? That would mean that with some new syntax we could create
functors “in place” and open the doors for cleaner and more compact syntax.

And that was the start of “lambda expressions”!.

Lambdas in C++03 5

If we look at N3337* - the final draft of C++11, we can see a separate section for lambdas:
[expr.prim.lambda]®.

Let’s have a look at this new feature in the next chapter.

“https://timsong-cpp.github.io/cppwp/n3337/
*https://timsong-cpp.github.io/cppwp/n3337/expr.prim.lambda

https://timsong-cpp.github.io/cppwp/n3337/
https://timsong-cpp.github.io/cppwp/n3337/expr.prim.lambda
https://timsong-cpp.github.io/cppwp/n3337/
https://timsong-cpp.github.io/cppwp/n3337/expr.prim.lambda

2. Lambdas in C++11

Hooray! The C++ Committee heard Voices of C++03 developers, and since C++11 we got
lambda expression!

Lambdas quickly become one of the most recognisable features of modern C++.
We can read the spec located under: N3337" - the final draft of C++11,
And the separate section for lambdas: [expr.prim.lambda]?.

Lambdas were added into the language in a smart way I think. They use some new syntax,
but then the compiler “expands” it into a real class. This way we have all advantages (and
disadvantages sometimes) of the real strongly typed language.

In this chapter you'll learn:

« the basic syntax of lambdas

« how to capture variables

« how to capture member variables
« what’s the return type of a lambda
» what is a closure

« some edge cases

« conversion to a function pointer

« IIFE

Let’s go!

"https://timsong- cpp.github.io/cppwp/n3337/
*https://timsong-cpp.github.io/cppwp/n3337/expr.prim.lambda

https://timsong-cpp.github.io/cppwp/n3337/
https://timsong-cpp.github.io/cppwp/n3337/expr.prim.lambda
https://timsong-cpp.github.io/cppwp/n3337/
https://timsong-cpp.github.io/cppwp/n3337/expr.prim.lambda

Lambdas in C++11

The Syntax

Here’s a basic code example that also shows the corresponding local functor object:

First Lambda and a Corresponding Functor

#include <iostream>
#include <algorithm>
#include <vector>

int main() {
struct {
void operator () (int x) const {
std::cout << x << '"\n';
}

} somelnstance;

std::vector<int> v;

v.push_back(1);

v.push_back(2);

std::for_each(v.begin(), v.end(), someInstance);

std::for_each(v.begin(), v.end(), [] (int x) {
std::cout << x << '"\n'j;

)

Live example @WandBox>

In the example the compiler transforms:
[IJ(int x) { std::cout << x << '"\n'; }

Into something like that (simplified form):

*https://wandbox.org/permlink/86wzD14LVEnMiO2Y

https://wandbox.org/permlink/86wzD14LVEnMiO2Y
https://wandbox.org/permlink/86wzD14LVEnMiO2Y

Lambdas in C++11

struct {
void operator() (int x) const {
std::cout << x << '\n';

}

} somelnstance;
The syntax of the lambda expression:

(1 O { code; }

| optional: mutable, exception, trailing return,

optional: parameter list

ambda introducer with capture list

Some definitions before we start:

From [expr.prim.lambda#2]*

The evaluation of a lambda-expression results in a prvalue temporary. This temporary is
called the closure object.

And from [expr.prim.lambda#3]°:

The type of the lambda-expression (which is also the type of the closure object) is a unique,
unnamed non-union class type — called the closure type.

A few examples of lambda expressions:

“https://timsong-cpp.github.io/cppwp/n3337/expr.prim.lambda#2
*https://timsong- cpp.github.io/cppwp/n3337/expr.prim.lambda#3

https://timsong-cpp.github.io/cppwp/n3337/expr.prim.lambda#2
https://timsong-cpp.github.io/cppwp/n3337/expr.prim.lambda#3
https://timsong-cpp.github.io/cppwp/n3337/expr.prim.lambda#2
https://timsong-cpp.github.io/cppwp/n3337/expr.prim.lambda#3

Lambdas in C++11 9

[1{} // the simplest lambda

[1(float f, int a) { return axf; }

[J(MyClass t) -> 1int { auto a = t.compute(); return a; }
[I(int a, int b) { return a < b; }

[x](int a, int b) mutable { return a < b; ++x; }

The Type of a Lambda

Since the compiler generates some unique name for each lambda, there’s no way to know it
upfront.

That’s why you have to use auto (or decltype)) to deduce the type.
auto myLambda = [](int a) -> double { return 2.0 % a; }

What’s more [expr.prim.lambda]®:

The closure type associated with a lambda-expression has a deleted ([dcl.fct.def.delete])
default constructor and a deleted copy assignment operator.

That’s why you cannot write:

auto foo = [&x, &y]() { ++x; ++y; };
decltype(foo) fooCopy;

This gives the following error on GCC:

error: use of deleted function 'main()::<lambda()>::<lambda>()'
decltype(foo) fooCopy;

note: a lambda closure type has a deleted default constructor

Another aspect is that if you have two lambdas:

“https://timsong-cpp.github.io/cppwp/n3337/expr.prim.lambda#19

https://timsong-cpp.github.io/cppwp/n3337/expr.prim.lambda#19
https://timsong-cpp.github.io/cppwp/n3337/expr.prim.lambda#19

Lambdas in C++11 10

auto firstLam = []J(int x) { return x*2; };
auto secondLam = [](int x) { return x*x2; };

Then their types are different! Even if the “code behind” is the same... after all the compiler
is required to declare two unique unnamed types for each lambda.

You can, however copy lambdas:

Copying lambdas

#include <type_traits>

int main() {
auto firstLam = [](int x) { return x*2; };
auto secondLam = firstlLam;
static_assert(std::is_same_v<decltype(firstLam), decltype(secondLam)>);

If you copy a lambda, then you also copy its state. This is important when we’ll talk about
capture variables. Then a closure type will store such variable as a member field.

A peek into the future

In C++20 a stateless lambda will be default constructible and assignable.

The Call Operator

The code that you put into the lambda body is “translated” to the code in the operator ()
of the corresponding closure type.

By default it’s a const inline method. You can change it by specifying mutable after the
parameter declaration clause:

auto myLambda = [](int a) mutable { std::cout << aj; }

While a const method is not an “issue” for a lambda without an empty capture list... it makes
a difference when you want to capture variables from the local scope.

And the capture clause is a topic of the next section:

Lambdas in C++11 11

Captures

The [] does not only introduce the lambda but also holds a list of captured variables. It’s
called “capture clause”.

By capturing a variable, you create a member copy of that variable in the closure type. Then,
inside the lambda body, you can access it.

We did a similar thing for PrintFunctor in the C++03 Chapter. In that class, we added a
member variable std: :string strText; which was initialised in the constructor.

The basic syntax for captures:

« [&] - capture by reference, all automatic storage duration variable declared in the
reaching scope

+ [=] - capture by value, a value is copied

« [x, &y] - capture x by value and y by a reference explicitly

For example:

Capturing a Variable

std::string s {"Hello World"};
auto foo = [str]() { std::cout << str << '"\n'; };
foo();

For the above lambda, the compiler might generate the following local functor:

A Possible Compiler Generated Functor, Single Variable

struct _unnamedLambda {
_unnamedLambda(std::string s) : str(s) { }

void operator() () const {

std::cout << str << '\n';

std::string str;

+s

Lambdas in C++11 12

A variable is passed into the constructor that is conceptually called in a place of lambda
declaration.

To be precise the standard mentions in [expr.prim.lambda#21]":

When the lambda-expression is evaluated, the entities that are captured by copy are used to
direct-initialize each corresponding non-static data member of the resulting closure object.

A possible constructor that I showed above (_unnamedLambda) is only for demonstration
purpose, as the compiler might implement it differently and won’t expose it.

Capturing Two Variables by Reference

int x = 1, y = 1;

std::cout << x << " " <<y << std::endl;
auto foo = [&x, &y]() { ++x;5 ++y; };
foo();

std::cout << x << " " <<y << std::endl;

For the above lambda, the compiler might generate the following local functor:

A Possible Compiler Generated Functor, Two References

struct _unnamedLambda {
_unnamedLambda(int& a, int& b) : x(a), y(b) { }

void operator()() const {

+HX; tty;

int& x;
int& y;
} somelnstance;

Since we capture x and y by reference, the closure type will contain member variables that
are also references.

"https://timsong-cpp.github.io/cppwp/n3337/expr.prim.lambda#21

https://timsong-cpp.github.io/cppwp/n3337/expr.prim.lambda#21
https://timsong-cpp.github.io/cppwp/n3337/expr.prim.lambda#21

Lambdas in C++11 13

You can play with the full example @Wandbox®

The value of the value-captured variable is at the time the lambda is defined - not
when it is used! The value of a ref-captured variable is the value when the lambda
is used - not when it is defined.

While specifying [=] or [&] might be handy - as it captures all automatic storage duration
variable, it’s clearer to capture a variable explicitly. That way the compiler can warn you
about unwanted effects (see notes about global and static variable for example).

You can also read more in item 31 in “Effective Modern C++” by Scott Meyers: “Avoid default
capture modes.”

g The C++ closures do not extend the lifetimes of the captured references. Be sure

that the capture variable still lives when lambda is invoked.

Mutable
By default operator () of the closure type is const, and you cannot modify captured
variables inside the body of the lambda.

If you want to change this behaviour you need to add mutable keyword after the parameter
list:

Capturing Two Variables by Copy

int x = 1, y = 1;

std::cout << x << " " <<y << std::endl;
auto foo = [x, y]() mutable { ++x; ++y; };
foo();

std::cout << x << " " <<y << std::endl;

In the above example, we can change the values of x and y. Of course, since those are only
copies of x and y from the enclosing scope, we don’t see their new values after foo is invoked.

On the other hand, if you capture by reference then, in a non-mutable lambda, you cannot
rebind a reference, but you can change the referenced variable.

®https://wandbox.org/permlink/dadltcv53ECxnoEk

https://wandbox.org/permlink/da9ltcv53ECxnoEk
https://wandbox.org/permlink/da9ltcv53ECxnoEk

Lambdas in C++11 14

Capturing a Variable by Reference

int x = 1;

std::cout << x << '\n';
auto foo = [&x]() { ++x; };
foo();

std::cout << x << '\n'j;

In the above example, the lambda is not mutable, but it can change the referenced value.
Capturing Globals

If you have a global value and then you use [=] in your lambda you might think that also a
global is captured by value... but it’s not.

Capturing Globals
int global = 10;

int main()

{
std::cout << global << std::endl;
auto foo = [=] () mutable { ++globalj; };
foo();
std::cout << global << std::endl;
(1 { ++global; } ();
std::cout << global << std::endl;
[global] { ++global; } ();
}

Play with code @Wandbox’

Only variables with automatic storage duration are captured. GCC can even report the
following warning:

warning: capture of variable 'global' with non-automatic storage duration

This warning will appear only if you explicitly capture a global variable, so if you use [=]
the compiler won’t help you.

The Clang compiler is even more helpful, as it generates an error:

*https://wandbox.org/permlink/hsS8K0I6PrRyX45Z

https://wandbox.org/permlink/hsS8K0I6PrRyX45Z
https://wandbox.org/permlink/hsS8K0I6PrRyX45Z

Lambdas in C++11 15

error: 'global' cannot be captured because it does not have automatic storage d\
uration

See @Wandbox*°

Capturing Statics

Similarly to capturing a global variable, you’ll get the same with a static variable:

Capturing Static Variables

#include <iostream>

void bar ()

{
static int static_int = 10;
std::cout << static_int << std::endl;
auto foo = [=] () mutable { ++static_int; };
foo();
std::cout << static_int << std::endl;
[1 { ++static_int; } ();
std::cout << static_int << std::endl;
[static_int] { ++static_int; } ();

3

int main()

{

bar();
3

Play with code @Wandbox™*
The output:

*%https://wandbox.org/permlink/p5Ro10V3l0tLcYkk
https://wandbox.org/permlink/YSF2px6Sjy7z5GqF

https://wandbox.org/permlink/p5Ro10V3l0tLcYkk
https://wandbox.org/permlink/YSF2px6Sjy7z5GqF
https://wandbox.org/permlink/p5Ro10V3l0tLcYkk
https://wandbox.org/permlink/YSF2px6Sjy7z5GqF

Lambdas in C++11 16

10
11
12

And again, this warning will appear only if you explicitly capture a global variable, so if you
use [=] the compiler won’t help you.

Capturing a Class Member And this

Things get a bit more complicated where you’re in a class method:

Error when capturing a member variable

#include <iostream>

struct Baz {
void foo() {
auto lam = [s]() { std::cout << s; };
lam();

std::string s;

}s

int main() {
Baz b;
b.foo();

Runnable code @Wandbox*?

The code tries to capture s which is a member variable. But the compiler will emit an error
message:

*https://wandbox.org/permlink/mp5Vgqlyu5SLWLnof

https://wandbox.org/permlink/mp5VgqIyu5LWLn0f
https://wandbox.org/permlink/mp5VgqIyu5LWLn0f

Lambdas in C++11 17

In member function 'void Baz::foo()':
error: capture of non-variable 'Baz::s'
error: 'this' was not captured for this lambda function

To solve this issue, you have to capture the this pointer. Then you’ll have access to member
variables.

We can update the code to:

struct Baz {
void foo() {
auto lam = [this]() { std::cout << sj };
lam();

std::string s;

+s

No compiler errors are generated now.
You can also use [=] or [&] to capture this (they both have the same effect!)

But please notice that we captured this by value... to a pointer. So you have access to the
member variable, not its copy.

In C++11 (and even in C++14) you cannot write:
auto lam = [xthis]() { std::cout << s; };°

To capture a copy of the object.

If you use your lambdas in the context of a single method then capturing this will be fine.
But how about more complicated cases?

Do you know what will happen with the following code?

Lambdas in C++11 18

Returning a Lambda From a Method

#include <iostream>
#include <functional>

struct Baz

{
std:: function<void()> foo()
{
return [=] { std::cout << s << std::endl; };
}
std::string s;
}s

int main()

{
auto fl = Baz{"ala"}.foo();
auto f2 = Baz{"ula"}.foo();
f10);
f20);

}

The code declares a Baz object and then invokes foo (). Please note that foo() returns a
lambda (stored in std: : function) that captures a member of the class.

Since we use temporary objects, we cannot be sure what will happen when you call f1 and
f2. This is a dangling reference problem and generates Undefined Behaviour.

Similarly to:

struct Bar {
std::string const& foo() const { return s; };
std::string s;

};

auto&& f1 = Bar{"ala"}.foo(); // dangling reference

Play with code @Wandbox™"

Again, if you state the capture explicitly ([s]) :

https://wandbox.org/permlink/ntaWn7p4sMVVT6fZj

https://wandbox.org/permlink/ntaWn7p4MVVT6fZj
https://wandbox.org/permlink/ntaWn7p4MVVT6fZj

Lambdas in C++11 19

std: : function<void()> foo()

{

return [s] { std::cout << s << std::endl; };

All in all capturing this might get tricky when a lambda can outlive the object itself. This
might happen when you use async calls or multithreading.

We’ll return to that topic in the C++17 chapter.

Move-able-only Objects

If you have an object that is movable only (for example unique_ptr), then you cannot move
it to lambda as a captured variable. Capturing by value does not work, so you can only
capture by reference... however this won’t transfer the ownership, and it’s probably not
what you wanted.

std::unique_ptr<int> p(new int{10});
auto foo = [p] () {}; // does not compile....

Preserving Const

If you capture a const variable, then the constness is preserved:

int const x = 10;
auto foo = [x] () mutable {
std::cout << std::is_const<decltype(x)>::value << std::endl;

x = 11;
s
foo();
Test code @Wandbox'*

“https://wandbox.org/permlink/pbnGo223HNdOoNLQ

https://wandbox.org/permlink/pbnGo223HNdOoNLQ
https://wandbox.org/permlink/pbnGo223HNdOoNLQ

Lambdas in C++11 20

Return Type

In C++11 you could skip the trailing return type of the lambda and then the compiler would
deduce the type for you.

Initially, return type deduction was restricted to lambdas with bodies containing a single
return statement, but this restriction was quickly lifted as there were no issues with
implementing a more convenient version.

See C++ Standard Core Language Defect Reports and Accepted Issues® *

So since C++11, the compiler could deduce the return type as long as all of your return
statements are of the same type.

If all return statements return an expression and the types of the returned expres-
sions after lvalue-to-rvalue conversion (7.1 [conv.lval]), array-to-pointer conversion (7.2
[conv.array]), and function-to-pointer conversion (7.3 [conv.func]) are the same, that
common type;

auto baz = [] () {
int x = 10;
if (x < 20)
return x * 1.1;
else
return x * 2.1;

+s

Play with the code @Wandbox"’

In the above lambda, we have two returns statements, but they all point to double so the
compiler can deduce the type.

In C++14 return type of lambda will be updated to adapted to the rules of auto type
deduction for regular functions.

Phitp://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#975
**Thanks Tomek for finding the correct link!
"https://wandbox.org/permlink/kVKjIBObCfut]NV

http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#975
https://wandbox.org/permlink/kVKjlBObC9futJNV
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#975
https://wandbox.org/permlink/kVKjlBObC9futJNV

Lambdas in C++11 21

IIFE - Immediately Invoked Function Expression

In our examples I defined a lambda and then invoked it by using a closure object... but you
can also invoke it immediately:

int x = 1, y = 1;
(&) £ ++x5 ++y; 305 // <= call O
std::cout << x << " " <<y << std::endl;

Such expression might be useful when you have a complex initialisation of a const object.
const auto val = [J() { /* several lines of code... */ }();

I wrote more about it in the following blog post: ITFE for Complex Initialization*®.

Conversion to a Function Pointer

If your lambda doesn’t capture then:

The closure type for a lambda-expression with no lambda-capture has a public non-virtual
non-explicit const conversion function to pointer to function having the same parameter
and return types as the closure type’s function call operator. The value returned by this
conversion function shall be the address of a function that, when invoked, has the same
effect as invoking the closure type’s function call operator.

In other words, you can convert a lambda without captures to a function pointer.

For example

*https://www.bfilipek.com/2016/11/iife-for-complex-initialization.html

https://www.bfilipek.com/2016/11/iife-for-complex-initialization.html
https://www.bfilipek.com/2016/11/iife-for-complex-initialization.html

Lambdas in C++11 22

Conversion to a Function Pointer

#include <iostream>
void callwithl10(void(* bar) (int))

{
bar(10);

int main()

{
struct
{
using f_ptr = void(x) (int);
void operator() (int s) const { return call(s); }
operator f_ptr() const { return &call; }
private:
static void call(int s) { std::cout << s << std::endl; };
} baz;
callwithl0(baz);
callwith10([](int x) { std::cout << x << std::endl; 1});
}

Play with the code @Wandbox"’

Summary

In this chapter, you learned how to create and use lambda expressions. I described the syntax,
capture clause, type of the lambda, and more.

Lambda Expressions become one of the significant marks of Modern C++. With more use
cases developers also saw possibilities to improve lambdas. And that’s why you can now
move to the next chapter and see updates that the Committee added in C++14.

Phttps://wandbox.org/permlink/tSZDkOpqQI4EdTp6

https://wandbox.org/permlink/tSZDkOpqQl4EdTp6
https://wandbox.org/permlink/tSZDkOpqQl4EdTp6

3. Lambdas in C++14

C++14 added two significant enhancements to lambda expressions:

« Captures with an initialiser

« Generic lambdas
Plus, the Standard also updated some rules, for example:

« Default parameters for lambdas

« Return type as auto

The features can solve several issues that were visible in C++11.

You can see the specification in N4140* and lambdas: [expr.prim.lambda]®.

"https://timsong- cpp.github.io/cppwp/n4140/
*https://timsong-cpp.github.io/cppwp/n4140/expr.prim.lambda

https://timsong-cpp.github.io/cppwp/n4140/
https://timsong-cpp.github.io/cppwp/n4140/expr.prim.lambda
https://timsong-cpp.github.io/cppwp/n4140/
https://timsong-cpp.github.io/cppwp/n4140/expr.prim.lambda

Lambdas in C++14 24

Default Parameters for Lambdas

In C++14 you can use default paramaters in a function call. This is a small feature, but makes
lambda more like a regular function.

Lambda with Default Paramter

#include <iostream>

int main() {
auto lam = [J(int x = 10) { std::cout << x << "\n'; };
lam();
lam(100);

return 0;

What’s interesting is that GCC and Clang supported this feature since C++11.

Return Type

In C++14 Lambda return type deduction was updated to conform to the rules of auto
deduction rules for functions.

[expr.prim.lambda#4]>:

The lambda return type is auto, which is replaced by the trailing-return-type if
provided and/or deduced from return statements as described in [dcl.spec.auto]*

If you have multiple return statements they all have to deduce the same type:

*https://timsong-cpp.github.io/cppwp/n4140/expr.prim.lambda#4
“https://timsong-cpp.github.io/cppwp/n4140/dcl.spec.auto

https://timsong-cpp.github.io/cppwp/n4140/expr.prim.lambda#4
https://timsong-cpp.github.io/cppwp/n4140/dcl.spec.auto
https://timsong-cpp.github.io/cppwp/n4140/expr.prim.lambda#4
https://timsong-cpp.github.io/cppwp/n4140/dcl.spec.auto

Lambdas in C++14 25

auto foo = [] (int x) {
if (x < 0)
return x x 1.1f; // float!
else
return x * 2.1; // double!

}s
The above code won’t compile as the first return statement retuns float while the second

deduced double.

Another important concept related to the return type is that we can stop using std: : function
to return a lambda!

The compiler can deduce the proper closure type:

auto CreateMulLambda(int x) {
return [x](int param) { return x * param; };

auto lam = CreateMulLambda(10);

Captures With an Initializer

Now some bigger updates!.

In lambda expression you can capture variables. The compiler expands that capture syntax
and creates member variables of the closure type.

Now, in C++14, you can create new member variables and initialise them in the capture
clause. Then you can use those variables inside the lambda.

For example:

Lambdas in C++14 26

Simple Capture With an Initialiser

int main() {
int x = 10;
int y = 11;
auto foo = [z = x+y]() { std::cout << z << '"\n'j; };
foo();

In the example above the compiler will generate a new member variable and initialise it with

X+y.

So conceptually it will resolve into:

struct _unnamedLambda {
void operator()() const {
std::cout << z << '\n';

int z;
} somelnstance;

And z will be directly initialised (with x+y) when the lambda expresion is evaluated.
This new feature can solve a few problems, for example with movable only types.

Let’s review them now.

Move

Previously, in C++11, you couldn’t capture a unique pointer by value.

Now, we can move an object into a member of the closure type:

Lambdas in C++14 27

Capturing a movable only type

#include <memory>

int main(){
std: :unique_ptr<int> p(new int{10});
auto foo = [x=10] () mutable { ++x; };
auto bar = [ptr=std::move(p)] {};
auto baz = [p=std::move(p)] {};

Thanks to the initialiser you can assign the proper value even for unique_ptr.

Optimisation

Another idea is to use capture initialisers as a potential optimisation technique. Rather than
computing some value every time we invoke a lambda, we can compute it once in the
initialiser:

Creating a string for lambda

#include <iostream>
#include <algorithm>
#include <vector>
#include <memory>
#include <iostream>
#include <string>

int main() {
using namespace std::string_literals;
std::vector<std::string> vs;

std::find_if(vs.begin(), vs.end(),

[I](std::string const& s) {
return s == "foo'"s + "bar'"s;

)

std::find_if(vs.begin(), vs.end(),

Lambdas in C++14 28

[p="foo"s + "bar'"s](std::string const& s) {
return s == p;

)3

The code above shows two calls to std::find_if. In the first scenario we don’t capture
anything and just compare the input value against "foo"s + "bar"s. Every time the lambda
is invoked a temporary value that will store the sum of those strings will be created.

The second call to find_if shows an optimisation: we create a capture variable p that
computes the sum of strings once. Then we can safely refer to it in the lambda body.

Capturing a Member Variable

Initialiser can also be used to capture a member variable. We can then capture a copy of a
member variable and don’t bother with dangling references.

For example:

Capturing a member variable

struct Baz {
auto foo() {
return [s=s] { std::cout << s << std::endl; };

std::string s;

s

int main() {
auto fl1 = Baz{"ala"}.foo();
auto f2 = Baz{"ula"}.foo();
f10);
20);

Play with code @Wandbox®

*https://wandbox.org/permlink/zIzWARqYIGnFz3jN

https://wandbox.org/permlink/zIzWARqYIGnFz3jN
https://wandbox.org/permlink/zIzWARqYIGnFz3jN

Lambdas in C++14 29

In foo() we capture a member variable by copying it into the closure type. Additionally,
we use auto for the deduction of the whole method (previously, in C++11 we could use
std::function).

Generic Lambdas

Another significant improvement to Lambdas is a generic lambda.

Since C++14 you can now write:

auto foo = [](auto x) { std::cout << x << '"\n'j; };
foo(10);

foo(10.1234);

foo("hello world");

Please notice auto x as a parameter to the lambda.

This is equivalent to using a template declaration in the call operator of the closure type:

struct {
template<typename T>
void operator() (T x) const {
std::cout << x << '"\n';

}

} someInstance;

With generic lambdas you’re not restricted to using auto x, you can add any qualifiers as
with other auto variables.

Such generic lambda might be very helpful when type deduction is tricky.

For example:

Lambdas in C++14 30

Correct type for map iteration

std::map<std::string, int> numbers {
{ "one", 1}, {"two", 2 }, { "three", 3 }
}s

// each time entry 1is copied from pair<const string, int>!
std::for_each(std: :begin(numbers), std::end(numbers),
[1(const std::pair<std::string, int>& entry) {
std::cout << entry.first << " = " << entry.second << '\n';

)

Did I make any mistake here? Does entry have the correct type?

Probably not, as the value type for std: :map is std: :pair<const Key, T>.So my code
will perform additional string copies...

This can be fixed by using auto:

std::for_each(std: :begin(numbers), std::end(numbers),
[](auto& entry) {
std::cout << entry.first << " =" << entry.second << '\n'j;

)5
You can play with code @Wandbox®

Bonus - LIFTing with lambdas

Currently, we have a problem when you have function overloads, and you want to pass them
into standard algorithms (or anything that requires some callable object):

“https://wandbox.org/permlink/jUxlrWasTCBDVEYr

https://wandbox.org/permlink/jUxlrWasTCBDVEYr
https://wandbox.org/permlink/jUxlrWasTCBDVEYr

Lambdas in C++14 31

Calling function overloads

// two overloads:
void foo(int) {}
void foo(float) {}

int main() {
std::vector<int> vi;
std::for_each(vi.begin(), vi.end(), foo);

We get the following error from GCC 9 (trunk):

error: no matching function for call to
for_each(std::vector<int>::iterator, std::vector<int>::iterator,
<unresolved overloaded function type>)

std::for_each(vi.begin(), vi.end(), foo);
ANNANA

However, there’s a trick where we can use lambda and then call the desired function overload.

In a basic form, for simple value types, for our two functions, we can write the following
code:

std::for_each(vi.begin(), vi.end(), [](auto x) { return foo(x); });
And in the most generic form we need a bit more typing:

#define LIFT(foo) \
[]1(auto&&... x) \
noexcept(noexcept(foo(std::forward<decltype(x)>(x)...))) \
-> decltype(foo(std::forward<decltype(x)>(x)...)) \
{ return foo(std::forward<decltype(x)>(x)...); }

Quite complicated code... right? :)

Let’s try to decipher it:

Lambdas in C++14 32

We create a generic lambda and then forward all the arguments we get. To define it correctly
we need to specify noexcept and return type. That’s why we have to duplicate the calling
code - to get the proper types.

Such LIFT macro works in any compiler that supports C++14.

Play with code @Wandbox’

Ssummary

As you saw in this chapter C++14 brought several key improvements to lambda expressions.
Since C++14 you can now declare new variables to use inside a lambda scope, and you can
also use them effieicnely in template code. In the next chapter we’ll dive into C++17 which
brings more updates!

"https://wandbox.org/permlink/r81jASiPPmYXTOmx

https://wandbox.org/permlink/r81jASiPPmYXTOmx
https://wandbox.org/permlink/r81jASiPPmYXTOmx

4. Lambdas in C++17

The standard (draft before publication) N659* and the lambda section: [expr.prim.lambda]>.

C++17 added two significant enhancements to lambda expressions:

« constexpr lambdas

« Capture of *this

What do those features mean for you? Let’s find out.

"https://timsong- cpp.github.io/cppwp/n4659/
*https://timsong-cpp.github.io/cppwp/n4659/expr.prim.lambda

https://timsong-cpp.github.io/cppwp/n4659/
https://timsong-cpp.github.io/cppwp/n4659/expr.prim.lambda
https://timsong-cpp.github.io/cppwp/n4659/
https://timsong-cpp.github.io/cppwp/n4659/expr.prim.lambda

Lambdas in C++17 34

constexpr Lambda Expressions

Since C++17, if possible, the standard defines operator () for the lambda type implicitly as
constexpr:

From expr.prim.lambda #4>:

The function call operator is a constexpr function if either the corresponding
lambda-expression’s parameter-declaration-clause is followed by constexpr, or
it satisfies the requirements for a constexpr function..

For example:

constexpr auto Square = [] (int n) { return nxn; }; // implicitly constexpr
static_assert(Square(2) == 4);

To recall, in C++17 a constexpr function has the following rules:

« it shall not be virtual;
« its return type shall be a literal type;
« each of its parameter types shall be a literal type;

« itsfunction-body shall be = delete, = default, or a compound-statement that does
not contain

— an asm-definition,

— a goto statement,

an identifier label,

a try-block, or

a definition of a variable of non-literal type or of static or thread storage
duration or for which no initialization is performed.

How about a more practical example?

*https://timsong-cpp.github.io/cppwp/n4659/expr.prim.lambda#closure- 4

https://timsong-cpp.github.io/cppwp/n4659/expr.prim.lambda#closure-4
https://timsong-cpp.github.io/cppwp/n4659/expr.prim.lambda#closure-4

Lambdas in C++17 35

constexpr lambda

template<typename Range, typename Func, typename T>
constexpr T SimpleAccumulate(const Range& range, Func func, T init) {
for (auto &&elem: range) {
init += func(elem);
}

return 1init;

int main() {
constexpr std::array arr{ 1, 2, 3 };

static_assert(SimpleAccumulate(arr, [](int i) {
return i * 1i;
}) 0) == 14);

Play with code @Wandbox*

The code uses a constexpr lambda and then it’s passed to a straightforward algorithm
SimpleAccumulate. The algorithm also uses a few C++17 elements: constexpr additions
to std::array, std::begin and std::end (used in range-based for loop) are now also
constexpr so it means that the whole code might be executed at compile time.

Of course, there’s more.

You can also capture variables (assuming they are also constant expressions):

constexpr lambda, capture

constexpr 1int add(int const& t, int const& u) {
return t + u;

int main() {
constexpr 1int x = 0;
constexpr auto lam = [x](int n) { return add(x, n); };

static_assert(lam(10) == 10);

“https://wandbox.org/permlink/5frsSNCQAvvEKsWKq

https://wandbox.org/permlink/5fr5NCQAvvEKsWKq
https://wandbox.org/permlink/5fr5NCQAvvEKsWKq

Lambdas in C++17 36

But there’s a interesting case where you don’t “pass” captured variable any further, like:

constexpr int x = 0

| e

constexpr auto lam [x](int n) { return n + x };

In that case, in Clang, we might get the following warning:
warning: lambda capture 'x' dis not required to be captured for this use

This is probably because x can be replaced in place in every use (unless you pass it further
or take the address of this name).

But please let me know if you know the official rules of this behaviour. I've only found (from
cppreference®) (but I cannot find it in the draft...)

A lambda expression can read the value of a variable without capturing it if
the variable * has const non-volatile integral or enumeration type and has been
initialised with a constant expression, or * is constexpr and has no mutable
members.

Be prepared for the future:

In C++20 we’ll have constexpr standard algorithms and maybe even some containers, so
constexpr lambdas will be very handy in that context. Your code will look the same for the
runtime version as well as for constexpr (compile time) version!

In a nutshell:

consexpr lambdas allows you to blend with template programming and possibly have
shorter code.

Let’s now move to the second important feature available since C++17:

Capture of xthis

Do you remember our issue when we wanted to capture a class member?

By default, we capture this (as a pointer!), and that’s why we might get into troubles when
temporary objects go out of scope... We can fix this by using capture with initialiser as I
described in the C++14 chapter.

But now, in C++17 we have another way. We can capture a copy of xthis:

*https://en.cppreference.com/w/cpp/language/lambda

https://en.cppreference.com/w/cpp/language/lambda
https://en.cppreference.com/w/cpp/language/lambda

Lambdas in C++17 37

Capturing *this

#include <iostream>

struct Baz {
auto foo() {
return [*this] { std::cout << s << std::endl; };

std::string s;

}s

int main() {
auto fl1 = Baz{"ala"}.foo();
auto f2 = Baz{"ula"}.foo();
f1(0);
f20);

Play with the code @Wandbox*®

Capturing a required member variable via init capture guards you from potential errors with
temporary values but we cannot do the same when we want to call a method of the type:

For example:

Capturing this to call a method

struct Baz {
auto foo() {
return [this] { print(); };

void print() const { std::cout << s << '"\n'; }

std::string s;

33

In C++14 the only way to make the code safer is to use init capture of this:

“https://wandbox.org/permlink/ism9UeAHa2YsqkgL

https://wandbox.org/permlink/i8m9UeAHa2YsqkgL
https://wandbox.org/permlink/i8m9UeAHa2YsqkgL

Lambdas in C++17 38

auto foo() {
return [self=xthis] { self.print(); };

But in C++17 it’s cleaner, as you can write:

auto foo() {
return [xthis] { print(); I};

One more thing:

Please note that if you write [=] in a member function then th1s is implicitly captured!

Some Guides

Ok, so should we capture [this] or [xthis] why is this important?

In most cases, when you work inside the scope of a class, then [this] (or [&]) is perfectly
fine. There’s no extra copy which is essential when your objects are large.

You might consider [xthis] when you really want a copy, and when there’s a chance a
lambda will outlive the object.

This might be crucial for avoiding data races in async or parallel execution. Also, in the
async/multithreading execution mode, the lambda might outlive the object, and then this
pointer might no longer be alive.

Ssummary

In this chapter you've seen that C++17 joined two important elements of C++: constexpr
with lambdas. Now you can use lambdas in constexpr context! What’s more the C++17
Standard also addressed the capturing this problem.

In the next chapter, we’ll have a glimpse overview of the future that comes with C++20.

5. Future with C++20

Let’s have a glimpse overview of the changes that will get in C++20.

In this chapter you’ll see:

« What will change in C++20
« What are the new options to capture this

« What are template lambdas

Future with C++20 40

Quick Overview of the Changes

With C++20 we’ll get the following features:

« Allow [=, this] as a lambda capture - P0409R2"' and Deprecate implicit capture of
this via [=] - P08062

« Pack expansion in lambda init-capture: ...args = std::move(args)]1(){} - P0780°
+ static, thread_local, and lambda capture for structured bindings - P1091*

« template lambdas (also with concepts) - P0428R2°

« Simplifying implicit lambda capture - P0588R1°

+ Default constructible and assignable stateless lambdas - P0624R2’

« Lambdas in unevaluated contexts - P0315R4*

In most of the cases the newly added features “cleanup” lambda use and they allow some
advanced use cases.

For example with P1091° you can capture a structured binding.

We have also clarifications related to capturing this. In C++20 you’ll get a warning if you
capture [=] in a method:

struct Baz {
auto foo() {
return [=] { std::cout << s << std::endl; };

std::string s;

s

GCCo:

'https://wg21.link/p0409r2
*https://wg21.1ink/P0806
*https://wg21.link/P0780
“https://wg21.link/P1091
*https://wg21.link/P0428R2
“https://wg21.link/P0588R1
"https://wg21.link/P0624R2
®https://wg21.link/P0315R4
*https://wg21.link/P1091

https://wg21.link/p0409r2
https://wg21.link/P0806
https://wg21.link/P0780
https://wg21.link/P1091
https://wg21.link/P0428R2
https://wg21.link/P0588R1
https://wg21.link/P0624R2
https://wg21.link/P0315R4
https://wg21.link/P1091
https://wg21.link/p0409r2
https://wg21.link/P0806
https://wg21.link/P0780
https://wg21.link/P1091
https://wg21.link/P0428R2
https://wg21.link/P0588R1
https://wg21.link/P0624R2
https://wg21.link/P0315R4
https://wg21.link/P1091

Future with C++20 41

warning: implicit capture of 'this' via '[=]' is deprecated in C++20

Play with code @Wandbox*’

The warning appears, because even with [=] you’ll capture this as a pointer. So it’s better
to write what you want explicitly: [=, this], or [=, *this].

There are also changes related to advanced uses cases like unevaluated contexts and stateless
lambdas being default constructible.

With both changes you’ll be able to write:

std::map<int, int, decltype([](int x, int y) { return x > y; })> map;

C++20 Standard is feature complete, so we shouldn’t expect any new features
that will relate to lambdas. But even the elements already voted in might slightly
change, so don’t treat the above list as obsolete, but rather as work in progress.

But let’s have a look at one interesting feature: template lambdas.

Template Lambdas

With C++14 we got generic lambdas which means that parameters declared as auto are
template parameters.

For a lambda:

[1(auto x) { x5 }
The compiler generates a call operator that corresponds to a following template method:

template<typename T>
void operator(T x) { x; }

But there was no way to change this template parameter and use “real” template arguments.
With C++20 it will be possible.
For example, how can we restrict our lambda to work only with vectors of some type?

We can write a generic lambda:

%https://wandbox.org/permlink/yRosU85B0Q9LnwOv

https://wandbox.org/permlink/yRosU85B0Q9LnwOv
https://wandbox.org/permlink/yRosU85B0Q9LnwOv

Future with C++20 42

auto foo = [](auto& vec) {
std::cout<< std::size(vec) << '"\n'j;
std::cout<< vec.capacity() << '\n'j;

+s

But if you call it with an int parameter (like foo (10) ;) then you might get some hard-to-
read error:

prog.cc: In dinstantiation of 'main()::<lambda(const auto:1&)> [with auto:1 = 1in\
t]':
prog.cc:16:11: required from here
prog.cc:11:30: error: no matching function for call to 'size(const 1int&)'
11 | std::cout<< std::size(vec) << '"\n';

In C++20 we can write:

auto foo = []<typename T>(std::vector<T> const& vec) {
std::cout<< std::size(vec) << '"\n'j;
std::cout<< vec.capacity() << '\n'j;

s
The above lambda resolves to a templated call operator:

<typename T>
void operator(std::vector<T> const& s) { ... }

The template parameter comes after the capture clause [].

If you call it with int (foo(10) ;) then you get a nicer message:
note: mismatched types 'const std::vector<T>' and 'dint'

Play with code @Wandbox**

In the above example, the compiler can warn us about the mismatch in the interface of a
lambda rather than some code inside the body.

https://wandbox.org/permlink/gupbJfUfHHQ2y48q

https://wandbox.org/permlink/gupbJfUfHHQ2y48q
https://wandbox.org/permlink/gupbJfUfHHQ2y48q

Future with C++20 43

Another important aspect is that in generic lambda you only have a variable and not it’s
template type. So if you want to access it, you have to use decltype(x) (for a lambda with
(auto x) argument). This makes some code more wordy and complicated.

For example (using code from P0428):

auto f = [](auto const& x) {
using T = std::decay_t<decltype(x)>;
T copy = Xx;
T::static_function();
using Iterator = typename T::iterator;

Can be now written as:

auto f = []<typename T>(T const& x) {
T::static_function();

T copy = X;

using Iterator = typename T::iterator;
}
Summary

In this chapter, you saw more changes to lambdas. Lambas are quite a stable feature of
modern C++, so most of the new elements relate to quite advanced uses. For example
unevaluated contexts or capturing structured bindings. There are also “extensions” - for
instance in template lambdas. In most of the cases using generic lambda will do the work,
but for advanced scenarios, you might explicitly want to declare a template argument.

References

o C++11 - [expr.prim.Jambda]"®
o C++14 - [expr.prim.Jlambda]™
o C++17 - [expr.prim.Jambda]**
« Lambda Expressions in C++ | Microsoft Docs™

+ Demystifying C++ lambdas - Sticky Bits - Powered by FeabhasSticky Bits — Powered
by Feabhas®

« The View from Aristeia: Lambdas vs. Closures"’

« Simon Brand - Passing overload sets to functions*®

« Jason Turner - C++ Weekly - Ep 128 - C++20’s Template Syntax For Lambdas"’
« Jason Turner - C++ Weekly - Ep 41 - C++17’s constexpr Lambda Support®

*https://timsong- cpp.github.io/cppwp/n3337/expr.prim.lambda
Phttps://timsong-cpp.github.io/cppwp/n4140/expr.prim.lambda
““https://timsong-cpp.github.io/cppwp/n4659/expr.prim.lambda
*https://docs.microsoft.com/en-us/cpp/cpp/lambda-expressions-in-cpp?view=vs-2017
“https://blog.feabhas.com/2014/03/demystifying-c-lambdas/
http://scottmeyers.blogspot.com/2013/05/lambdas- vs- closures.html
*®https://blog.tartanllama.xyz/passing-overload- sets/
https://www.youtube.com/watch?v=ixGiE4- 1GA8&
*https://www.youtube.com/watch?v=kmza9U_niq4

https://timsong-cpp.github.io/cppwp/n3337/expr.prim.lambda
https://timsong-cpp.github.io/cppwp/n4140/expr.prim.lambda
https://timsong-cpp.github.io/cppwp/n4659/expr.prim.lambda
https://docs.microsoft.com/en-us/cpp/cpp/lambda-expressions-in-cpp?view=vs-2017
https://blog.feabhas.com/2014/03/demystifying-c-lambdas/
https://blog.feabhas.com/2014/03/demystifying-c-lambdas/
http://scottmeyers.blogspot.com/2013/05/lambdas-vs-closures.html
https://blog.tartanllama.xyz/passing-overload-sets/
https://www.youtube.com/watch?v=ixGiE4-1GA8&
https://www.youtube.com/watch?v=kmza9U_niq4
https://timsong-cpp.github.io/cppwp/n3337/expr.prim.lambda
https://timsong-cpp.github.io/cppwp/n4140/expr.prim.lambda
https://timsong-cpp.github.io/cppwp/n4659/expr.prim.lambda
https://docs.microsoft.com/en-us/cpp/cpp/lambda-expressions-in-cpp?view=vs-2017
https://blog.feabhas.com/2014/03/demystifying-c-lambdas/
http://scottmeyers.blogspot.com/2013/05/lambdas-vs-closures.html
https://blog.tartanllama.xyz/passing-overload-sets/
https://www.youtube.com/watch?v=ixGiE4-1GA8&
https://www.youtube.com/watch?v=kmza9U_niq4

	Table of Contents
	About the Book
	Who This Book is For
	Reader Feedback

	About the Author
	Acknowledgement
	Revision History
	Lambdas in C++03
	Issues
	Motivation for a New Feature

	Lambdas in C++11
	The Syntax
	The Type of a Lambda
	The Call Operator
	Captures
	Return Type
	IIFE - Immediately Invoked Function Expression
	Conversion to a Function Pointer
	Summary

	Lambdas in C++14
	Default Parameters for Lambdas
	Return Type
	Captures With an Initializer
	Capturing a Member Variable
	Generic Lambdas
	Bonus - LIFTing with lambdas
	Summary

	Lambdas in C++17
	constexpr Lambda Expressions
	Capture of *this
	Summary

	Future with C++20
	Quick Overview of the Changes
	Template Lambdas
	Summary

	References

