
Advanced C++ Programming

Frank J. Edwards
Edwards & Edwards Consulting, LLC

September 2011

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 September 2011

September 2011 Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Page iii

Advanced C++ Programming was dev eloped and written by Frank Edwards of Edwards &
Edwards Consulting, LLC.

Copyright Edwards & Edwards Consulting, LLC © 1994-2011 All rights reserved world-
wide. No part of this publication may be reproduced, transmitted, transcribed, stored, modified,
or translated into any human or computer readable format by any means, electronic, mechanical,
magnetic, optical, or otherwise, without the express written permission of

Edwards & Edwards Consulting, LLC
21103 Bircholm Court
Land O’Lakes, FL 34637-7464
Voice: +1 813 406 0604
Internet: http://www.eeconsulting.net/

support@eeconsulting.net (add student to the subject line)
You can also find us on LinkedIn and Google+

(Actually, it’s not that tough to get permission, depending on what you are planning on doing
with it.)

When such permission has been granted, all materials must appear in their original, unaltered
form. Any alteration, whether removal or addition, of tables, charts, figures, contact information,
or any other text, will be deemed a violation of the agreement. If our company contact informa-
tion is not shown in the area above (if a large block of white space appears instead), the copyright
has been violated. Please report it to the email address above or the phone number shown at the
bottom of each page. Thank you!

We take great care to ensure the accuracy and quality of these materials, however, all material is
provided without warranty, including, but not limited to, the implied warranties of merchantabil-
ity or fitness for a particular purpose.

The sole purpose of this material is to assist in live instruction. It is not intended to serve as a
reference document. Users of this material should always refer to the appropriate vendor docu-
mentation.

Edwards & Edwards Consulting, LLC © 1994-2011

Instructors and students alike are welcome to visit http://www.eeconsulting.net/labs/ to retrieve the files
for the labs. Note that the hands-on exercises expect the students to either (a) create their own files or
(b) use text files that already exist on the system. Most students will choose (b), of course. :)

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 September 2011

Page iv All Rights Reserved.

This book was edited using Vim v7.2 (a free vi clone) under Linux 2.6.18 (POSIX) and/or
AIX™ 5L/6.

Formatting was done using Groff v1.20 and it’s manuscript formatting macros, and the output
was processed by Grops for conversion to PostScript®.

GNU Make v3.81 was used to manage the commands required to format chapters and to auto-
mate the process of building DOS-formatted lab diskettes, where required.

GNU RCS v5.7 was used as the source librarian for all documentation and source code.

In all cases, the code that appears in this courseware was compiled using at least one of the fol-
lowing compilers: the GNU G++ gcc v2.96 (or later) compiler under Linux and/or AIX, and pos-
sibly other compilers, and included directly into the document with C++ comments used to con-
trol formatting appearance.

AIX and AIXwindows are trademarks of International Business Machines, Inc.

PostScript is a trademark of Adobe Systems Incorporated which may be registered in some jurisdic-
tions.

Any other trademarks or registered trademarks are the property of their respective owners.

September 2011 Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Page v

I hav e presented here a bibliography for the beginning C++ programmer. I cannot, of course,
take any responsibility for whether they can teach a particular student any certain topic, but I
have found them to be quite enlightening...

The following three texts tend to overlap some aspects of each other considerably. If you are
only going to buy one, maybe get The C++ Programming Language since it contains a copy of
the reference manual [minus the annotations]. If you can only buy two, maybe get the Lippman
and The Annotated C++ Reference Manual, because the annotations tend to help explain the
design of the language a lot. But, buy all three if you can afford it! Each has something unique
to offer. Note that the ARM is now a bit dated since ANSI C++ 3.0 was ratified in early 1997, but
it is still insightful.

C++ Primer, 4th Edition, Lippman, Addison-Wesley 2005, ISBN-13 978-0201721485. Histori-
cally, the most common text to learn C++ from. Great coverage of multiple inheritance.
Great coverage of templates. Very readable (although I’ve had non-C programmers tell
me they are not impressed with the writing style).

It is a large book (with a tiny font!) and that makes it daunting. But it is definitely the
book to get if you can only get one.

The C++ Programming Language, 3rd Edition, Stroustrup, Addison Wesley 1997, ISBN
0-201-53992-6. The newest text from the creator of the language. Also includes the ref-
erence manual. If you can get two or more books, drop down the second part of this list
and pick up a book or two on style issues, then come back up here and pick up more ref-
erences.

Written at a fairly high level of technical detail — Lippman probably makes for a little
easier reading. Serious C++ programmers will want to read this — at least to get a better
idea of where Stroustrup is coming from. Good coverage of templates and exceptions,
and lots of practical advice on how to use C++ on real projects.

STL Tutorial and Reference Guide, Musser, David R. and Saini, Atul, Addison-Wesley 1996,
ISBN 0-201-63398-1. This is a hardbound book which describes the Standard Template
Library, an implementation of generic algorithms which makes heavy use of templated
classes and functions. As the STL is now packaged with every compiler product, the STL
is always there and ready to go. On the downside, using the STL without a proper under-
standing of its design and implementation can lead to massive "code bloat", and the text
points out key areas where this can be a problem and how to avoid them.

The text consists of three main parts: a tutorial to using STL, example programs written
using STL, and an STL reference guide.

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 September 2011

Page vi All Rights Reserved.

These are useful to teach style issues instead of language basics:

C++ Programming Style, Tom Cargill, Addison-Wesley 1994, ISBN 0-201-56365-7. This book
looks at articles published in various magazines and examines the efficiency, readability,
and reusability of the code presented in those articles. In most cases, the code ends up
being completely rewritten. The author does this in multiple steps, explaining each
change as the code develops. Very good for understanding the "why" and "how" aspects
of code evolution in C++, although its treatment of templates is very light, due to its age.

Because it’s such an old book, I hesitate to recommend it. However, I learned a lot from
this book during my early years with C++.

UML Distilled, Third Edition, Martin Fowler, Addison-Wesley 2005, ISBN 0-321-19368-7 A
great book on design, this one discusses how to use the Unified Modeling Language
(UML) to represent common programming concepts when creating an object-oriented
design.

I’ve had some students tell me they love this text and others tell me they hate it. I con-
sider it an excellent, er, "distillation", of how to use the UML technique, including the
graphical elements, to accomplish the analysis and design phases of an application.
When I first picked up this book, I had worked a bit with the Booch Method, but hadn’t
used UML -- this book taught me both at once.

Effective C++, Scott Meyers, Addison-Wesley 1992, ISBN 0-201-56364-9. Fifty gems of wis-
dom that every C++ programmer needs to know and follow. Covers probably 90% of the
questions that are asked on comp.lang.c++ He now has an entire series of books,
starting with More Effective C++ and continuing through Effective STL (ISBN
978-0201749625). I’m a big fan of this series.

Design Patterns: Elements of Reusable Object-Oriented Software, Gamma, Helm, Johnson, and
Vlissides, Addison-Wesley 1994, ISBN 978-0201633610. This is a classic and anyone
who has written at least a single line of code should have read this book by now. If you
haven’t, you probably don’t understand some of the foundations of object-oriented pro-
gramming.

September 2011 Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

Chapter 01
C++ Fundamentals

Objectives . 3
Why Object-Oriented Programming? 4
Review of C++ and Classes 5
Some New Material . 11
Virtual Functions . 17
Name Mangling . 28
Pointers to Class Members 30
Review . 32

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 C++ Fundamentals

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 C++ Fundamentals

Chapter 02
Operator Overloading

Objectives . 3
What is Operator Overloading? 4
Examples . 8
Optimizations . 9
Interesting Operator Uses . 13
Advice for Operator Overloading 18
Review . 19

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Operator Overloading

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Operator Overloading

Chapter 03
Templates

Objectives . 3
What are templates? . 4
Template Instantiation . 8
Template Parameters . 9
Function Templates . 10
User Specializations . 15
Function Objects . 18
Source Code Organization . 20
Contents of the STL . 21
Review . 23

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Templates

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Templates

Chapter 04
Stream I/O

Objectives . 3
Stream I/O vs. File I/O . 4
The Design of the I/O System 6
Formatting . 8
Buffering . 10
Application Interface . 12
Adding Overloaded I/O Operators 14
Using File I/O Objects . 19
Using the String Streams . 24
Review . 27

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Stream I/O

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Stream I/O

Chapter 05
Inheritance

Objectives . 3
What is (and Why Use) Inheritance? 4
An Example of Composition 6
Using Inheritance Instead . 8
Upcasting vs. Downcasting 11
Solution 1 — The Type-field 14
Virtual Functions . 16
Abstract Base Classes . 18
Multiple Inheritance . 19

Virtual Base Classes . 22
Method Disambiguation . 25
Functional Separation . 26
Review . 30

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Inheritance

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Inheritance

Chapter 06
Standard Template Library

Objectives . 3
What is the STL? . 4
What are the Goals of the STL? 5
Which Container Classes are Provided? 6
Which Iterator Types are Provided? 7
Which Generic Algorithms are Provided? 9
Some Examples of What We’ve Seen 10
Review . 20

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Standard Template Library

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Standard Template Library

Chapter 07
Miscellaneous

Objectives . 3
Miscellaneous . 4
Iterator Concepts . 5
Exception Handling . 6
New-style Cast Operations 10
Run-Time Type Identification 12
Review . 13

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Miscellaneous

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Miscellaneous

TAB HERE

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 C++ Fundamentals

C++ Fundamentals Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

Advanced C++ Programming

C++ Fundamentals

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 C++ Fundamentals

Page 01-02 (C++ Fundamentals) Advanced C++ Programming All Rights Reserved.

C++ Fundamentals Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (C++ Fundamentals) Page 01-03

Objectives
• Why Pursue Object-Oriented Programming?

• A Review of C++ and Classes
— const

— static

— mutable

— explicit constructors.

— Virtual functions

— Name mangling

— The this pointer

• Using typedef inside a class

• Nesting Class Declarations

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 C++ Fundamentals

Page 01-04 (C++ Fundamentals) Advanced C++ Programming All Rights Reserved.

Why Object-Oriented Programming?
• Object-oriented programming provides a methodology for making software appli-

cations easier to write and maintain.

• These benefits come largely from the core concepts of

— modularity (through design of class hierarchies),

— data hiding (through the use of class access specifiers), and

— code reuse (through inheritance and class derivation).

• By encapsulating key components of an application into small functional units,
those units can be combined to produce the desired result, with the direct benefit of
using those components in different ways within the same application or other
applications.

• Howev er, because the functional breakdown of an application into its constituent
parts can only be performed when the application features have been well-defined,
it is best that some sort of functional or requirements specification be available at
design time.

• Typically, the specifications may change over the lifetime of the application, but
without a vision of the goal, the path taken to achieve it will never be a direct one.

C++ Fundamentals Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (C++ Fundamentals) Page 01-05

Review of C++ and Classes
• Over the next few pages we’ll be reviewing the use of static and const, and

introducing two new keywords not discussed in the Introduction to C++ course,
mutable and explicit.

• The static keyword is used when only a single occurrence of a class member
should be created.

— The static keyword is used on data members to indicate that all objects of
a giv en class share access to the same storage location throughout their life-
time.

— This is commonly used to keep a reference count of the number of objects
created, for example, or to hide any other kind of persistent data which is
specific to a particular class.

• The const keyword tells the compiler that changes to the named variable are not
allowed.

— The variable to which the const modifier is applied cannot be changed, and
any attempt by the software to do so should be flagged as an error.

— This applies to functions as well, so that functions which are not declared
const cannot be invoked on const (read-only) objects.

• The mutable keyword is the opposite of const in that it tells the compiler that a
member variable may change even if the object is declared const.

— This is primarily for those occassions in which an embedded application is
required to control external hardware.

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 C++ Fundamentals

Page 01-06 (C++ Fundamentals) Advanced C++ Programming All Rights Reserved.

Review of C++ and Classes (continued)
• Constructors marked explicit are those whose parameters will not be converted

from one type to another in order to satisfy the argument matching requirements.

— This means, for example, that a constructor declared explicit and taking
a float as a parameter, cannot be invoked by using the assignment form of
initialization: Shape s = 3.0; would be illegal.

— This is most valuable when an implicit constructor call would be inappropri-
ate.

1 class String {
2 public:
3 String(int len);
4 String(const char *s);
5 };
6 String s = ’a’; // invokes first constructor!

— The problem in the above code can be corrected by placing the word
explicit in front of the first constructor declaration, informing the com-
piler that only explicit calls of that constructor are legal.

1 class String {
2 public:
3 explicit String(int len);
4 String(const char *s);
5 };
6 String s = ’a’; // error
7 String t(10); // 10 character string

• Note that using explicit also prevents the compiler from using constructors to
convert one data type to another. This is discussed in detail in a later chapter.

C++ Fundamentals Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (C++ Fundamentals) Page 01-07

Review of C++ and Classes (continued)
• Now we present a few pieces of code that demonstrate the use of these keywords.

• We start with the use of static and const. Examine them here and we’ll dis-
cuss them in more detail in a few pages.

bash$ cat demo-keywords1.h
1 #ifndef demo_keywords1_h_
2 #define demo_keywords1_h_

3 #include "date.h" // My Date & Time classes

4 class Shape {
5 static int count; // How many Shapes exist?
6 const Time timestamp; // When was this Shape made?
7 public:
8 Shape();
9 ˜Shape();
10 static int GetCount();
11 const Time &GetCreationTime() const;
12 };

13 #endif // demo_keywords1_h_
bash$ _

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 C++ Fundamentals

Page 01-08 (C++ Fundamentals) Advanced C++ Programming All Rights Reserved.

Review of C++ and Classes (continued)
• In the code below, notice that one of the header files is missing the typical .h

extension...

bash$ cat demo-keywordsm.cpp
1 #include <iostream> // Note the missing ".h"!!
2 using namespace std;

3 #include <unistd.h> // For sleep()
4 #include "demo-keywords1.h"

5 int main()
6 {
7 Shape s1;
8 cout << "Shape #" << Shape::GetCount()
9 << " was created at "

10 << s1.GetCreationTime().Text()
11 << endl;
12 sleep(5); // POSIX functionality
13 Shape s2;
14 cout << "Shape #" << Shape::GetCount()
15 << " was created at "
16 << s2.GetCreationTime().Text()
17 << endl;
18 #ifdef WIN32
19 char ch; // Otherwise the window may immediately close
20 cin.get(ch);
21 #endif
22 return 0;
23 }

bash$ demo-keywordsm
Shape #1 was created at 19:23:11
Shape #2 was created at 19:23:16
bash$ _

C++ Fundamentals Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (C++ Fundamentals) Page 01-09

Review of C++ and Classes (continued)
• And on this page, you’ll see how the static data member has space allocated for it

(putting an assignment statement inside the class won’t work and will be silently
ignored).

— If you leave out this definition, the compiler will not complain but the linker
will.

— The rule of thumb is to put the definition in the same file as the implementa-
tion of the class.

bash$ cat demo-keywords1.cpp
1 #include "demo-keywords1.h"

2 int Shape::count = 0; // Definition of static member

3 Shape::Shape() : timestamp(Time::Now())
4 {
5 count++;
6 }

7 Shape::˜Shape()
8 {
9 count--;

10 }

11 int Shape::GetCount()
12 {
13 return count;
14 }

15 const Time& Shape::GetCreationTime() const
16 {
17 return timestamp;
18 }

bash$ _

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 C++ Fundamentals

Page 01-10 (C++ Fundamentals) Advanced C++ Programming All Rights Reserved.

Review of C++ and Classes (continued)
• On this page is an example which includes the use the string class, defined by

ANSI C++ 3.0. The string class, and the std:: prefix which precedes it, will
be discussed more in the next few pages.

bash$ cat date.h
1 #ifndef date_h_
2 #define date_h_

3 #include <string> // Yes, the ".h" is missing!

4 class Date {
5 unsigned short year, month, day;
6 public:
7 Date();
8 void Set(unsigned short year,
9 unsigned short month,
10 unsigned short day);
11 std::string Text() const; // mm/dd/yyyy
12 static const Date &Now(); // returns current date
13 };

14 class Time {
15 unsigned short hour, minute, second;
16 public:
17 Time();
18 void Set(unsigned short hour,
19 unsigned short minute,
20 unsigned short second);
21 std::string Text() const; // hh:mm:ss
22 static const Time &Now(); // returns current time
23 };

24 #endif // date_h_
bash$ _

C++ Fundamentals Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (C++ Fundamentals) Page 01-11

Some New Material
• In the next example, there are a few things which you may not have seen before.

— Nested classes/structures,

— typedefs inside a class declaration,

— Templates (using the < and > characters),

— the string class instead of character pointers,

— the std scope (something called namespaces).

• Over the next few pages, you may see reference to the "STL". This is referring to
the Standard Template Library, a component of the language which comes with
ANSI C++ 3.0-compliant compiler products. The STL will be covered in more
detail later.

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 C++ Fundamentals

Page 01-12 (C++ Fundamentals) Advanced C++ Programming All Rights Reserved.

Some New Material (continued)
bash$ cat demo-review1.h

1 #ifndef demo_review1_h_
2 #define demo_review1_h_

3 #include <string> // STL std::string and std::wstring
4 #include <list> // STL linked-list class
5 #include "date.h" // My own Date & Time classes

6 class Empl {
7 public:
8 struct StartStop { // nested structure declaration
9 Date cdStart, cdStop;
10 float fSalary;
11 StartStop(float newsal); // constructor
12 };
13 typedef std::list<StartStop*> dateList;
14 typedef dateList::iterator dateListIter;
15 typedef dateList::const_iterator dateListIterC;

16 private:
17 Empl *pceMgr; // this employee’s manager
18 std::string csName;
19 std::string csSSN;
20 std::string csTitle;
21 int nAge;
22 int nAuth; // autonomous spending level
23 dateList lWorkDates;
24 public:
25 Empl();
26 Empl(std::string name, std::string ssn, Empl *mgr = 0);
27 ˜Empl();

28 void SetName(std::string name) { csName = name; }
29 void SetSSN(std::string ssn) { csSSN = ssn; }
30 void SetTitle(std::string title) { csTitle = title; }
31 void SetAge(int age) { nAge = age; }

32 Empl *GetManager() const { return pceMgr; }
33 std::string GetName() const { return csName; }
34 std::string GetSSN() const { return csSSN; }
35 std::string GetTitle() const { return csTitle; }
36 int GetAge() const { return nAge; }

37 // The salary functions are handled differently

C++ Fundamentals Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (C++ Fundamentals) Page 01-13

Some New Material (continued)
38 // because they must access the lWorkDates member
39 // and set or get the information from the last entry.
40 void SetSalary(float salary);
41 float GetSalary() const;

42 const dateList GetEmploymentDates() const;
43 };
44 #endif // demo_review1_h_

bash$ _

• Notice the use of the string class and the inclusion of the <string> header file.
(Because this class uses strings instead of character pointers, there is no need for a
destructor to deallocate memory for the character fields.) Throughout this course,
we will be using the string class. In a later chapter, we’ll look at the specifics of
this class in more detail.

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 C++ Fundamentals

Page 01-14 (C++ Fundamentals) Advanced C++ Programming All Rights Reserved.

Some New Material (continued)
• The interface to the Empl class was defined in the functional specification. The

implementation of the Empl class can therefore change without modifying the code
which uses this class.

• Notice the typedefs inside the class declaration. This scopes the typedef to
within the class, so that it can’t be used stand-alone and doesn’t pollute the global
namespace. They are public, howev er, and can be used outside the class.

• Notice how the dateListIterC data type is used below; a return value of that type is
provided by the GetEmploymentDates method. The application can then iterate
through the dates in any way supported by the iterator class. The real beauty is that
the class can change the type of iterator at any time (maybe our container changed
from a linked list to a binary tree?) and the application source code just needs a
recompile to be updated − no code changes in the application.

1 #include "demo-review1.h"
2 // ...
3 int main()
4 {
5 Empl fred;
6 Empl::dateListIterC dateStart, dateEnd;

7 dateStart = fred.GetEmploymentDates().begin();
8 dateEnd = fred.GetEmploymentDates().end();
9 while (dateStart != dateEnd) {

10 // `*dateStart’ is what the iterator contains;
11 // in this case, a "StartStop *"
12 // dereference that pointer to get the salary
13 if ((*dateStart)->fSalary > 50000) {
14 // ...
15 }
16 dateStart++;
17 }
18 // ...
19 }

• In addition to the Empl class on the previous page, let us suppose that another,
derived class, is required to represent a specialization or augmentation of the Empl
class. This class is shown next.

C++ Fundamentals Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (C++ Fundamentals) Page 01-15

Some New Material (continued)
bash$ cat demo-review2.h

1 #ifndef demo_review2_h_
2 #define demo_review2_h_

3 #include "demo-review1.h"

4 using namespace std; // Now I don’t need "std::"

5 class Manager : public Empl {
6 typedef list<string> projList;
7 public:
8 typedef projList::const_iterator projListIterC;

9 private:
10 string csDept;
11 projList clcsProjects;
12 public:
13 Manager();
14 Manager(string name, string ssn, Empl *mgr = 0);

15 void SetDept(string dept);
16 string GetDept() const;

17 int AddProject(string proj);
18 int RemoveProject(string proj);
19 projListIterC ProjectList() const;
20 };

21 #endif // demo_review2_h_
bash$ _

• Notice how the list and iterator types could change without requiring any changes
on the part of the application, as long as all iterators support the same interface.

• This is, in fact, what the Standard Template Library tries to accomplish. All itera-
tors are grouped into various categories and each iterator of a given category must
support particular operations.

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 C++ Fundamentals

Page 01-16 (C++ Fundamentals) Advanced C++ Programming All Rights Reserved.

Some New Material (continued)
• It is worth noting that a good practice is to use typedefs to create aliases for all

data types based on concepts of what the type represents.

— For example, a variable that contains a salary might be of type Money instead
of float. This has a number of advantages in the future when the desire to
change the data type from float to a class becomes reality.

typedef float Money;

Money salary = 5.25; // variable initialization
salary *= 1.10; // give a 10% raise

could become the following in a transparent manner:

// typedef float Money;
class Money {

// ...
};

Money salary = 5.25; // constructor call
salary *= 1.10; // calls operator*=(float);

C++ Fundamentals Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (C++ Fundamentals) Page 01-17

Virtual Functions
• The next few pages contain an example of polymorphism; that is, the ability for a

single item to assume many forms. In this case, the item is a Shape pointer, and the
many forms would be Points and Circles.

Shape

CirclePoint

• Polymorphism allows the application to create a list of pointers to the top class in
the hierarchy and then store into the list a pointer to objects of any subtype. For
example, an array of Shape * could contain pointers to shapes (of course), but
could also contain pointers to Points and Circles.

• What virtual functions provide is a way for the runtime to figure out what type of
object is actually being pointed to so that methods of the correct class are invoked.
For example, both Shape and Circle contain draw() methods. But if all the
compiler has is a Shape pointer it doesn’t know what the real object type is... Vir-
tual functions allow the runtime to figure out the actual object type and invoke the
correct draw() method.

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 C++ Fundamentals

Page 01-18 (C++ Fundamentals) Advanced C++ Programming All Rights Reserved.

Virtual Functions (continued)
bash$ cat shapes1.h

1 #ifndef shapes1_h_
2 #define shapes1_h_

3 class Shape {
4 static int count;
5 public:
6 Shape();
7 // If there are ANY virtual functions, there should
8 // probably be a virtual destructor... Why?
9 virtual ˜Shape();
10 // pure virtual functions...
11 virtual void draw() const = 0;
12 virtual void rotate() const = 0;
13 };

14 #endif // shapes1_h_
bash$ _

bash$ cat shapes1.cpp
1 #include <iostream>
2 using namespace std;

3 #include "shapes1.h"
4 int Shape::count = 0; // Definition of static

5 Shape::Shape()
6 {
7 cout << "++Shape::count is " << ++count << endl;
8 }
9 Shape::˜Shape()
10 {
11 cout << "Shape::count-- is " << count-- << endl;
12 }

bash$ _

C++ Fundamentals Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (C++ Fundamentals) Page 01-19

Virtual Functions (continued)
bash$ cat points1.h

1 #ifndef points1_h_
2 #define points1_h_

3 #include <iostream> // Needed for declaration of ostream
4 using namespace std;

5 #include "shapes1.h"

6 class Point : public Shape {
7 int x, y;
8 public:
9 Point(int nx, int ny); // only constructor
10 virtual void draw() const; // always virtual
11 virtual void rotate() const { } // do nothing
12 int getX() const { return x; } // inlined by optimizer
13 int getY() const { return y; } // inlined by optimizer
14 };

15 inline
16 ostream &operator <<(ostream &os, const Point &p)
17 {
18 os << "[Point:" << p.getX() << ’,’ << p.getY() << "]";
19 return os;
20 }

21 #endif // points1_h_
bash$ _

bash$ cat points1.cpp
1 #include "points1.h"

2 Point::Point(int nx, int ny) : x(nx), y(ny)
3 {
4 }

5 void Point::draw() const
6 {
7 // Notice the use of "*this" ...
8 cout << "Draw a point @ " << *this << endl;
9 }

bash$ _

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 C++ Fundamentals

Page 01-20 (C++ Fundamentals) Advanced C++ Programming All Rights Reserved.

Virtual Functions (continued)
bash$ cat circles1.h

1 #ifndef circles1_h_
2 #define circles1_h_

3 #include <iostream> // Needed for ostream
4 using namespace std;

5 #include "shapes1.h"
6 #include "points1.h"

7 class Circle : public Shape {
8 Point center;
9 int radius;
10 public:
11 Circle(const Point &p, int rad); // only constructor
12 virtual void draw() const; // always virtual
13 virtual void rotate() const { } // do nothing
14 const Point &getCenter() const { return center; }
15 int getRadius() const { return radius; }
16 };

17 inline
18 ostream &operator <<(ostream &os, const Circle &c)
19 {
20 os << "[Circle:" << c.getCenter()
21 << ’,’ << c.getRadius() << ’]’;
22 return os;
23 }
24 #endif // circles1_h_

bash$ _

C++ Fundamentals Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (C++ Fundamentals) Page 01-21

Virtual Functions (continued)
bash$ cat circles1.cpp

1 #include "circles1.h"

2 Circle::Circle(const Point &p, int rad)
3 : center(p), radius(rad > 0 ? rad : 0)
4 {
5 }

6 void Circle::draw() const
7 {
8 cout << "Draw a circle @ " << *this << endl;
9 }

bash$ _

• And now an example of using the previous classes. This (silly) program creates a
few shapes and adds them to the front of a linked list. Then a few randomly posi-
tioned shapes (a Circle and a Point) are added at the end of the list.

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 C++ Fundamentals

Page 01-22 (C++ Fundamentals) Advanced C++ Programming All Rights Reserved.

Virtual Functions (continued)
bash$ cat demo-virtfuncm.cpp

1 #include <iostream>
2 #include <list> // Example of STL class

3 using namespace std;

4 #include <stdlib.h>
5 #include "shapes1.h"
6 #include "points1.h"
7 #include "circles1.h"

8 // Create a datatype that can be easily changed later
9 typedef list<Shape*> ListOfShapes;

10 int main()
11 {
12 // Shape s; // compile-time error
13 Point a(1,1); // @(1,1)
14 Point b(10,35); // @(10,35)
15 Circle c(Point(50,50), 7); // @(50,50), radius 7

16 a.draw(); // draw() is called the same way for all of
17 b.draw(); // these objects (no pointers used).
18 c.draw();

19 cout << "Now create a list..." << endl;
20 ListOfShapes allShapes;

21 allShapes.push_front(&a); // Pointers are stored...
22 allShapes.push_front(&b);
23 allShapes.push_front(&c); // order is c -> b -> a

24 {
25 // Add two shapes to the end of the list.
26 Shape *s;
27 s = new Circle(
28 Point(rand()%100, rand()%100),
29 rand()%20);
30 allShapes.push_back(s);
31 s = new Point(rand()%100, rand()%100);
32 allShapes.push_back(s);
33 }
34 cout << "Size should be 5: " << allShapes.size() << endl;

C++ Fundamentals Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (C++ Fundamentals) Page 01-23

Virtual Functions (continued)
35 // Draw all of the shapes in the list.
36 // (Notice that we don’t know the iterator’s real type)
37 ListOfShapes::iterator current;

38 // Start at the first one and iterate until done.
39 cout << "In front-to-back order..." << endl;
40 current = allShapes.begin();
41 while (current != allShapes.end())
42 (*current++)->draw(); // ’*current’ is a Shape*
43 cout << endl;

44 // Now try it again in reverse order.
45 cout << "In back-to-front order..." << endl;
46 current = allShapes.end();
47 do {
48 (*--current)->draw();
49 } while (current != allShapes.begin());
50 #ifdef WIN32
51 char ch;
52 cin.get(ch);
53 #endif
54 // Do the shapes in the list need to be delete’d?
55 return 0;
56 }

bash$ _

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 C++ Fundamentals

Page 01-24 (C++ Fundamentals) Advanced C++ Programming All Rights Reserved.

Virtual Functions (continued)
• Polymorphism doesn’t come without a price, however.

• Somehow the runtime has to know what the real object type is when all it has is a
pointer to a base class.

• The answer is rather simple — the runtime doesn’t know what the data type really
is!

• What the runtime does know is that the base class contains an extra pointer field
hidden inside the class (usually at the end of the memory layout). This pointer was
added by the compiler when it saw that the class had a virtual function in it.

• That pointer is the location of a jump table for this object (and all objects of the
same type).

• This means that the overhead of using virtual functions equates to an additional
pointer inside ev ery object which is polymorphic (called the vptr), and the space
required for the jump table (called the vtbl) which is shared by all objects of the
class, so that the overall space requirement is negligible.

• There are also two extra memory fetches: one to retrieve the vptr from the object
and one to get the function address from the vtbl.

Shape

vptr

Shape_vtbl

Circle
Shape

vptr

Circle_vtbl

C++ Fundamentals Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (C++ Fundamentals) Page 01-25

Virtual Functions (continued)
• The upstart of all this is that your objects will increase in size by the size of a void

pointer (4 bytes on most 32-bit platforms, and 8 bytes on 64-bit platforms). For
small and plentiful objects, this could be significant. For larger objects of which
fewer are created, the differential is much smaller.

• The vtbl will contain one void pointer for each virtual function declared within
the class or its base class(es), so it’s size is negligible.

• To demonstrate these size differences, examine the following code.

bash$ cat sizeof.cpp
1 #include <iostream>
2 using namespace std;

3 #include "sizeof.h"

4 int main()
5 {
6 cout << "Base: "
7 << sizeof(Base) << endl;
8 cout << "WithoutVirtual: "
9 << sizeof(WithoutVirtual) << endl;

10 cout << "WithVirtual: "
11 << sizeof(WithVirtual) << endl;
12 cout << endl;
13 cout << "BaseWithData: "
14 << sizeof(BaseWithData) << endl;
15 cout << "WithoutVirtualWithData: "
16 << sizeof(WithoutVirtualWithData) << endl;
17 cout << "WithVirtualAndData: "
18 << sizeof(WithVirtualAndData) << endl;
19 #ifdef WIN32
20 char ch;
21 cin.get(ch);
22 #endif
23 return 0;
24 }

bash$ _

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 C++ Fundamentals

Page 01-26 (C++ Fundamentals) Advanced C++ Programming All Rights Reserved.

Virtual Functions (continued)
bash$ sizeof
Base: 1
WithoutVirtual: 1
WithVirtual: 4

BaseWithData: 4
WithoutVirtualWithData: 4
WithVirtualAndData: 8
bash$ _

C++ Fundamentals Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (C++ Fundamentals) Page 01-27

Virtual Functions (continued)
bash$ cat sizeof.h

1 #ifndef sizeof_h_
2 #define sizeof_h_

3 // How many bytes does your compiler allocate?
4 class Base {
5 // no data at all!
6 public:
7 void fill() const;
8 };

9 // What is your guess for sizeof(WithoutVirtual)??
10 class WithoutVirtual : public Base {
11 public:
12 void rotate() const;
13 };

14 // What is your guess for sizeof(WithVirtual)??
15 class WithVirtual : public Base {
16 public:
17 virtual void rotate() const;
18 };

19 // How many bytes for this one?
20 class BaseWithData {
21 int test;
22 public:
23 void fill() const;
24 };

25 // What is your guess for sizeof(WithoutVirtualWithData)??
26 class WithoutVirtualWithData : public BaseWithData {
27 public:
28 void rotate() const;
29 };

30 // What is your guess for sizeof(WithVirtualAndData)??
31 class WithVirtualAndData : public BaseWithData {
32 public:
33 virtual void rotate() const;
34 };
35 #endif // sizeof_h_

bash$ _

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 C++ Fundamentals

Page 01-28 (C++ Fundamentals) Advanced C++ Programming All Rights Reserved.

Name Mangling
• Name mangling is the term used to describe how the compiler modifies the symbol

name seen by the linker to include information necessary to allow the linker to
determine the correct function out of a list of overloaded functions.

• It is compiler’s implementation of a language component known as the function
signature. A function signature is a uniquely identifying attribute of a function
which can be determined solely by the function declaration and which includes the
function name (including scope) and number and types of all parameters, plus any
function modifiers such as const.

• Basically, it works like this:

— The C++ compiler requires all functions to be prototyped (so that it has a
complete list of all functions that are being overloaded).

— It chooses the appropriate function from the list of prototypes when a func-
tion call is made in the source code (determined via the function signature).

— This results in an "external reference" being made in the resulting object file
(with a .obj extension on some platforms, a .o extension on others).

— The linker locates that name from the list of all modules available for input,
including the object file itself as well as other object files and/or libraries.

• The compiler will produce an error if the function hasn’t been prototyped.

• The linker will produce an if error the function hasn’t been defined.

• In the case of a function being both declared and defined, the application linking is
successful and an executable is generated.

• The next page is a (summarized) listing from a Unix linker of a single object file.
The name mangling is quite apparent.

C++ Fundamentals Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (C++ Fundamentals) Page 01-29

Name Mangling (continued)
bash$ cat name-mangling.cpp

1 class Shape {
2 void InitShape();
3 public:
4 ˜Shape(); // destructor

5 void rotate();
6 virtual void draw();
7 };

8 int main()
9 {
10 Shape s; // Force some references,
11 s.draw(); // and some more...
12 }

bash$ _

ADDRESS MAP FOR a.out
CL TY Sym# NAME SOURCE-FILE(OBJECT)
-- -- ----- --------------------- -------------------
PR ER S1 .__dt__5ShapeFv
UA ER S2 __vft5Shape
PR ER S3 .draw__5ShapeFv
PR SD S4 <> name-mangling.cpp(name-mangling.o)
PR LD S5 <.__dftdt__5ShapeFv>
PR LD S6 <.__ct__5ShapeFv>
PR LD S7 .main
RW SD S8 <_$STATIC> name-mangling.cpp(name-mangling.o)
DS SD S9 main name-mangling.cpp(name-mangling.o)
DS SD S10 <__dftdt__5ShapeFv> name-mangling.cpp(name-mangling.o)
T0 SD S11 <TOC>
TC SD S12 <__vft5Shape>
TC SD S13 <_$STATIC>

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 C++ Fundamentals

Page 01-30 (C++ Fundamentals) Advanced C++ Programming All Rights Reserved.

Pointers to Class Members
• One topic doesn’t come up very often in discussing class members. That is the

ability to create a pointer to a object’s members.

• This is not an ordinary pointer, because

— a pointer to a data member must be based on an offset from the beginning of
the object instead of an absolute pointer to a memory location, and

— a pointer to a virtual function member must take into account the access to
the vptr and vtbl of the class.

• A pointer to the draw() method of the Shape class is shown being used below.

• The idea that "the pointer is not a simple address" only applies to non-static data
members and virtual function members.

— Static members exist without relation to individual objects, so they are not
implemented as offsets from the beginning of an object, but as constant
addresses.

— And non-virtual functions exist in memory at a single location for all objects
of the class as well, also resulting in an absolute address.

bash$ demo-ptm
++Shape::count is 1
++Shape::count is 2
++Shape::count is 3
++Shape::count is 4
++Shape::count is 5
++Shape::count is 6
sizeof(pfm) = 16
Draw a point @ [Point:7,49]
Draw a point @ [Point:73,58]
Draw a point @ [Point:30,72]
Draw a point @ [Point:44,78]
Draw a point @ [Point:23,9]
Draw a point @ [Point:40,65]
bash$ _

C++ Fundamentals Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (C++ Fundamentals) Page 01-31

Pointers to Class Members (continued)
bash$ cat demo-ptm.cpp

1 #include <iostream>
2 #include <list>
3 using namespace std;

4 #include "points1.h"

5 // Pointer to Shape Member Function
6 // (some compilers ignore the "const")
7 typedef void (Shape::*PSMF)() const;

8 // Prototype a function that operates on all shapes in a
9 // list of shapes, invoking some function on each one.
10 void draw_em(PSMF func, const list<Shape*> &drawing);

11 int main()
12 {
13 list<Shape*> drawing;

14 // Add 6 Points to the drawing
15 for (int i=0; i < 6; i++) {
16 Shape *s = new Point(rand()%100, rand()%100);
17 drawing.push_back(s);
18 }
19 PSMF pfm = &Shape::draw; // Notice no parens
20 cout << "sizeof(pfm) = " << sizeof(pfm) << endl;
21 draw_em(pfm, drawing);
22 return 0;
23 }

24 void draw_em(PSMF func, const list<Shape*> &drawing)
25 {
26 list<Shape*>::const_iterator current = drawing.begin();
27 while (current != drawing.end()) {
28 Shape *a = *current++;
29 // Function name is unknown here; it is provided as
30 // the first parameter to this subroutine, as a
31 // pointer, hence the "*func" notation, below.
32 (a->*func)();
33 }
34 }

bash$ _

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 C++ Fundamentals

Page 01-32 (C++ Fundamentals) Advanced C++ Programming All Rights Reserved.

Review
• Why objects?

— data hiding / abstraction

— encapsulation / modularity

— code reuse / inheritance / polymorphism

• A Review of:

— const

— static

— Virtual functions

— Name mangling

— The this pointer

• Using typedef inside a class

• Nesting Class Declarations

• Pointers to members

C++ Fundamentals Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

Advanced C++ Programming

Lab for C++ Fundamentals

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Lab for C++ Fundamentals

Lab for C++ Fundamentals Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (C++ Fundamentals) Page L01-03

Lab for C++ Fundamentals
1. Goals for this lab:

A. Explore the use of static data members.

B. Try using const data members within a class.

C. Use the basic facilities of the STL list and string classes.

2. In this lab you will be developing an employee class similar to the one used in the
Introduction to C++ course. However, since you already know most of the lan-
guage basics, we’ll be jumping right in!

3. Here are your functional requirements. You are to do your own design based on
these requirements. The requirements will change over the next few labs and you
will be adding some code — although hopefully the requirements don’t change too
drastically!

A. Create an Empl class to record certain information about employees.

B. For our purposes, this is first and last name, and salary. (Our example class
will become more complete later.)

C. Provide for initializing the employee with known information, i.e. the first
name, last name, and current salary are all known in advance.

D. Also provide for initializing an empty employee object.

E. Provide a Print member function that will be invoked to print the object to
whatever stream is given as a parameter. (Hint: the data type of cout is
ostream.)

F. Test the code by creating some objects inside main and calling their Print
functions and passing cout as a parameter. Some sample test code for main
is shown next.

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Lab for C++ Fundamentals

Page L01-04 (C++ Fundamentals) Advanced C++ Programming All Rights Reserved.

Lab for C++ Fundamentals (continued)
// ...

int main()
{

Empl frank("Frank", "Edwards", 250000.00);
Empl empty; // NO PARENTHESES! Why not?

fixed.Print(cout);
return 0;

}

4. Now that you’ve got the basic class working, we’re going to make some changes
and try out some things.

A. Create a constant employee object inside main. Initialize the employee with
a first and last name. Did it work?

B. Call the Print function of that employee so that the information is dis-
played. What happened? Discuss the problem with the other students if you
can’t explain it and work out a theory. Make changes to fix it, if it needs fix-
ing.

C. Change the first and last name in the employee class to const strings.
Unless you were careful when you coded the constructor, it should no longer
compile. Why not? Can you fix it so that it works correctly? Why would
you want to make class members constants?

D. Remove the word const from the employee’s first and last names. Now
add a counter which keeps track of how many employees are created. Every-
time a constructor is called, the counter should be incremented. We don’t
want to know how many currently exist, but how many hav e ev er been cre-
ated, so we don’t need to decrement the counter at all. But add some output
statements to the constructor(s) so that the value of the counter is displayed
when employees are created.

5. Extra Credit:

A. Modify the main program so that it is capable of reading in as many employ-
ees as desired from the keyboard. You will need to create a list of employee
objects.

Lab for C++ Fundamentals Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (C++ Fundamentals) Page L01-05

Lab for C++ Fundamentals (continued)
B. Print out a list of the employees that were read in using an iterator of what-

ev er data type you used in the last step (could have been a list, vector, or
deque).

C. Change the data type you used in the last two steps to one of the other data
types. Did anything else in the program have to change, or did all you have
to do was recompile?

6. All done!

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Lab for C++ Fundamentals

Page L01-06 (C++ Fundamentals) Advanced C++ Programming All Rights Reserved.

Lab for C++ Fundamentals Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

TAB HERE

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Operator Overloading

Operator Overloading Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

Advanced C++ Programming

Operator Overloading

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Operator Overloading

Page 02-02 (Operator Overloading) Advanced C++ Programming All Rights Reserved.

Operator Overloading Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Operator Overloading) Page 02-03

Objectives
• What is operator overloading

• The functionality behind overloading

• Special function operators

• Some operators must be members, others cannot be

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Operator Overloading

Page 02-04 (Operator Overloading) Advanced C++ Programming All Rights Reserved.

What is Operator Overloading?
• Operator overloading is the ability to define for a class how various language oper-

ators should function.

• For example, the language itself defines the meaning of the + character when used
with numbers, but the programmer may wish to provide his own meaning when the
addition operator is used with a new class.

• Operator overloading provides the ability to make such a change, byt defining a
function which will be called when the compiler sees the plus sign.

• First, the compiler translates all operators into function calls, but only when the op-
erand(s) include at least one user-defined data type.

— For instance, there is no need for the compiler to change the following into a
function call, since integers are not user-defined types.

int a=0, b=1, c;
c = a + b;

— Howev er, the translation into function calls of operations between user-
defined object types results in the following:

complex a(1,0), b(2,3);

complex c = a + b;
// c = a.operator+(b); // when operator is a member of complex
// c = operator+(a, b); // when operator is a global function

— Unary operators are similar, but there is only a single parameter to the over-
loaded operator function.

complex c = !a; // (for example, cin)
// c = a.operator!(); // when operator is a member of complex
// c = operator!(a); // when operator is a global function

Operator Overloading Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Operator Overloading) Page 02-05

What is Operator Overloading? (continued)
• Second, the compiler always chooses a member function over a global function, if

the choice exists.

— This allows the programmer to define a global operator to handle a (possibly
large) category of situations, and fine-tune it with class-specific operators as
needed.

— The scope searched for an operator function is the same as all functions: the
scope of each parameter. Then function overloading occurs as normal, based
on the results of the scope searches. (This is new behavior in ANSI C++ 3.0
compared to previous versions of the language.)

— Additionally, the compiler will attempt to promote data types and perform
single-step data type conversions of the operands, just as it does with all
function overloading. In essence, operator functions are just like any other
functions, but with a different calling syntax.

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Operator Overloading

Page 02-06 (Operator Overloading) Advanced C++ Programming All Rights Reserved.

What is Operator Overloading? (continued)
• Some operators must be member functions and other operators cannot be member

functions!

— In particular, the following functions must be non-static member functions.
This guarantees that their first operands will be lvalues, ie. the object being
modified must exist.

operator=(T) c = a;
operator[](int) const int i = a[0];
operator[](int) a[0] = 42;
operator()(int, int) const string s = a(3,6);
operator()(int, int) a(3,6) = "abcd";
operator->() int i = a->draw();

— In addition, operators which take a basic data type as their first parameter
cannot be member functions (for example, in the statement i * k - z; if i
is an int, you can’t declare a class called int!).

— Also, operators cannot be defined which take only pointers as parameters,
since implicit pointer conversion would make function choice impossible for
the compiler.

Operator Overloading Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Operator Overloading) Page 02-07

What is Operator Overloading? (continued)
• The meanings of some built-in operators are defined to be equivalent to some com-

bination of other built-in operators. For example, the operator += is the same as
calling both addition and assignment operators.

int a, c;

c += a; // c.operator+=(a);
// same as

c = c + a; // c.operator=(c.operator+(a));

• This is not necessarily true of user-defined operators unless the programmer defines
them this way. In general, it is a good idea to always do so!

• Operators can be made inaccessible by making them member functions and placing
them inside the private or protected section of the class. The access specifier used
will control access to the member functions.

• Further, by declaring but not defining those functions, if the programmer should
accidentally use those operators in the construction of their own class (!), the linker
will complain that the functions have not been defined.

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Operator Overloading

Page 02-08 (Operator Overloading) Advanced C++ Programming All Rights Reserved.

Examples
• You’ve already seen an example of how operator+ might be used, but you have

not seen it’s declaration.

• There are a few other operators that may appear unusual at first glance, but are
quite useful...

1 class String {
2 // ...
3 public:
4 String& operator=(const String &s); // assign
5 String& operator+=(const String &s); // self-add
6 char operator[](int loc) const; // index (r)
7 char& operator[](int loc); // index (w)
8 String operator()(int start, int len) const;// extract
9 String &operator()(int start, int len); // modify
10 // ...
11 };

12 void f()
13 {
14 String f("Frank"), b;
15 String x;
16 char ch;

17 x = f; // x.operator=(f)
18 x += " Edwards"; // x.operator+=(String(" Edwards"))
19 ch = x[5]; // x.operator[](5) const
20 x[5] = ’_’; // x.operator[](5)
21 b = x(3,5); // x.operator()(int, int) const
22 x(3,5) = "ZZ"; // x.operator()(int, int)
23 }

Operator Overloading Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Operator Overloading) Page 02-09

Optimizations
• In the following code, each statement is functionally the same:

1 class Money {
2 // ...
3 public:
4 Money(double val=0);
5 };

6 Money a = Money(3); // calls Money(3)
7 Money b = 3; // calls Money(3)

• The advantage to this type of constructor (called a conversion constructor) is that
they allow a double to be used where a Money would be required, and the compiler
can implicitly invoke these constructors to perform conversions automatically.
Note that this is exactly what the explicit modifier for constructors is designed
to prevent.

• For example, let’s assume that the Money class requires an operator== for com-
paring monetary values as shown below. We hav e overloaded the operator to
account for comparisons against doubles as well as Money objects.

1 class Money {
2 // ...
3 };
4 bool operator==(Money a, Money b); // global functions
5 bool operator==(double a, Money b);
6 bool operator==(Money a, double b);

7 int main()
8 {
9 Money x, y;
10 x == y; // calls operator==(Money, Money)
11 3 == y; // calls operator==(double, Money)
12 x == 3; // calls operator==(Money, double)
13 }

• In this situation, we need a different overloaded function for each possible combi-
nation of data types. This can get tedious, and what is tedious is error-prone.

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Operator Overloading

Page 02-10 (Operator Overloading) Advanced C++ Programming All Rights Reserved.

Optimizations (continued)
• Instead, the conversion constructors allow us to declare a single overloaded opera-

tor and let the compiler call the conversion constructor for us.

1 bool operator==(Money a, Money b);

2 int main()
3 {
4 Money x, y;
5 x == y; // calls operator==(x, y)
6 3 == y; // calls operator==(Money(3), y)
7 x == 3; // calls operator==(x, Money(3))
8 }

• At first glance, this might appear to increase the amount of code that might be gen-
erated by the compiler, tending to make larger executables. But an optimizing
compiler can eliminate the function calls when the functions are defined inline,
eliminating the function call overhead as well as a lot of redundancy, as illustrated
below.

1 // Assuming that the operator is declared inline ...
2 inline bool operator==(Money a, Money b)
3 {
4 return(a.value == b.value);
5 }

6 // So if we used this:
7 if (x == 3)
8 do_something();

9 // It would be converted first into this:
10 if (operator==(x, Money(3)))
11 do_something();

12 // Which will inline the construction of the temporary:
13 if (operator==(x, {value=3}))
14 do_something();

15 // Which is optimized to just this comparison:
16 if (x.value == 3)
17 do_something();

Operator Overloading Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Operator Overloading) Page 02-11

Optimizations (continued)
• One last operator can be usefully applied in the area of optimization.

• The conversion operator is an operator which returns an object of a different type
for the purpose of data type conversion. (Our previous discussion was on conver-
sion constructors, not conversion operators.)

bash$ cat exam-ch2e1.h
1 class String {
2 int length; // length of string stored at ’str’
3 char *str; // location of string
4 // ...
5 public:
6 explicit String(int size);
7 String(const char *s);

8 operator int() const;
9 operator const char*() const;
10 // ...
11 };

bash$ _

bash$ cat exam-ch2e2.cpp
1 #include "exam-ch2e1.h"

2 String::operator int() const
3 {
4 return length;
5 }

6 String::operator const char *() const
7 {
8 return str;
9 }

bash$ _

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Operator Overloading

Page 02-12 (Operator Overloading) Advanced C++ Programming All Rights Reserved.

Optimizations (continued)
bash$ cat exam-ch2e3.cpp

1 #include "exam-ch2e1.h"

2 void function(int howmany); // overloaded function
3 void function(const char *where);

4 int main()
5 {
6 String test = "Frank Edwards";
7 int len;

8 len = test; // calls "test.operator int() const"
9 function(test); // ambiguous (const char* or int?)
10 return 0;
11 }

bash$ _

Operator Overloading Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Operator Overloading) Page 02-13

Interesting Operator Uses
• There are a few operators with particularly interesting uses.

• The first is operator[], since that is the operator used to access subscripts.

• Imagine a class which defines operator[] to take a single char* parameter.

— Now assume that the operator uses that parameter to do a lookup in a disk
file.

— Perhaps the object caches the information retrieved, saving any changes and
writing them back to disk when the object is destroyed.

— If memory ever got low, objects of the class could be asked to flush them-
selves to disk and free the associated memory.

— In addition, each access through the operator could update a timestamp field
in the object. The timestamp would be used to decide which objects are
asked to free their memory.

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Operator Overloading

Page 02-14 (Operator Overloading) Advanced C++ Programming All Rights Reserved.

Interesting Operator Uses (continued)
• Another possibility is a class which defines operator[] and acts as a mapping

function. The parameter going into the operator is manipulated and the return
value is some associated piece of information.

— For example, a name goes in and a phone number comes out.

— Or a database record goes in (as an object of a separate class) and the return
value describes where that object is stored on disk.

1 class Map {
2 public:
3 // ...
4 Obj operator[](const char *name) const;
5 Obj& operator[](const char *name);
6 };

7 int main()
8 {
9 Map map;

10 Obj x;
11 x = map["Frank"]; // first operator[]
12 map["Frank"] = x; // second operator[]

13 return 0;
14 }

— Note that the second operator[] declaration above returns a reference,
which provides the lvalue needed by the compiler to make the associated
assignment statement work.

Operator Overloading Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Operator Overloading) Page 02-15

Interesting Operator Uses (continued)
• Another interesting operator is operator->.

• This operator is a unary operator (strange as that may seem; see the example
below).

• It returns a pointer to another object such that -> is valid.

— It might return a pointer to an ordinary object.

— It could also return a pointer to an object which itself defines operator->
and the technique would be used again inside that object’s operator.

1 class Empl { ... }; // defined with employee info

2 class Ptr {
3 string identifier;
4 Empl *in_core_address;
5 public:
6 Ptr(string &n) : identifier(n), in_core_address(0) { }
7 ˜Ptr(); // free up the memory...
8 Empl *operator->(); // allocate memory & read from disk
9 };

10 int main()
11 {
12 Ptr data = "Frank";

13 data->Age = 35;
14 // (data.operator->())->Age = 35;
15 // Empl could also define operator->() !
16 }

— In the above example, the operator could be required to look up the informa-
tion on disk and retrieve it, storing the address in its own data member.

— Upon destruction, the information would be flushed from memory. In the
meantime, the operator would provide access to the underlying information.

• The most interesting thing about this operator is that the return value is used again
by the compiler after plugging it into the original statement.

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Operator Overloading

Page 02-16 (Operator Overloading) Advanced C++ Programming All Rights Reserved.

Interesting Operator Uses (continued)
• Just as with other operators, there is an equivalence among operator[],

operator->, and operator* (not discussed) when used with built-in data
types.

• This equivalence is expected by the typical programmer, so breaking this tradition
in any user-defined class is ill-advised.

• Take a common iterator class from the STL, for example. The interface would typ-
ically be declared something like this:

1 class list_iterator // ...
2 {
3 typedef list_iterator self;
4 typedef list_node_datatype reference;
5 typedef list_node_datatype *pointer;
6 // ...
7 bool operator==(const self& x) const;
8 bool operator!=(const self& x) const;
9 reference operator*() const;
10 pointer operator->() const;
11 self& operator++(); // "&" is kludge to make
12 self& operator++(int); // these operators work
13 self& operator--(); // "
14 self& operator--(int); // "
15 // ...
16 }

Operator Overloading Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Operator Overloading) Page 02-17

Interesting Operator Uses (continued)
• Another example would be something called auto_ptr by the STL. This is a tem-

plated class that implements a "smart pointer" that automatically deletes the mem-
ory it points to when it goes out of scope.

1 #include <iostream> // For ’cout’
2 #include <memory> // For ’auto_ptr’
3 #include <string> // For ’string’

4 int main()
5 {
6 // ’tmp’ holds the pointer-to-string...
7 std::auto_ptr<std::string>
8 tmp(new std::string("Fred Flintstone"));

9 // Dereference ’tmp’ to get the actual object.
10 std::cout << *tmp << std::endl;
11 return 0;
12 // The object ’tmp’ goes out of scope here, so the
13 // auto_ptr’s destructor will automatically delete the
14 // memory that was allocated.
15 }

• More details on auto_ptrs can be found in the STL Tutorial and Reference
Guide and in a later chapter.

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Operator Overloading

Page 02-18 (Operator Overloading) Advanced C++ Programming All Rights Reserved.

Advice for Operator Overloading
1. Define operators primarily to mimic conventional usage.

2. For large operands, use const reference argument types.

3. For large results, consider optimizing the return.

4. Prefer the default copy constructor. Otherwise,

5. Redefine or prohibit the use of copying.

6. Prefer member functions if access to the implementation is needed.

7. Use non-member functions for symmetric operators.

8. Use operator() for multi-dimensional arrays. (Since operator[] only
works with a single argument.)

9. Constructors which take a single "size" argument should be explicit.

10. Use the standard string class over any local implementation unless a specialized
requirement exists.

11. Be cautious about introducing implicit conversions.

Operator Overloading Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Operator Overloading) Page 02-19

Review
• What is operator overloading?

• What features does it provide?

• Which operators have special considerations?

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Operator Overloading

Page 02-20 (Operator Overloading) Advanced C++ Programming All Rights Reserved.

Notes:

Operator Overloading Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

Advanced C++ Programming

Lab for Operators

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Lab for Operators

Lab for Operators Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Operators) Page L02-03

Lab for Operators
1. Goals for this lab:

A. Experiment with overloading the math operators, such as addition and sub-
traction (+ and -), and their associated assignment operators (+= and -=).

B. Try overloading the assignment operator (=).

C. Overload the char* conversion operator.

2. In this lab, we explore operators which might not seem to make much sense when
applied to our Empl class. For example, the addition and subtraction operators.
But we’re going to define those to mean the addition or subtraction of the associ-
ated salaries of the two employees that are involved (yeah, I know it’s a stretch of
the imagination to ever consider such a scenario!). A couple of more useful exam-
ples might be overloading the assignment operator and/or a conversion operator.
So we’ll do that as well.

3. After implementing the last set of functional specs (our previous lab), we have real-
ized that certain features would make the class much easier to use. Among them,
the ability to add two employees together and obtain their combined salary. So
you’re going to overload operator+ to do that. It will take two employees and
return a float. Write the code and test it.

4. What happens if you try to add three employees together using your operator? For
example:

// ...

int main()
{

Empl fred("Fred", "Flint", 38000.00);
Empl barney("Barney", "Rubble", 36000.00);
Empl wilma("Wilma", "Flint", 0.00);

cout << "fred + barney + wilma is "
<< fred + barney + wilma
<< endl;

return 0;
}

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Lab for Operators

Page L02-04 (Operators) Advanced C++ Programming All Rights Reserved.

Lab for Operators (continued)
5. How can you fix that problem?

The return value from the operator+ is a float, and the compiler doesn’t know
how to add a float and an employee together. You could return an employee from
your operator, but then the return value couldn’t be stored into a float!

What about an overloaded operator+ which takes an Empl as the first parameter
and a float as the second? Would that work? Try it and see. But think about the
"member operator vs. non-member operator" issue.

6. There is another solution, though. Suppose the Empl class had an operator that
returned a float when used in a numeric context? Would that suffice in this case?
Then the operator+ wouldn’t even be needed, since the employee would be
implicitly converted. Try implementing this solution. (Note: I’m not guaranteeing
it will work, so just give it your best shot and ask the instructor if you get stuck!)

Lab for Operators Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

TAB HERE

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Templates

Templates Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

Advanced C++ Programming

Templates

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Templates

Page 03-02 (Templates) Advanced C++ Programming All Rights Reserved.

Templates Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Templates) Page 03-03

Objectives
• What are templates?

• Template instantiation

• Template parameters

• Function Templates

• User Specializations

• Source Code Organization

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Templates

Page 03-04 (Templates) Advanced C++ Programming All Rights Reserved.

What are templates?
• Independent concepts should be independently represented and should be com-

bined only when needed.

• Templates provide a simple way to represent a wide range of general concepts and
simple ways to combine them. The resulting classes and functions can match
hand-written, more-specialized code in run-time and space efficiency.

• Templates provide direct support for generic programming, the idea that an algo-
rithm should be written independent of representation details and without logical
contortions. If possible, this provides for reusing the code with multiple various
data types without further modification.

• For example, consider the concept of a stack.

• It represents the idea of being able to add data at the end of a list and retrieving the
data only from the same end (last-in, first-out).

• It is certainly possible to envision stacks of characters, stacks of integers, stacks of
floats, even stacks of strings or stacks of Empls.

• This makes a templated stack class a reasonable technique. Consider the imple-
mentation on the following pages.

Templates Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Templates) Page 03-05

What are templates? (continued)
bash$ cat demo-stack1.h

1 #ifndef stack1_h_
2 #define stack1_h_

3 template <class T>
4 class Stack {
5 T* v; // what does the constr have to do?
6 int max_size; // maximum size
7 int top; // current position
8 public:
9 // These are used for exceptions (separate chapter).
10 class StackUnderflow { };
11 class StackOverflow { };

12 Stack(int size) : max_size(size), top(0) {
13 v = new T[max_size]; // Assumes T has def constr
14 }
15 ˜Stack() {
16 delete [] v;
17 }
18 void push(T value); // notice the use of the
19 T pop(); // letter "T"...
20 };

21 #ifndef FIXED_COMPILER // See text re: "export"
22 # include "demo-stack1.inc"
23 #endif
24 #endif // stack1_h_

bash$ _

• Notice the template line immediately above the class declaration? That tells the
compiler that any reference to the letter T should be replaced by whatever data type
is actually provided by the programmer when they use the class.

• You should also note that the data type T appears multiple times throughout the
class. Once as a data type for a private member field, once inside the constructor as
a data type to allocate memory for, and once each in the push() and pop()
methods, first as a parameter data type and then as a return type.

• The strange #ifndef is because some compilers don’t properly implement tem-
plates and they need to see the source code for all methods of templated classes. If
your compiler works, you can define the macro and the #include will be
skipped. More discussion is after the next example.

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Templates

Page 03-06 (Templates) Advanced C++ Programming All Rights Reserved.

What are templates? (continued)
bash$ cat demo-stack1.inc

1 #include "demo-stack1.h"

2 template <class T>
3 // Assumes elements of type T can be copied and assigned.
4 void Stack<T>::push(T c)
5 {
6 if (top == max_size) throw StackOverflow();
7 v[top++] = c;
8 }

9 // Assumes elements of type T can be copied.
10 template <class T>
11 T Stack<T>::pop()
12 {
13 if (top == 0) throw StackUnderflow();
14 return v[--top];
15 }

bash$ _

• Again you’ll notice the template statement, this time in front of a function defi-
nition.

• It means the same thing as it did previously: any reference to T will be replaced
with whatever data type the programmer provides when they instantiate the Stack
class. (Hang on, we’ll discuss this more on the next page!)

• If you look at the function definitions themselves, you’ll see that the templated
class name, Stack in this case, has <T> after its name. That’s because the class is
a template class that requires a data type for the compiler to complete the defini-
tion.

• As mentioned on the previous page, if your compiler is broken then this source
code is included directly into the header file and everything will work. If your
compiler works as the language intended, then you would define the macro
FIXED_COMPILER and create a new source file called demo-stack1.cpp which
only contains a single line that includes the above file. (Hence, all source code for
the class is in the .cpp file.)

Templates Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Templates) Page 03-07

What are templates? (continued)
bash$ cat demo-stack1m.cpp

1 #include "demo-stack1.h"
2 #include <iostream>

3 int main()
4 {
5 Stack<char> sc(5); // stack of chars
6 Stack<float> sf(10); // stack of floats

7 sc.push(’c’);
8 std::cout << sc.pop() << std::endl;

9 sf.push(3.1415);
10 std::cout << sf.pop() << std::endl;

11 return 0;
12 }

bash$ _

bash$ demo-stack1m
c
3.1415
bash$ _

• Similarly, we can define lists, vectors, maps (associative arrays), sets, and many
other data structures, as templates. Such classes are called container classes. (Java
uses the term collection class and groups all collection classes together into the
Collections framework.)

• The C++ template allows a data type to be a parameter in the definition of a func-
tion or class (as shown previously). Classes can contain functions that use the tem-
plated data type. Templated functions can create local classes that use the data
type. But templated classes cannot have templated functions that use templated
data types other than the ones defined for the class.

• Templates are a compile-time mechanism and incur no run-time overhead com-
pared to hand-written code.

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Templates

Page 03-08 (Templates) Advanced C++ Programming All Rights Reserved.

Template Instantiation
• The process of generating a class declaration from a templated class is called

template instantiation.

• Similarly, a function generated via templates is also "instantiated".

• In general, it is the implementation’s job − not the programmer’s − to ensure that
the appropriate versions of a template function are generated for a particular set of
template arguments. For example,

bash$ cat exam-ch3a.cpp
1 void f()
2 {
3 Stack<string> sf; // stack of strings
4 Stack<int> xyzzy;

5 sf.push("compiler’s job to define this!");
6 }

bash$ _

• The functions for creating and destroying stacks of strings and ints must be gener-
ated, and the push function for the stack of strings must also be generated, but no
other functions need be defined by the template nor instantiated by the compiler.

• The generated classes and functions are ordinary; that is, they obey all the normal
rules for classes and functions that ordinary classes and functions must obey (such
as scoping rules, pointers to members, inheriting functions, nested classes, etc).

Templates Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Templates) Page 03-09

Template Parameters
• A template can take data type parameters, either one or more.

• Such parameters are used in the generation of the code created by instantiation of
the template.

• For templated functions, the compiler will instantiate the function for each use of
the function with different characteristics as determined by the template parame-
ters, and function overloading will be used to resolve any ambiguity, as usual.

• Integer arguments for templates are handy for specifying size fields. For example,

bash$ cat exam-ch3b.cpp
1 template <class T, int size>
2 class Stack {
3 T v[size]; // Assumes T has default constructor
4 int top;
5 public:
6 class StackOverflow { };
7 // ...

8 Stack() : top(0) { }
9 // Destructor not needed in this case since
10 // memory is not being dynamically allocated.

11 void push(T c) { // Assumes T can be copied/assigned
12 if (top == size) throw StackOverflow();
13 v[top++] = c;
14 }
15 // ...
16 };

bash$ _

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Templates

Page 03-10 (Templates) Advanced C++ Programming All Rights Reserved.

Function Templates
• Soon after recognizing the need for template classes, the need for template func-

tions becomes apparent. For example,

bash$ cat exam-ch3c.cpp
1 // Template function declaration (defined elsewhere)
2 template <class T>
3 void sort(vector<T> &v);

4 void f(vector<int> &vi, vector<string> &vs)
5 {
6 sort(vi);
7 sort(vs);
8 }

bash$ _

• When a template function is called, the types of the function arguments determine
which version of the template is used; that is, the template arguments are deduced
from the function arguments.

• Of course, the template function must actually be defined somewhere!

bash$ cat demo-sort1.cpp
1 // Shell sort (Knuth, _Art of Computer Programming_)
2 #include <vector>

3 template <class T>
4 void sort1(std::vector<T> &v)
5 {
6 const size_t n = v.size();

7 for (int gap=n/2; 0 < gap; gap /= 2)
8 for (int i=gap; i < n; i++)
9 for (int j=i-gap; 0 <= j; j -= gap)

10 if (v[j+gap] < v[j]) { // operator<
11 T temp = v[j]; // copy constructor
12 v[j] = v[j+gap]; // assignment oper
13 v[j+gap] = temp; // assignment oper
14 }
15 }

bash$ _

Templates Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Templates) Page 03-11

Function Templates (continued)
• Note some of the details of this templated version of the sort function.

— Cleaner and shorter (than an implementation using function pointers) since it
can rely on information about the type being sorted.

— Doesn’t rely on function pointers for comparisons, so is likely faster.

— Also implies no indirect function calls are required and that inlining of a sim-
ple operator< (inside the if statement) can be done easily.

• A further simplification is to use the standard library template swap function to
reduce the if statement block:

if (v[j+gap] < v[j]) // Function: operator< (T, T)
swap(v[j], v[j+gap]);

• This example requires that there be an operator< defined for the type being
sorted, but this is easily avoided by defining templated helper classes, as shown
next.

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Templates

Page 03-12 (Templates) Advanced C++ Programming All Rights Reserved.

Function Templates (continued)
• Template functions are useful in general to provide algorithms without defining the

data types which the algorithm supports.

• But some algorithms will require certain operations be available on any types that
they will be manipulating, such as the operator< from the last example.

• Howev er, not all types will provide such operators. And it is not logically correct
for either the class to define them or for the algorithm to define them (for example,
because sorting employees depends on the context).

• Take the sorting of strings, for examples. It is simple to imagine that strings may
be sorted either case-sensitive or case-insensitive.

• The most efficient way to implement this in a template sorting function is to pro-
vide a second template parameter which identifies a class capable of performing the
comparison:

bash$ cat demo-sort2.cpp
1 // Shell sort (Knuth, _Art of Computer Programming_)
2 #include <vector>

3 template <class T, class C>
4 void sort2(std::vector<T> &v)
5 {
6 const size_t n = v.size();

7 for (int gap=n/2; 0 < gap; gap /= 2)
8 for (int i=gap; i < n; i++)
9 for (int j=i-gap; 0 <= j; j -= gap)

10 // This requires a static C::lt() function.
11 // Not too tough, since C is a template
12 // parameter.
13 if (C::lt(v[j+gap], v[j]))
14 swap(v[j], v[j+gap]);
15 }

bash$ _

Templates Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Templates) Page 03-13

Function Templates (continued)
• Now the only step is to define a class capable of comparing two objects of type T:

bash$ cat demo-sort3.cpp
1 #include "demo-sort2.cpp"
2 #include <string>

3 template <class T>
4 class Cmp {
5 public:
6 static bool lt(T a, T b) { return a<b; }
7 static bool eq(T a, T b) { return a==b; }
8 };

9 void f(std::vector<std::string> &vs)
10 {
11 // Explicit specification of template parameters
12 sort2< std::string, Cmp<std::string> >(vs);
13 }

bash$ _

• But how does this help?

• Suppose that a particular data type does support operator< — specifying the
name of the class as shown above is all that’s needed.

• If the objects being compared do not define operator<, then a new class can be
created (such as Cmp, above) which defines the lt and eq functions to perform as
required by the application. Then that class can be used in the call to sort.

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Templates

Page 03-14 (Templates) Advanced C++ Programming All Rights Reserved.

Function Templates (continued)
• Templates may have default arguments, just as functions may. Default arguments

allow the compiler to choose the parameters, based on whether or not they were
specified by the programmer.

bash$ cat demo-sort4a.cpp
1 // Note that the second parameter is defaulted to Cmp<T>,
2 // which allows the programmer to simply call sort() for
3 // the common case...

4 #include "demo-sort3.cpp"

5 // Doesn’t work in GCC 4.x
6 // error: default template arguments may not be used in
7 // function templates
8 template <class T, class C = Cmp<T> >
9 void sort4(std::vector<T> &v)
10 {
11 // ...
12 }

bash$ _

• Or, if you prefer it formatted a little differently:

1 #include "demo-sort3.cpp"

2 template <class T,
3 class C = Cmp<T> >
4 void sort4(std::vector<T> &v)
5 {
6 // ...
7 }

• Template functions also find use as members of classes, both template classes and
ordinary classes.

• They follow all the same rules for definition and instantiation that normal template
functions do, except that templated functions inside templated classes can only use
the template parameters of the class when templating the function.

• There is yet one other way to accomplish the same thing using a technique known
as function objects. We’ll take a look at that solution right after we talk about tem-
plate specialization.

Templates Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Templates) Page 03-15

User Specializations

• By default, a template gives a single definition to be used for every template argu-
ment (or combination) that a user can think of.

• This doesn’t make sense if the template writer wants to say, "if the template argu-
ment is a pointer, use this implementation; if it is not, use this implementation" or
"give an error unless the template argument is a pointer to a class derived from
My_Class."

• Such design concerns can often be addressed by providing alternative definitions of
the template and having the compiler choose between them based on the template
arguments provided.

• Such alternative definitions are called user specializations.

• Consider the likely uses of a Vector template:

bash$ cat demo-vector1.cpp
1 template <class T> class Vector {
2 T* v;
3 int sz;
4 public:
5 Vector();
6 Vector(int s);
7 T& elem(int i) { return v[i]; }
8 T& operator[](int i); // includes bounds checking

9 void swap(Vector &v);
10 // ...
11 };
12 Vector<int> vi;
13 Vector<Shape*> vps;
14 Vector<string> vs;
15 Vector<char*> vpc;
16 Vector<Node*> vpn;

bash$ _

• Most Vectors will be vectors of pointers. There are several reasons, but the pri-
mary reason is to preserve run-time polymorphic behaviour (i.e., calling virtual
functions is only done when a pointer to a base class is used).

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Templates

Page 03-16 (Templates) Advanced C++ Programming All Rights Reserved.

User Specializations (continued)
• The default behaviour of most C++ implementations is to replicate the template

code when used with different template arguments. This is good for run-time per-
formance, but can cause serious code bloat.

• Fortunately, there is an easy solution. Since most Vector instantiations will be of
a pointer type, we can provide a concrete class which manages void pointers, and
use template classes as front-ends to this concrete class (writing the template
class’s functions as inlines guarantees very little code increase; see below).

bash$ cat demo-vector2.cpp
1 // No arguments in the "template" statement and specifying
2 // "void*" in the class declaration means that this
3 // definition is to be used as the implementation of every
4 // Vector for which T is a (void*). This is called "full
5 // specialization".

6 template <>
7 class Vector<void*> {
8 void ** p;
9 // ...

10 void* & operator[](int i);
11 };

12 // Partial specialization: this template will be used for
13 // all cases where the template parameter is a pointer but
14 // IS NOT a void* (because that was taken care of above).

15 template <class T>
16 class Vector<T*> : private Vector<void*> {
17 typedef Vector<void*> Base;
18 public:
19 Vector() : Base() { }
20 explicit Vector(int i) : Base(i) { }

21 T* &elem(int i) {
22 return static_cast<T* &>(Base::elem(i));
23 }
24 T* &operator[](int i) {
25 return static_cast<T* &>(Base::operator[](i));
26 }
27 };

bash$ _

Templates Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Templates) Page 03-17

User Specializations (continued)
• Note that the partial specialization uses a template parameter of T*, which is to say

that any type expressable as a pointer will use that template definition, except for
void* which has already been defined.

Vector<char*> vpc; // T is "char"
Vector<string*> vps; // T is "string"
Vector<int**> vppi; // T is "int*"

• Since each method is inlined and is basically just a call to the base class definitions,
the template causes no code bloat. So we have the compiler checking and enforc-
ing data types, but no runtime overhead in the form of extra method calls or
executable size!

• We could have giv en different names to the Vectors of objects and the Vectors of
pointers, but experience shows that even seasoned programmers will forget and use
the object Vectors, resulting in larger code than expected. This technique preserves
the idea of a common interface with differing implementations.

• Order of specialization describes the idea that the compiler must choose between
template classes based on how specific a particular use of a template is.

template <class T> class Vector; // general
template <class T> class Vector<T*>; // specialized for pointers
template <> class Vector<void*>; // specifically for void*

• Naturally, specialization can also be valuable for template functions. Unfortu-
nately, not all compilers implement specialization properly or completely. You can
use the sample code on these past few pages to test your compiler. Even if your
instructor doesn’t assign this test as a lab step, it’s very instructive to try it on your
own.

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Templates

Page 03-18 (Templates) Advanced C++ Programming All Rights Reserved.

Function Objects
• Previously, we showed how a templated comparison class with static functions for

less-than and equal-to could be used as stand-ins for simple cases and more specific
versions used when needed. Function objects are another possible solution based
on a similar idea.

• Function objects are instantiations of a class which defines an operator() (and
possibly some data members if the overloaded operator requires them).

• This allows the object to be passed to a function and the function can use the object
name as a function call and pass it parameters.

• The previous example using a separate class with lt() and eq() functions would
instead become the code shown below. Notice the comparison in sort() and the
definition of Cmp and its associated operator.

bash$ cat demo-sort5b.cpp
1 #include "demo-sort5a.cpp"

2 template <class T>
3 void sort5(vector<T> &v, Cmp<T> &fobj)
4 {
5 const size_t n = v.size();

6 for (int gap=n/2; 0 < gap; gap /= 2)
7 for (int i=gap; i < n; i++)
8 for (int j=i-gap; 0 <= j; j -= gap)
9 if (fobj(v[j+gap], v[j]))

10 swap(v[j], v[j+gap]);
11 }

bash$ _

Templates Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Templates) Page 03-19

Function Objects (continued)
bash$ cat demo-sort5a.cpp

1 #include "demo-sort4a.cpp"

2 // General template
3 template <class T>
4 class Cmp {
5 public:
6 bool operator()(T &a, T &b) { return a<b; }
7 };

8 // Full specialization which is only for (Empl*)’s
9 template <>
10 class Cmp<Empl*> {
11 public:
12 bool operator()(const Empl *a, const Empl *b) {
13 return a->GetName() < b->GetName();
14 }
15 };

16 void f(vector<Empl*> &vs)
17 {
18 Cmp<Empl*> fobj;
19 sort4(vs, fobj);
20 }

bash$ _

• One of the motivations for using function objects, or functors, as they are some-
times called, is that because they are objects they hav e all the attributes of an
object. Likely the most important ones are that they can contain their own state,
and the operator() can be virtual.

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Templates

Page 03-20 (Templates) Advanced C++ Programming All Rights Reserved.

Source Code Organization
• Template use involves the same constraints seen for normal classes and functions:

— They must be declared where they can be seen by all code which uses them,
and

— They must be defined where the linker will find them.

• This implies that template declarations should appear in a header file and be
#include’d where needed, then the definition provided in a separate source file
which is compiled separately, but linked together with the application code.

• This is not the way the language is defined to work, however:

— Note that to be accessible from other compilation units, however, a template
definition must be explicitly declared export (see section 9.2.3 of [BS3rd],
pg 203).

— This can be done by adding export to the definition or to a preceding dec-
laration. Otherwise, the definition must be in scope wherever the template is
used. (In other words, it works similar to inlined functions.)

— This is another area where many compilers are not completely supporting the
C++ language standard. Fortunately, most students will not be writing their
own template classes but using the template classes already written by some-
one else, perhaps as part of the standard C++ library or perhaps in a product
purchased from a vendor. Either way, they’ve already dealt with this issue −
just follow their documentation on the use of the library and everything will
work.

Templates Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Templates) Page 03-21

Contents of the STL
• The Standard Template Library contains the following declarations of classes and

functions. The STL is covered in more detail in a separate chapter.

• Container classes (for a full discussion, see STL Tutorial and Reference Guide
[Musser and Saini, Addison-Wesley Publishing], chapters 6 and 7)

Container Type Declaration Attributes and/or Description
vector<T> random access; constant time

modifications at the beginning
and end

deque<T> random access; variable length;
constant time modifications at
the beginning and end

list<T>
Sequence

linear time access to a
sequence of varying length, but
with constant time modifica-
tions at any position in the
sequence

set<Key> unique keys; fast retrieval of
keys

multiset<Key> duplicate keys; fast retrieval of
keys

map<Key, T> unique keys; fast retrieval of
another type T based on keys

multimap<Key, T>

Sorted,
Associative

duplicate keys; fast retrieval of
another type T based on keys

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Templates

Page 03-22 (Templates) Advanced C++ Programming All Rights Reserved.

Contents of the STL (continued)
• Sample of generic algorithms (q.v. STL Tutorial and Reference Guide)

Algorithm Description
find locate first occurrence of a value within a range
for_each applies given function to each element
adjacent_find returns an iterator to the first consecutive duplicate element
count counts the number of matching elements
mismatch compares corresponding pairs of elements from two itera-

tors and returns the first mismatched pair
equal returns true if two ranges are equal for a given length
search returns an iterator that points to the first subsequence that

matches the search iterator
merge merge values from two (sorted) sequences together, gener-

ating a third sequence

• Sample iterators (q.v. STL Tutorial and Reference Guide)

Iterator Type Description
Input Read-only; unidirectional
Output Write-only; unidirectional
Forward Read/write; unidirectional; may be multi-pass
Bidirectional Read/write; bidirectional
Random Access Read/write; bidirectional; "big jumps"; itera-

tor subtraction; iterator comparisons

Templates Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Templates) Page 03-23

Review
• Why templates?

• Template instantiation

• Template parameters

• Function templates

• User specializations

• Source code organization

• Overview of the STL

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Templates

Page 03-24 (Templates) Advanced C++ Programming All Rights Reserved.

Notes:

Templates Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

Advanced C++ Programming

Lab for Templates

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Lab for Templates

Lab for Templates Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Templates) Page L03-03

Lab for Templates
1. Goals for this lab:

A. Define a template class that can be used to contain integers

B. Extend the integer container so it works with other data types

C. Define a template stack class whose parameter is a container; thus, the stack
class provides an interface independent of the implementation.

2. In this lab you will be developing a class to maintain a stack of integers. It will be
written first without the use of templates. Then you’ll parameterize the stack class
to allow stacks of other data types (namely, employees). And last, the stack class
will be separated into implementation and interface, so that the stack class can
specify a list, vector, or deque as an implementation (as a template parameter).

3. The first step is to write the stack class. Here are the requirements for this class:

A. The constructor takes a size parameter (integer) to specify the maximum size
of the stack.

B. The functions int push(int value), int pop(), and void clear() are the only
public member functions.

i) push takes a value to put onto the stack and returns the new size of the
stack. Zero is returned if the stack is full and the new value could not
be added.

ii) pop returns the value on the top of the stack and removes it. If the
stack is empty, it returns -1 (a real class would throw an exception —
we’ll be doing that later).

iii) clear simply pops all the elements off the stack and empties it. (This
can be implemented much more quickly inside the class than having
the application use pop in a loop.)

C. Test the class by writing a main program which creates an object of class
stack and pushes 10 integer values onto it. Try various sizes of stacks (from
8 to 12, for instance), in order to test the code which executes the push() and
pop() methods (be sure you check the return value). Verify that the

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Lab for Templates

Page L03-04 (Templates) Advanced C++ Programming All Rights Reserved.

Lab for Templates (continued)
destructor, if any, does whatever is required. I would suggest some cout
statements in the constructor/destructor...

D. Here is a possible declaration for the stack class, although I don’t guarantee
that it’s complete:

class stack {
int *v; // v = new int[max_size];
int max_size; // size set from constructor
// ...

public:
stack(int size);
int push(int value); // add `value’ to stack
int pop(); // retrieve value from stack
void clear(); // clear all elements
// ...

};

4. When the stack of integers works, modify the class into a template class which can
hold a stack of anything. Try changing the program to create a stack of employees
(you may need to define both a default constructor and a copy constructor for the
Empl class — why?). What are you going to do about the data type of the return
value from the pop function? Should it be a reference or a copy of the object? Be
prepared to discuss the options during the lab review. (It would be especially
instructional if you were to try using both.)

Lab for Templates Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Templates) Page L03-05

Lab for Templates (continued)
// ...

int main()
{

// ...
stack<int> stack_of_int(10);

// Put 10 elements on the stack
for (int i=0; i < 10; i++)

stack_of_int.push(i+100);

for (int i=1; i < 11; i++)
cout << "Element #" << i << " is "

<< stack_of_int.pop() << endl;

// ...
return 0;

}

5. If you get here, you’ve done good so far!

Try using your stack template to create a stack of employee pointers. Before you
actually write the code, though, go through the stack class and determine if the
individual member functions will be handling the pointers correctly.

Then modify your main program to use new to create 10 employee objects which
are added to the stack object. (Modify your employee constructors/destructors to
have a cout statement in them, since I want you to see what happens.)

When you run the program, are the employee objects ever delete’d? Why or
why not? What would you change to make it work? Would your changes still
work if the stack class were changed back to containing the actual employee object
instead of a pointer? This is an example of where partial specialization would be
used; pointer containers would have delete in their destructors, and object con-
tainers wouldn’t.

6. Extra Credit:

This is only if you still have some time left!

Change the stack class so that the std::list class can be passed as a template

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Lab for Templates

Page L03-06 (Templates) Advanced C++ Programming All Rights Reserved.

Lab for Templates (continued)
parameter. This would allow the stack to be implemented in a number of ways,
always presenting the same interface to the application. You will need to know that
the std::list class defines a data type, std::list<T>::value_type, which the stack
class will use to determine the parameter type and return type for push and pop.

// ...

int main()
{

stack< float, std::list > stack_of_floats(20);
stack< int, std::vector > stack_of_integers(20);

stack_of_floats.push(1.0);
stack_of_floats.push(2.0);
stack_of_floats.push(3.0);

stack_of_integers.push(1);
stack_of_integers.push(2);
stack_of_integers.push(3);

return 0;
}

Why would you want to do this in a real application? (You may want to refer back
to the STL chart in the lecture notes.)

Lab for Templates Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

TAB HERE

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Stream I/O

Stream I/O Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

Advanced C++ Programming

Stream I/O

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Stream I/O

Page 04-02 (Stream I/O) Advanced C++ Programming All Rights Reserved.

Stream I/O Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Stream I/O) Page 04-03

Objectives
• Why call it "Stream I/O" instead of "File I/O"?

• The organization of the I/O classes

— Formatting

— Buffering

— Application interface

• Adding overloaded insertion and extraction operators

• Using ifstream and ofstream

• Using istringstream and ostringstream

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Stream I/O

Page 04-04 (Stream I/O) Advanced C++ Programming All Rights Reserved.

Stream I/O vs. File I/O
• Input-output mechanisms for programing languages are notoriously difficult to

build.

— The ideal system would provide easy and intuitive access to the built-in data
types of the language and still allow the programmer to extend those facili-
ties for use with user-defined data types.

— They must be relatively inexpensive to use, or programmers will spend much
time and energy attempting to subvert the standard system and invent their
own.

— They must be logically structured and understandable, or again the program-
mers will not use them.

— They must not introduce large amounts of "code bloat" or system implemen-
tors will shy away from them as being to memory consumptive.

• All of the above aspects make it difficult to design an I/O system which will be a
pleasure to use, easy to enhance and extend, and small and efficient in terms of its
memory footprint.

• The I/O library for C++ comes close to achieving those goals. But only experience
will tell whether the promise has been kept.

Stream I/O Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Stream I/O) Page 04-05

Stream I/O vs. File I/O (continued)
• One of the first things that a programmer new to C++ will notice about the I/O sys-

tem is its consistency.

• All items to be input or output are treated similarly. This includes built-in data
types such as integers and floats, as well as user-defined data types.

bash$ cat exam-ch4a.cpp
1 #include <iostream>
2 using namespace std;

3 #include "demo-review1.h"

4 // ...

5 int main()
6 {
7 Empl fred, barney;
8 int i, j;
9 Date now, then;
10 // ...
11 cout << fred << i << now << endl;
12 cout << barney << j << then << endl;
13 return 0;
14 }

bash$ _

• But the I/O system doesn’t consist only of cin and cout.

• In fact, because of the modular design of the class hierarchy, the file buffering com-
ponents can be replaced with string buffers, which provides the programmer with
the opportunity to perform in-memory formatting or numeric interpretation.

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Stream I/O

Page 04-06 (Stream I/O) Advanced C++ Programming All Rights Reserved.

The Design of the I/O System
• The C++ I/O system consists of various classes which each implement a smaller

part of the entire picture.

ios_base
locale independent format state

basic_ios<>
locale dependent format state

stream state

basic_streambuf<>
buffering

character buffer

real destination/source

locale
format information

basic_iostream<>
formatting

setup/cleanup

• The dashed arrow indicates virtual inheritance; the solid arrows represent pointers.

• The classes marked with <> are templates parameterized by a character type and
containing a locale. Typical character types are char and wchar_t.

Stream I/O Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Stream I/O) Page 04-07

The Design of the I/O System (continued)
• Furthermore, there are other related classes which will be discussed in this chapter,

as shown below. Names suffixed by <> are templates parameterized on the charac-
ter type and their names have a basic_ prefix. A dashed line indicates a virtual base
class.

ios_base

ios<>

istream<> ostream<>

istringstream<> ifstream<> iostream<> ofstream<> ostringstream<>

typedef basic_ios<char> ios;
typedef basic_streambuf<char> streambuf;
typedef basic_istream<char> istream;
typedef basic_ostream<char> ostream;
typedef basic_iostream<char> iostream;
typedef basic_stringbuf<char> stringbuf;
typedef basic_istringstream<char> istringstream;
typedef basic_ostringstream<char> ostringstream;
typedef basic_stringstream<char> stringstream;
typedef basic_filebuf<char> filebuf;
typedef basic_ifstream<char> ifstream;
typedef basic_ofstream<char> ofstream;
typedef basic_fstream<char> fstream;

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Stream I/O

Page 04-08 (Stream I/O) Advanced C++ Programming All Rights Reserved.

Formatting
• Formatting operations are a large part of any I/O system. The C++ I/O library is no

different.

• The formatting provided by the ios_base class is quite robust in terms of supported
facilities for built-in data types.

• Most conversions from a binary representation to a representation appropriate for
human consumption (generally ASCII text) is handled by the operator<< and
operator>> functions.

• These routines convert the internal data type to an external form and vice versa.

• These conversions are controlled by parameters which specify field width, number
of digits after the decimal point, output radix, and others.

• The following conversion functions are defined:

class ostream : virtual public ios {
// ...
ostream &operator<< (ostream &, char);
ostream &operator<< (ostream &, signed char);
ostream &operator<< (ostream &, unsigned char);
ostream &operator<< (ostream &, short);
ostream &operator<< (ostream &, int);
ostream &operator<< (ostream &, long);
ostream &operator<< (ostream &, long long); // optional
ostream &operator<< (ostream &, float);
ostream &operator<< (ostream &, double);
ostream &operator<< (ostream &, long double);
// ...

};

Stream I/O Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Stream I/O) Page 04-09

Formatting (continued)
• Specifying field width, fill characters, decimal digits, and the like, are handled

through manipulators defined in iostream and iomanip.

• Here are those manipulators and their function:

Manipulator Persistent Description
skipws Yes Skips whitespace on input (default)
noskipws Yes Whitespace is significant on input
dec Yes Output integers in decimal (default)
hex Yes Output integers in hexadecimal
oct Yes Output integers in octal
setbase(n) Yes Output integers in base n (supported values

vary)
setprecision(n) Yes Change number of digits after decimal point

to n (for floating point numbers; requires
fixed as well)

fixed Yes Change floating point output to fixed notation
scientific Yes Change floating point output to scientific

notation
setw(n) No Change field width to n
setfill(ch) No Change the fill character for short field val-

ues to ch

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Stream I/O

Page 04-10 (Stream I/O) Advanced C++ Programming All Rights Reserved.

Buffering
• The buffering classes of the I/O package provide for efficient I/O even in the face

of the application performing single character operations.

• This is accomplished by reading (writing) full buffers, the size of which is imple-
mentation dependent, and returning (sending) the requested number of characters.

• By providing buffering as a separate function of the I/O system, various types of
buffers can be created and used easily in an application.

• A particularly common form of buffering is to use strings (the concept, not the
class!).

• For example, an output stream can be created which is not connected to an external
file but to an internal memory buffer, allowing the application to "pre-format"
information in memory before using it.

• The classes involved in this are istringstream, ostringstream,
stringstream, strstreambuf, and streambuf.

• streambuf is a base class for all stream buffer classes which might be used with
the I/O library, including file buffers (filebuf) and string buffers (strstream-
buf).

Stream I/O Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Stream I/O) Page 04-11

Buffering (continued)
bash$ cat demo-iobuff.cpp

1 #include <iostream>
2 #include <iomanip>
3 #include <sstream> // Used to be <strstream>
4 using namespace std;

5 int main()
6 {
7 int i = 42;
8 char *characters = "This is a test.";
9 float f = 3.1415926535;

10 ostringstream tmp;
11 tmp << fixed << setprecision(2);
12 tmp << "Integer: " << setw(6) << setfill(’*’) << i;
13 tmp << ", String: " << characters;
14 tmp << ", Float: " << f; // dollars and sense

15 string copy = tmp.str();
16 cout << copy << endl;
17 return 0;
18 }

bash$ _

bash$ demo-iobuff
Integer: ****42, String: This is a test., Float: 3.14
bash$ _

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Stream I/O

Page 04-12 (Stream I/O) Advanced C++ Programming All Rights Reserved.

Application Interface
• The application’s interface to all this is typically through the insertion and extrac-

tion operators.

• But there are times when the application may want to directly send or receive
binary data on a stream, or process information on some physical boundary which
occurs in the data, such as newline.

• The stream objects provide such an interface.

• The table below summarizes the methods provided and their functionality.

Method Description
write(const char *cp, streamsize n) Writes n bytes from cp
read(char *cp, streamsize n) Reads n bytes into cp
get(char *cp, int len, char delim=’\n’) Reads up to len characters or

delim, whichever comes first.
Does not remove the delim-
iter from the input stream.

getline(char *cp, int len, char delim=’\n’) Reads up to len characters or
delim, whichever comes first.
Does remove the delimiter
from the input stream.

gets(char **s, char delim=’\n’) Reads up to delim, allocating
memory for the pointer s as
necessary. The user must
delete s when no longer
used.

Stream I/O Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Stream I/O) Page 04-13

Application Interface (continued)
• One of the issues in using the stream library is that character strings cannot be read

back in the same way they are written out.

• When writing a string, any embedded spaces are printed as is. But whitespace
characters are delimiters when reading a string back in.

• If the programmer is already using the string class, deriving another class which
adds quotes around a string during output and uses them as delimiters during input
would solve this problem.

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Stream I/O

Page 04-14 (Stream I/O) Advanced C++ Programming All Rights Reserved.

Adding Overloaded I/O Operators
• This section will use the previous problem of writing strings and reading them back

in as an example in coding I/O operators.

bash$ cat demo-stringm.cpp
1 #include "demo-string.h"

2 int main()
3 {
4 dstring a = "This is a test";

5 cout << a << endl; // will have quotes

6 if (isatty(fileno(stdin)))
7 cout << "Enter a quoted string:" << endl;
8 cin >> a;
9 cout << "You entered this string" << endl;

10 cout << "===|" << a << "|===" << endl;
11 #ifdef WIN32
12 char ch;
13 cin.get(ch);
14 #endif
15 return 0;
16 }

bash$ _

Stream I/O Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Stream I/O) Page 04-15

Adding Overloaded I/O Operators (continued)
bash$ cat testdata0
Just a regular test, no quotes or anything.
bash$ demo-stringm < testdata0
"This is a test"
You entered this string
===|Just|===
bash$ _

bash$ cat testdata1
"This isn’t a test. (Note the single quote.)"
bash$ demo-stringm < testdata1
"This is a test"
You entered this string
===|"This isn’t a test. (Note the single quote.)"|===
bash$ _

bash$ cat testdata2
’This "is" a test. (Note the double quotes.)’
bash$ demo-stringm < testdata2
"This is a test"
You entered this string
===|’This "is" a test. (Note the double quotes.)’|===
bash$ _

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Stream I/O

Page 04-16 (Stream I/O) Advanced C++ Programming All Rights Reserved.

Adding Overloaded I/O Operators (continued)
bash$ cat demo-string.h

1 #ifndef dstring_h_
2 #define dstring_h_

3 #include <iostream>
4 #include <string>

5 using namespace std; // don’t need "std::string"...

6 class dstring : public string {
7 public:
8 dstring() : string() { }
9 dstring(string &cp) : string(cp) { }
10 dstring(const char *cp) : string(cp) { }
11 // destructor provided by compiler is just fine
12 // but I really should define some non-inherited
13 // operators, such as operator=().
14 };

15 // Not necessary that these be friends of the class
16 // since they only access public methods.
17 ostream &operator<< (ostream &os, const dstring &d);
18 istream &operator>> (istream &os, dstring &d);

19 #endif // dstring_h_
bash$ _

Stream I/O Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Stream I/O) Page 04-17

Adding Overloaded I/O Operators (continued)
bash$ cat demo-string-o.cpp

1 #include "demo-string.h"

2 ostream &operator<< (ostream &os, const dstring &d)
3 {
4 // No need for a delimited string if it doesn’t contain
5 // any whitespace characters. Unfortunately, the only
6 // way to *really* check for whitespace is to build an
7 // array populated via the isspace() function. So I’m
8 // taking a shortcut here.

9 if (d.find_first_of(" ’\"\t\n\f") == string::npos) {
10 const string &s = d; // no ws, so output as-is
11 os << s;
12 } else {
13 char delim = ’"’; // default delimiter...
14 if (d.find(’"’) != string::npos)
15 delim = ’\’’; // change to single quote

16 os << delim;
17 string::size_type len, pos = 0;
18 while ((len = d.find(delim, pos)) != string::npos) {
19 os << d.substr(pos, pos+len-1);
20 os << ’\\’;
21 os << delim;
22 pos += len+1;
23 }
24 os << d.substr(pos);
25 os << delim;
26 }
27 return os;
28 }

bash$ _

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Stream I/O

Page 04-18 (Stream I/O) Advanced C++ Programming All Rights Reserved.

Adding Overloaded I/O Operators (continued)
bash$ cat demo-string-i.cpp

1 #include "demo-string.h"

2 istream &operator>> (istream &is, dstring &d)
3 {
4 // If first character is a delimiter, use it.
5 // Otherwise, just read a "string".
6 char delim;
7 is >> delim; // skips ws before char

8 if (is) { // If no error on "delim"
9 if (delim == ’"’ || delim == ’\’’) {
10 // Probably more efficient to use get(),
11 // but this is just a simple example, not
12 // a robust one.
13 char ch;
14 d.clear(); // Start with empty string
15 while (is.get(ch)) {
16 if (ch == delim)
17 break;
18 if (ch == ’\\’)
19 is.get(ch);
20 d += ch;
21 }
22 } else {
23 d.clear(); // Start with empty string
24 string &s = d;
25 is.putback(delim);
26 is >> s; // overwrite string
27 }
28 }
29 return is;
30 }

bash$ _

Stream I/O Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Stream I/O) Page 04-19

Using File I/O Objects
• The next few pieces of example code show a class which selects a file from a direc-

tory, then prints the contents of that file to stdout.

• It demonstrates both file I/O and how to portably perform directory access.

bash$ cat signatures1.h
1 #ifndef signatures_h_
2 #define signatures_h_

3 #include <sys/stat.h>

4 #include <string>
5 #include <list>

6 using namespace std;

7 class Signatures : public list<string> {
8 iterator current;
9 time_t last_mtime;

10 struct stat sbuf;
11 string signatureDirectory;

12 void ReadDirectory();
13 int statDirectory();
14 public:
15 Signatures();
16 void Empty();
17 void ReFill();
18 string GetOneFilename();
19 };

20 #ifndef MAXPATHLEN
21 # define MAXPATHLEN (MAXPATH)
22 #endif

23 #endif // signatures_h_
bash$ _

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Stream I/O

Page 04-20 (Stream I/O) Advanced C++ Programming All Rights Reserved.

Using File I/O Objects (continued)
bash$ cat signatures1.cpp

1 #include <iostream>

2 #include <dirent.h> // For DIR and opendir() family
3 #include <sys/param.h> // For MAXPATHLEN
4 #include <stdio.h> // For strerror()
5 #include <sys/errno.h> // For errno

6 #include "signatures1.h"

7 // Fill the base class’ list with directory entries
8 // from the signatureDirectory. In order to speed up
9 // the loop, we change directory to the signatureDirectory
10 // and change back when complete. (Note that any
11 // ’finally’ block would also have to change back.)
12 void Signatures::ReadDirectory()
13 {
14 struct dirent *de; // From <dirent.h>
15 DIR *dp; // From <dirent.h>
16 char olddir[MAXPATHLEN+10];

17 dp = opendir(signatureDirectory.data());
18 if (dp == 0) {
19 cerr << "Can’t open ’"
20 << signatureDirectory << "’" << endl;
21 exit(1);
22 }
23 getcwd(olddir, sizeof(olddir));
24 chdir(signatureDirectory.data());
25 while ((de = readdir(dp)) != 0) {
26 if (de->d_name[0] != ’.’) {
27 if (stat(de->d_name, &sbuf) != 0) {
28 cerr << "Can’t stat() entry ’"
29 << de->d_name << "’" << endl;
30 exit(2);
31 }
32 if (!S_ISDIR(sbuf.st_mode))
33 push_back(string(de->d_name));
34 }
35 }
36 chdir(olddir);
37 closedir(dp);
38 sort(); // inherited
39 }

Stream I/O Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Stream I/O) Page 04-21

Using File I/O Objects (continued)

40 Signatures::Signatures()
41 : last_mtime(0)
42 {
43 const string DEFAULT_DIR = "/usr/local/etc/sigs";
44 signatureDirectory = getenv("HOME");
45 if (signatureDirectory.length() != 0 &&
46 statDirectory() == 0) {
47 // HOME variables exists and so does directory
48 signatureDirectory.append("/.sigs");
49 if (statDirectory() != 0) {
50 // That directory doesn’t exist. Try another.
51 signatureDirectory = DEFAULT_DIR;
52 }
53 } else {
54 // We don’t have a HOME directory?!
55 signatureDirectory = DEFAULT_DIR;
56 }
57 if (statDirectory() != 0) {
58 cerr << "Directory not accessible: "
59 << strerror(errno) << endl;
60 }
61 ReadDirectory();
62 }

63 string Signatures::GetOneFilename()
64 {
65 if (statDirectory() != 0) {
66 cerr << "Directory ’" << signatureDirectory
67 << "’ no longer accessible?! "
68 << strerror(errno) << endl;
69 exit(3);
70 }
71 if (sbuf.st_mtime > last_mtime) {
72 Empty();
73 last_mtime = sbuf.st_mtime;
74 }
75 if (size() == 0) { // Where is size()?
76 ReadDirectory();
77 if (size() == 0) {
78 cerr << "No filenames available." << endl;
79 exit(4);
80 }
81 }

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Stream I/O

Page 04-22 (Stream I/O) Advanced C++ Programming All Rights Reserved.

Using File I/O Objects (continued)
82 // Where does front() come from? And why use two calls
83 // when just pop_front() could be used??
84 string copy = signatureDirectory + ’/’ + front();
85 pop_front();
86 return copy;
87 }

88 void Signatures::ReFill()
89 {
90 Empty();
91 ReadDirectory();
92 }

93 void Signatures::Empty()
94 {
95 erase(begin(), end()); // Where is erase()?
96 }

97 int Signatures::statDirectory()
98 {
99 return stat(signatureDirectory.data(), &sbuf);

100 }
bash$ _

Stream I/O Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Stream I/O) Page 04-23

Using File I/O Objects (continued)
bash$ cat fileiom.cpp

1 #include <iostream>
2 #include <fstream>
3 #include <string>

4 using namespace std;

5 #include "signatures1.h"

6 int main()
7 {
8 Signatures filelist;

9 // Randomly print out each filename to prove it works...
10 for (int i=filelist.size(); i-- > 0;)
11 cout << filelist.GetOneFilename() << endl;

12 // Now pick one file and print out its contents.
13 filelist.ReFill();
14 string filename = filelist.GetOneFilename();
15 ifstream input(filename.data(), ios::in|ios::binary);
16 cout << input.rdbuf();

17 #ifdef WIN32
18 char ch;
19 cin.get(ch);
20 #endif
21 return 0;
22 }

bash$ _

bash$ fileiom
/usr/local/etc/sigs/four
/usr/local/etc/sigs/one
/usr/local/etc/sigs/three
/usr/local/etc/sigs/two
This is file ’four’.
bash$ _

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Stream I/O

Page 04-24 (Stream I/O) Advanced C++ Programming All Rights Reserved.

Using the String Streams
• File I/O objects are convenient and suffice for the most common cases, but there

are times that in-memory formatting is required.

• For example, suppose that a data file contains multiple lines of information. The
information changes based on the number of fields in the input record.

• When the input record contains information that doesn’t allow full processing until
the entire record has been read, the best technique is probably to read the entire
record into a buffer and then decide how to process it based on its contents.

• After determining the correct input record format, the string would be treated as an
input stream and the appropriate data types read from it.

• The following example demonstrates this technique.

bash$ cat demo-strstr.inc
This is,the value of PI,3.14159265358979323844
Only four,strings on,this line,.
And the sin(),of 45 degrees is,0.70710678118654752439
Testing error handling...
bash$ _

bash$ demo-strstr
This is|the value of PI|3.14159
Only four|strings on|this line|.
And the sin()|of 45 degrees is|0.707107
=== Error: Testing error handling... ===
bash$ _

Stream I/O Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Stream I/O) Page 04-25

Using the String Streams (continued)
bash$ cat demo-strstr.cpp

1 #include <iostream>
2 #include <fstream>
3 #include <sstream>

4 using namespace std;

5 const int BUFSIZE = 512;

6 int main(int argc, char **argv)
7 {
8 // Open and read an input file line-by-line.
9 // Each line contains either 3 or 4 fields.
10 // Those with 3 fields contain two strings and a float.
11 // The lines with 4 fields contain all strings.
12 const char *InputName = "demo-strstr.inc";
13 if (argc == 2)
14 InputName = argv[1];
15 ifstream input(InputName);

16 if (!input) {
17 cerr << "Can’t open file " << InputName << endl;
18 return 0;
19 }
20 while (input) {
21 char buff[BUFSIZE];

22 input.getline(buff, sizeof(buff));
23 if (input.eof())
24 return 0;
25 if (!input) {
26 cerr << "Error reading: " << InputName << endl;
27 return 0;
28 }
29 // Count the number of commas.
30 int total = 0;
31 char *p = buff-1; // ’cuz of +1 in while loop
32 while ((p = strchr(p+1, ’,’)) != 0)
33 total++;

34 istringstream tmp(buff);
35 if (total == 2) {
36 // Two commas means three fields...
37 char s1[BUFSIZE], s2[BUFSIZE];

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Stream I/O

Page 04-26 (Stream I/O) Advanced C++ Programming All Rights Reserved.

Using the String Streams (continued)
38 float flt = -1.0;

39 tmp.getline(s1, sizeof(s1), ’,’);
40 tmp.getline(s2, sizeof(s2), ’,’);
41 tmp >> flt;
42 cout << s1 << ’|’ << s2 << ’|’ << flt << endl;
43 } else if (total == 3) {
44 // Three commas means four fields...
45 char s1[BUFSIZE], s2[BUFSIZE];
46 char s3[BUFSIZE], s4[BUFSIZE];

47 tmp.getline(s1, sizeof(s1), ’,’);
48 tmp.getline(s2, sizeof(s2), ’,’);
49 tmp.getline(s3, sizeof(s3), ’,’);
50 tmp.getline(s4, sizeof(s4), ’,’);
51 cout << s1 << ’|’ << s2 << ’|’
52 << s3 << ’|’ << s4 << endl;
53 } else {
54 // Should be ’cerr’...
55 cout << "=== Error: "
56 << buff << " ===" << endl;
57 }
58 }
59 return 0;
60 }

bash$ _

Stream I/O Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Stream I/O) Page 04-27

Review
• The I/O class organization

• Adding insertion and extraction operators

• Using fstream classes

• Using stringstream classes

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Stream I/O

Page 04-28 (Stream I/O) Advanced C++ Programming All Rights Reserved.

Notes:

Stream I/O Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

Advanced C++ Programming

Lab for Streams I/O

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Lab for Streams I/O

Lab for Streams I/O Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Stream I/O) Page L04-03

Lab for Streams I/O
1. Goals for this lab:

A. Experiment with file I/O and buffer streams

B. Use the string stream classes for in-memory formatting

2. In this lab, you’re going to overload the << operator for your employee class so
that you can output employees directly. This will give you some experience with
creating I/O operators. You’ll then derive a new class, Mgr, from Empl and create
a stack of employee pointers, some of which are actually managers (at least 2 or 3).
Then overload an insertion operator for the stack class so that all of the employees
are output (correctly) as either employees or managers.

3. Your functional requirements are:

A. The employee class should be able to be output just like other data types
(such as int and float). Consider what would be necessary to read the
employee back in, but don’t attempt it unless you have time left at the end of
this lab.

B. We want this output function to work as though it was virtual, so make modi-
fications to it as necessary. (Create a public virtual member function which
prints the object. The compiler will call the correct function at run time,
since it’s virtual. Then call this function in your overloaded insertion opera-
tor for the base class.)

C. Now that you have this virtual function, you’ll need to define that function
for the manager class. Then your insertion operator (which prints the
employee object) should print the managers correctly also. (Hint: what
causes the compiler to use a virtual function instead of just generating the
mangled function name?) (Double hint: pointers)

Define the manager to have one additional field, a string which contains the
department that the manager supervises. Make sure that the department is
printed when the employee insertion operator is called.

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Lab for Streams I/O

Page L04-04 (Stream I/O) Advanced C++ Programming All Rights Reserved.

Lab for Streams I/O (continued)
bash$ cat exam-lab05a.cpp
#include "empl.h"
#include "mgr.h"

// Print an employee by calling the virtual function
// and passing it the ostream reference... No other
// overloaded operators are required.
//
// (This next line is missing one character. Where?)
ostream& operator<< (ostream& os, const Empl e);

int main()
{

Empl fred("Fred", "Flintstone");
Mgr wilma("Wilma", "Flintstone");

wilma.SetDept("Finance");
cout << fred << endl; // calls insertion operator
cout << wilma << endl;
// What would be needed to make the following line work?
// cin >> fred;
return 0;

}
bash$ _

D. It would be useful if the stack class that we built previously also had an over-
loaded output operator which printed each element in the stack (without
removing them). Add an overloaded insertion operator to do this. (Hint:
you’ll need a template function for this.)

4. Extra Credit:

A. How would you implement a merge sort? Consider the building of a
MergeSort class. If the class could be given a list of filenames and then told
to perform the merge, the class could be used over and over again in various
applications. What would be the general design of the class? Which classes
would it inherit from? use? be composed of?

Sketch out a rough idea about how you would implement such a class, after
you’ve answered the previous questions about the design. As you start think-
ing about how you might actually perform the work, modify your answers to
the above questions to accommodate. For instance, would your class be

Lab for Streams I/O Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Stream I/O) Page L04-05

Lab for Streams I/O (continued)
given individual filenames to merge? Or would you give it a list of filenames
all at once? Or perhaps a wildcard that it would interpret to generate its own
list of filenames? Or maybe the calling function is supposed to open the files
and pass ifstream pointers to the new class?

This is an example of how a design might say, "do it this way", but when you
actually start writing code, you realize that other techniques may be more
useful or more efficient (in space or time). Always build as complete a
design as possible, and always be willing to go back and modify it!

B. Performing I/O in ASCII is easier for humans to read, and hence it’s easier to
debug the code which generates it! But it is much quicker to write the infor-
mation out in binary instead of converting it to characters on output and back
to binary on input.

Consider: derive a new class called obfstream which does all of it’s out-
put in binary instead of ASCII. What class(es) should it be derived from?
Would looking at ofstream help you decide? Consider overloading the
insertion operator for each of the built-in data types; what about lists, vec-
tors, and so on?.

Then overload the insertion operator for this class so that employees are writ-
ten in binary also. (Actually, the employee only contains floats and strings,
so those are the only "built-in" types you need to support in your new class.)

C. Problem to ponder: how would you implement a system that allows objects
to be written to a stream in binary, then read back in without the application
knowing what the next item in the stream was?

For example, an application writes out 3 employees and a manager. How
would you design the obfstream class (and any supporting classes) so that
a different application could read in the objects without knowing their types
in advance (assume that this other application is linked with the employee
and manager classes).

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Lab for Streams I/O

Page L04-06 (Stream I/O) Advanced C++ Programming All Rights Reserved.

Lab for Streams I/O Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

TAB HERE

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Inheritance

Inheritance Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

Advanced C++ Programming

Inheritance

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Inheritance

Page 05-02 (Inheritance) Advanced C++ Programming All Rights Reserved.

Inheritance Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Inheritance) Page 05-03

Objectives
• What does inheritance attempt to accomplish?

• An Example of Composition

• Upcasting vs. Downcasting

• The Type-field Solution

• Virtual Functions

• Abstract Base Classes

• Multiple Inheritance

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Inheritance

Page 05-04 (Inheritance) Advanced C++ Programming All Rights Reserved.

What is (and Why Use) Inheritance?
• Try to explain to a foreigner what a car is; soon you’ll be explaining engines, gaso-

line, service stations, oil, wheels and tires, seats, doors, headlights, and so on.

• Or try to explain how circles relate to triangles or rectangles, or how spheres relate
to cubes or cylinders.

• In such cases as these, there are three distinct relationships being modeled:

Inheritance
which describes the is-a-specialization-of or is-a-kind-of relationship.

Composition
which describes the is-composed-of or has-a relationship.

Uses which describes the uses-a relationship.

• Composition is somewhat intuitive; consider the example of the car containing an
engine, four wheels, four doors, two headlights, and so on.

• A class could be created which encapsulates the concept of a car by being com-
posed of many other objects, each of which may have intricacies of its own, but
which the car needn’t be bothered with.

• Composition is not inheritance, but in some cases may be used in similar ways, as
we’ll see later.

• Similarly, the uses-a relationship is not inheritance — it simply indicates that a par-
ticular object uses the interface of another object. This condition is used during the
design phase to determine if perhaps there are too many relationships to or from a
particular class.

• If there are many relationships with a class, the ability to reuse the class in other
applications is restricted. For instance, the gas pump at a service station is used by
the car. But any car can use the gas pump, and any gas pump can service a particu-
lar car.

Inheritance Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Inheritance) Page 05-05

What is (and Why Use) Inheritance? (continued)
• Inheritance is used when classes representing a car, a truck, and a train exist, and

an astute analyst or designer notices that these classes all have common compo-
nents and are logically related.

• Those common components are factored out into another class (called vehicle), and
then car, truck, and train are inherited from vehicle.

vehicle

car truck train

• In this chapter, we’ll be exploring in more detail how inheritance is used in design-
ing class hierarchies, and towards the end of the chapter we’ll be looking into mul-
tiple inheritance and some of the caveats when using it.

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Inheritance

Page 05-06 (Inheritance) Advanced C++ Programming All Rights Reserved.

An Example of Composition
• Looking at the code below might give a human the idea that a Manager is an

Employee, but there’s nothing to tell the compiler that.

bash$ cat demo-comp.h
1 class Employee {
2 string name;
3 float salary;
4 // ...
5 public:
6 void SetName(string n) { name = n; }
7 void SetSalary(float s) { salary = s; }
8 // ...
9 };

10 class Manager {
11 Employee emp; // manager’s employee record
12 set<Employee*> group; // people managed
13 short level;
14 // ...
15 public:
16 void SetName(string s) { emp.SetName(s); }
17 void SetSalary(float s) { emp.SetSalary(s); }
18 // ...
19 };

bash$ _

• The compiler cannot implicitly convert a Manager* into an Employee*, so we can-
not create a list of all employees without special code.

Inheritance Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Inheritance) Page 05-07

An Example of Composition (continued)
• For example, this code won’t compile:

// ...
int main()
{

Manager boss("Frank", "Edwards");
list<Employee*> allEmployees;

allEmployees.push_back(&boss); // Compile error!
// ...

}

• Also, virtual functions of the employee will not be passed to the manager without
significant support code from both classes.

• We could either write a conversion operator (from Manager to Employee) or put
the address of the emp member into the list, but both solutions are inelegant and
obscure, and every new class would need similar code.

• Also, virtual functions could be "faked" by providing the Employee class with a
field that refers to the containing class and the functions in the Employee could for-
ward requests to the containing class if there was one. However, the difficulty is in
defining a data type for the reference that could apply to all possible containing
classes...

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Inheritance

Page 05-08 (Inheritance) Advanced C++ Programming All Rights Reserved.

Using Inheritance Instead
• A better approach is to state that a Manager is an Employee, thus:

bash$ cat demo-inher1.h
1 class Employee {
2 string name;
3 float salary;
4 // ...
5 public:
6 void SetName(string n) { name = n; }
7 void SetSalary(float s) { salary = s; }
8 // ...
9 };

10 class Manager : public Employee {
11 set<Employee*> group; // people managed
12 short level;
13 // ...
14 public:
15 void SetLevel(short l) { level = l; }
16 // ...
17 };

bash$ _

• The base class (Employee, in this case) is sometimes also called the superclass.
The derived class is Manager, also called the subclass, and it inherits from its base
class all of the data and function members. The derived class can also be thought
of as a subtype.

• In actuality, the derived class is the larger of the two classes, as it contains every-
thing in the base class and adds its own functionality as well.

Inheritance Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Inheritance) Page 05-09

Using Inheritance Instead (continued)
• It should be pointed out that the preceding examples of inheritance may not always

be appropriate.

• For instance, it is quite possible for an employee to become a manager. Yet conver-
sion of an object in the hierarchy to another data type is very problematic and
should not be done.

• A better technique is to separate the functionality of what it means to be a manager
into another class (called "roles", in the OOA&D world).

• Then particular roles can be referenced from within the employee, and roles can be
changed by changing a pointer or reference. No conversion of data types is neces-
sary.

Employee Role

Manager VIP

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Inheritance

Page 05-10 (Inheritance) Advanced C++ Programming All Rights Reserved.

Notes:

Inheritance Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Inheritance) Page 05-11

Upcasting vs. Downcasting
• The terms upcasting and downcasting refer to the conversion of objects somewhere

on the class hierarchy into objects which exist at a different level of the hierarchy
but along the same bloodline (so to speak).

• Upcasting is the conversion of an object into an object of a class higher up on the
chain. This can be done implicitly by the compiler if the derivation used the word
public or protected and the code attempting the conversion has the appropri-
ate access.

• Downcasting is problematic since there is no (compile-time) guarantee that the
smaller object really is the "smaller part" of a larger object.

shape

circlepointellipserectangletriangle

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Inheritance

Page 05-12 (Inheritance) Advanced C++ Programming All Rights Reserved.

Upcasting vs. Downcasting (continued)
• There are four possible solutions for the programmer when a downcast is desired:

[1] Place a type field in the base class for functions to inspect

[2] Ensure that only objects of a single type are pointed to

[3] Use a dynamic_cast operator (which does a run-time check of a down-
cast)

[4] Use virtual functions

• Solution 1 is not extensible and requires modification to the base class when
classes are added to the inheritance hierarchy. In other words, the base class is
never closed to future modification.

• Solution 2 is often used with pointers to base classes − container classes such as
list, vector, and set are examples.

— This is the approach commonly taken in Java (prior to v1.5). The downside
is that while the downcast is always known to work, the cast is still required.
Templates solve this particular problem in a much cleaner fashion in C++,
eliminating the need to downcast at all.

• Solution 3 is a language-supported variant of solution 1 that allows closure of the
base class, but which may require modification of derived classes when the hierar-
chy changes. This makes it unsuitable in the general case.

Inheritance Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Inheritance) Page 05-13

Upcasting vs. Downcasting (continued)
• Solution 4 is a special type-safe variation of solution 1.

— This is the ideal case because both the base class and derived classes can be
closed against modifications. Only the newly added class needs to be consid-
ered.

— Howev er, it does require that all type-dependent code be implemented as vir-
tual functions in the base class at the top of the hiearchy. This is not always
feasible when the programmer doesn’t hav e control over the base class, such
as when using third-party libraries.

• Combinations of solution 2 and 4 are particularly interesting and powerful as in
almost all situations they yield cleaner code than do solutions 1 and 3. This can
often be implemented using templates.

• Solution 1 is only discussed here to show why it is commonly an inappropriate
answer, while solution 4 is described fully as it is typically the best choice.

• Solution 3 is discussed elsewhere in this course.

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Inheritance

Page 05-14 (Inheritance) Advanced C++ Programming All Rights Reserved.

Solution 1 — The Type-field
• This involves an integer or enumerated type buried inside the base class which

identifies the type of object the base class actually represents. This allows func-
tions to perform casts on the object to the appropriate type.

bash$ cat demo-type.h
1 class Employee {
2 char etype; // ’E’ or ’M’ or ...
3 // ...
4 public:
5 Employee(char typ = ’E’) : etype(typ) { }
6 void print() const;
7 friend void print_list(const Employee *e);
8 };

9 class Manager : public Employee {
10 // ...
11 public:
12 Manager() : Employee(’M’) { }
13 void print() const;
14 };

bash$ _

Inheritance Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Inheritance) Page 05-15

Solution 1 — The Type-field (continued)
• Giv en the previous code, a function to print a list of employees is fairly simple

(remember that there are no virtual functions here):

bash$ cat demo-type.cpp
1 #include <iostream> // For ’cerr’
2 #include "demo-type.h"

3 void print_list(const Employee *e)
4 {
5 const Manager *m = 0L;
6 switch (e->etype) {
7 case ’E’ :
8 e->print(); // Print the employee
9 break;
10 case ’M’ :
11 // Shouldn’t use old-style casts (next chapter)
12 m = (const Manager *)(e);
13 m->print(); // Print the manager
14 break;
15 default :
16 std::cerr << "Unknown employee type!\n";
17 }
18 }

bash$ _

• The use of the explicit type conversion (the cast operation) is a strong hint that
improvement is possible.

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Inheritance

Page 05-16 (Inheritance) Advanced C++ Programming All Rights Reserved.

Virtual Functions
• Virtual functions overcome the problems of the type-field solution by allowing the

programmer to extend the functionality in a derived class without modification to
the base class.

bash$ cat demo-virt.h
1 class Employee {
2 // ...
3 public:
4 Employee();
5 // Notice the use of virtual and const
6 virtual void print() const;
7 };

8 class Manager : public Employee {
9 // ...

10 public:
11 Manager();
12 // Once virtual, always virtual
13 void print() const;
14 };

bash$ _

bash$ cat demo-virt.cpp
1 #include <list>
2 #include "demo-virt.h"

3 // A reference to an entire set of employees is passed
4 // in, and we iterate through the set and print the
5 // information.
6 void print_list(const std::list<Employee*> &s)
7 {
8 // Note the use of "const_iterator" ...
9 std::list<Employee *>::const_iterator p;

10 // `*p’ is one item in the list -- an Employee pointer
11 for (p=s.begin(); p != s.end(); p++)
12 (*p)->print();
13 }

bash$ _

• Notice that this code works even when new derived classes are created not even
conceived of by the writer of the Employee class!

Inheritance Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Inheritance) Page 05-17

Virtual Functions (continued)
• Virtual functions are invoked only for pointers or references, never when the com-

piler has the actual object itself (and hence, the actual data type and function name
is known at compile time).

• Virtual function calls can be turned off by using :: (the scoping operator) to spec-
ify a particular class method.

• Remember: any class with virtual functions should (probably) have a virtual
destructor.

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Inheritance

Page 05-18 (Inheritance) Advanced C++ Programming All Rights Reserved.

Abstract Base Classes
• Use abstract classes as an interface. When you think of "interface" or "building

block", think of abstract base classes. (Java includes direct support for this concept
via its interface and implements keywords.)

• Consider the Shape class discussed earlier in the course. It provides a common
interface for all shapes, whether circles, points, triangles, rectangles, or any other
shape.

• With careful planning, the application can be configured to not need any informa-
tion about the actual object types at all.

• For example, a global list object is used to keep track of objects of types derived
from shape, which could be used by a function which populates a menu with
choices.

Inheritance Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Inheritance) Page 05-19

Multiple Inheritance
• It sometimes makes good sense for a derived class to have two base classes.

• In many situations, one of the base classes can be made into a member object.
Unfortunately, member objects don’t pass virtual functions through to the contain-
ing object as a base class does. (Composition vs. inheritance was discussed earlier
in the chapter.)

• Take the example of a generic numeric input field on a user-interface screen, com-
bined with an implementation-specific vendor library.

NInput

CWindow NumBox

• In this example, CWindow is the implementation of the graphical interface, and
NumBox is the concept encapsulating a box displayed for numerical input.

class NumBox {
public:

virtual void set_value() = 0; // ... and display
virtual int get_value() = 0; // retrieves box value
virtual void prompt() = 0; // prompt user
// ...

};

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Inheritance

Page 05-20 (Inheritance) Advanced C++ Programming All Rights Reserved.

Multiple Inheritance (continued)
• Notice how the numerical box class simply provides an interface for all of the

classes derived from it. For example, numerical input based on a slider might be a
derived class class called NInput_slider, numerical input based on a dial might be a
derived class called NInput_dial, and so on.

• In each case, those derived classes must implement each of the virtual functions
before the compiler will allow instantiation.

• Notice that no data is in the base class itself. It is important in the design stages to
avoid putting data in the abstract base classes unless a solid argument for it can be
developed. Otherwise, the temptation is to put "other stuff" in there as well, and
the design deteriorates so that the base class is simply a data repository instead of
an abstraction of a concept.

CWindow NumBox

CTextField CScrollbar NInput Dial Slider

Inheritance Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Inheritance) Page 05-21

Multiple Inheritance (continued)
• Multiple inheritance has a few language subtleties associated with it.

• For example, if the classes used as bases have a common ancestor, that ancestor
object will appear twice in the most-derived class (used to denote the class at the
bottom of the hierarchy chart).

Clock

CWinWithMenu

CWindow

CWinWithBorder

CWindow

• As you can see, there will be two CWindow objects embedded inside the clock.
One of them will have a menu and the other will have a border!

• The solution to this problem is for derived classes of CWindow to use the vir-
tual keyword in the derivation. The next page has an example.

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Inheritance

Page 05-22 (Inheritance) Advanced C++ Programming All Rights Reserved.

Virtual Base Classes
bash$ cat demo-vbase.h

1 class CWindow {
2 // ...
3 };

4 class CWinWithMenu : virtual public CWindow {
5 // ...
6 };

7 class CWinWithBorder : virtual public CWindow {
8 // ...
9 };

bash$ cat demo-vbase2.h
1 #include "demo-vbase.h"

2 class Clock : public CWinWithMenu, public CWinWithBorder {
3 // application-defined details here
4 };

bash$ _

• The application then can derive its own clock class from the classes provided by
the library.

• Now the compiler does the same thing with the base class as it does with virtual
functions: it creates a hidden pointer within the derived class which points to the
actual object (of type CWindow, in this example).

Clock

CWinWithBorder CWinWithMenu

CWindow

Inheritance Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Inheritance) Page 05-23

Virtual Base Classes (continued)
• There’s a different problem now, howev er — when does the constructor for CWin-

dow get called?

— It has to be called before the derived class ("base class constructors are called
first")

— It has to be called before the two base classes’ constructors are called

— It has to be called only once − each base class constructor will be trying to
invoke the constructor for its base class, but the two derived classes of CWin-
dow share the same base object, so constructing it twice won’t work.

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Inheritance

Page 05-24 (Inheritance) Advanced C++ Programming All Rights Reserved.

Virtual Base Classes (continued)
• The compiler solves this dilemma by moving the constructor call out of the base

classes and into the most-derived class instead.

• This problem only shows its head when the base class doesn’t hav e a default con-
structor and so the compiler requires an explicit invocation. If a default constructor
does exist, the author of the Clock needn’t worry about the constructor call.

• Because of this problem, two things become obvious:

(a) an initial design which includes the possibility of multiple inheritance is
important since the development of the derived classes will depend on it, and

(b) a library of classes should already do the multiple inheritance and provide
the classes that the application is likely to want, so that the application pro-
grammer doesn’t hav e to become entrenched in the details of the library
implementation (which is exactly what the library designer is trying to
avoid).

• Otherwise, multiple inheritance can be very beneficial when used with care.

• It should be pointed out that multiple inheritance only occasionally produces a hier-
archy with a common base class. Most often, the classes using MI come from dif-
ferent vendors, and hence a common base class is unlikely, if not outright impossi-
ble.

Inheritance Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Inheritance) Page 05-25

Method Disambiguation
• Similar to the "when is the constructor called" problem is the problem of multiple

in-scope method names and the ambiguity that produces. For example, take a look
at the following code:

class CWindow {
public:
void paint();

};

class CWinWithMenu : public CWindow {
public:
void paint();

};

class CWinWithBorder : public CWindow {
public:
void paint();

};

• Now what happens to the paint() method when we inherit from both CWinWith-
Menu and CWinWithBorder? Since the class with multiple inheritance will get
both paint methods, how will the compiler choose which one to call?

• The answer is: it doesn’t. Having two paint methods as shown above will pro-
duce a compile-time error in the class that tries to inherit from both. Problem
solved!

• In the above situation, the designer of the library will need to include a paint
method in the new class that disambiguates and gives the compiler a single method
to call.

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Inheritance

Page 05-26 (Inheritance) Advanced C++ Programming All Rights Reserved.

Functional Separation
• One other aspect of multiple inheritance that becomes importance is what to do

with methods that call a base class method and then add their own functionality.

• For example, assume that the CWinWithMenu and CWinWithBorder each have a
paint() method. The typical situation would be for the Clock’s paint()
method to simply call its base class methods and be done with it.

• Howev er, this doesn’t work.

class CWindow {
public:

void paint() {
// clear the window to the background color

};

class CWinWithMenu : virtual public CWindow {
public:

void paint();
// draw the menu after clearing the background

};

class CWinWithBorder : virtual public CWindow {
public:

void paint();
// draw the border after clearing the background

};

class Clock : public CWinWithMenu, public CWinWithBorder {
public:

void paint() {
CWindow::paint();
CWinWithMenu::paint();
CWinWithBorder::paint();
// draw the clock face after drawing the menu and border

}
};

• Notice what happens when the most-derived class’s paint() method is called:
the window is cleared, then it’s cleared again and a menu painted, then the window
is cleared a third time and the border is painted. The clock face is added last. (Yes,
the window is cleared three times and the last one will remove the menu.)

Inheritance Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Inheritance) Page 05-27

Functional Separation (continued)
• The solution to this problem (which occurs in other forms fairly often) is to break

the functional requirements of the paint() method into two separate methods
and invoke each of them at the appropriate time.

— There is a public method that the application calls (in this example, it
would be paint()).

— And there is a protected method that only derived classes may access.

• Then each class calls only the protected methods of its base class, because those
method implement only the functionality of that particular class and do not call the
base class methods as the public functions do.

• Here are the protected functions:

class CWindow {
// ...

protected:
void _paint() {

// clear the window to bkgrd color
}

};

class CWinWithMenu : virtual public CWindow {
// ...

protected:
void _paint() {

// draw the menu
}

};

class CWinWithBorder : virtual public CWindow {
// ...

protected:
void _paint() {

// draw the border
}

};

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Inheritance

Page 05-28 (Inheritance) Advanced C++ Programming All Rights Reserved.

Functional Separation (continued)
• And here are the public functions.

class CWindow {
// ...

public:
void CWindow::paint() {

_paint(); // clear the window to bkgrd color
}

};

class CWinWithMenu : virtual public CWindow {
// ...

public:
void _paint() {

CWindow::_paint(); // clear the window to bkgrd color
_paint(); // draw the menu

}
};

class CWinWithBorder : virtual public CWindow {
// ...

public:
void _paint() {

CWindow::_paint(); // clear the window to bkgrd color
_paint(); // draw the border

}
};

Inheritance Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Inheritance) Page 05-29

Functional Separation (continued)
• When the application programmer wants to create a Clock class, they add the fol-

lowing protected code, which only implements the functionality specific to the
Clock:

class Clock : public CWinWithMenu, public CWinWithBorder {
// ...

protected:
void _paint() {

// draw the clock face
}

};

• And a public function that the application can call:

class Clock : public CWinWithMenu, public CWinWithBorder {
// ...

public:
void paint() {

CWindow::_paint(); // clear the background
CWinWithMenu::_paint(); // draw the menu
CWinWithBorder::_paint(); // draw the border
_paint(); // draw the clock face

}
};

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Inheritance

Page 05-30 (Inheritance) Advanced C++ Programming All Rights Reserved.

Review
• Why Inheritance?

• Composition

• Upcasting vs. Downcasting

• Virtual Functions

• Abstract Base Classes

• Multiple Inheritance

Inheritance Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

Advanced C++ Programming

Lab for Inheritance

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Lab for Inheritance

Lab for Inheritance Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Inheritance) Page L05-03

Lab for Inheritance
1. Goals for this lab:

A. Experiment with inheritance and virtual functions

B. Build a sample library hierarchy which uses multiple inheritance

2. In this lab, you’ll be creating an example library which implements a derived class
with multiple inheritance. Because we don’t want to get bogged down in GUIs,
we’ll use simple cout statements to determine what is occurring in our classes.

3. Our immediate goal is simply to show that virtual base classes consume more space
(hence, they contain the vcls pointer) than ordinary base classes. Of course, when
you start deriving classes and using multiple inheritance, the size requirement actu-
ally decreases, as discussed in the lecture.

4. Make sure that your Empl class has only one constructor; the constructor should
take a first and last name (char*’s). Derive two classes from your Empl class, but
don’t use virtual inheritance. Call them Cler and Tech (yes, they’re the same as the
Introduction to C++ course). Add an integer data field to each of the new classes
(use whatever name you like for the data members). The constructors and destruc-
tors in all classes should only contain cout statements and nothing else -- we
don’t really care about initializing the data members at this point, but we DO want
to know when they are called.

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Lab for Inheritance

Page L05-04 (Inheritance) Advanced C++ Programming All Rights Reserved.

Lab for Inheritance (continued)
bash$ cat exam-lab06a.h
class Empl {

char fn[20], ln[20];
public:

Empl(const char* f, const char* l)
{ cout << "Empl::Empl" << endl; }

˜Empl() { cout << "Empl::˜Empl" << endl; }
};

class Cler : public Empl {
int wpm;

public:
Cler() : Empl("Cfirst", "Clast")

{ cout << "Cler::Cler" << endl; }
˜Cler() { cout << "Cler::˜Cler" << endl; }

};

class Tech : public Empl {
int education;

public:
Tech() : Empl("Tfirst", "Tlast")

{ cout << "Tech::Tech" << endl; }
˜Tech() { cout << "Tech::˜Tech" << endl; }

};

5. Now write a main function which simply prints out the sizeof for each class (but
DON’T actually create any of these objects!) and fill in the sizes for each class in
the first data column of the table below. (Leave the last row empty for now.)

Class Without virtual With virtual

Empl

Cler

Tech

OfficeAdmin

Lab for Inheritance Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Inheritance) Page L05-05

Lab for Inheritance (continued)
6. Now change the Cler and Tech classes so that they are derived from the Empl class

with the word virtual. Run the program again and record the sizes in the table
above. Were the numbers what you expected? (Again, don’t create any employees,
clerical workers, or technical workers.)

7. Now derive another class from both Cler and Tech. Call it OfficeAdmin (short for
Office Administrator). Record the size of this class, when its base classes do and
do not use the virtual keyword in their derivation. Can you explain the size dif-
ferences? You may have to run a short test program which prints out the sizes of
various built-in data types, such as void* or int...

8. Make sure that virtual base classes are NOT being used. Now actually create an
OfficeAdmin in your main program. Before running the program, consider (and
estimate) the number of times that the constructor and destructor will be called for
the Empl class. Run the program. What do these results tell you?

9. Now add the virtual back into the derivation syntax and run the program again.
What did you find out this time? (Hint: it shouldn’t compile!) Review your lecture
notes to see if you can determine why. Try your various ideas by modifying the
constructor for the OfficeAdmin constructor...

10. What happens when multiple base classes declare the same function? For example,
if Cler and Tech both declared a Print function, how would the compiler resolve a
call to Print when the actual object was of type OfficeAdmin? Try it. Now see if
you can figure out a way to make it work. (Note: it may already work, but I had to
ask this question just to get you thinking!)

// ...

int main()
{

Empl *e;
OfficeAdmin joe;

e = &joe;
e->Print();
return 0;

}

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Lab for Inheritance

Page L05-06 (Inheritance) Advanced C++ Programming All Rights Reserved.

Lab for Inheritance (continued)
11. Extra Credit:

In many circumstances, inheritance can be avoided by using composition instead.
The lecture covered situations where this is not true. Given the Empl class as it
currently exists (from the end of Lab 4), would composition work for either the
Cler or Tech classes? Why or why not? If not, can you think of a way to make it
work?

Lab for Inheritance Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

TAB HERE

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Standard Template Library

Standard Template Library Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

Advanced C++ Programming

Standard Template Library

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Standard Template Library

Page 06-02 (STL) Advanced C++ Programming All Rights Reserved.

Standard Template Library Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (STL) Page 06-03

Objectives
• What is the Standard Template Library ("STL")?

• What are the goals for the STL?

• Which container classes and iterators are provided?

• What is an auto_ptr (pronounced "auto pointer")?

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Standard Template Library

Page 06-04 (STL) Advanced C++ Programming All Rights Reserved.

What is the STL?
• The Standard Template Library is a general-purpose library of generic algorithms

and data structures.

• It makes a programmer more productive in two ways:

— First, it contains a lot of different components that can be plugged together
and used in an application, and

— Second, it provides a framework into which different programming problems
can be decomposed.

• These two differences, algorithms and data structures, are the yin-yang of program-
ming.

— Algorithms are written in terms of iterator categories to access data in a
generic manner. The programmer can concentrate on how they want to
manipulate the data rather than the details of a particular implementation.

— Data structures are designed to hold application information as efficiently as
possible, allowing the programmer to focus on using the data instead of man-
aging the data.

Standard Template Library Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (STL) Page 06-05

What are the Goals of the STL?
• The most important goal is to provide a framework that can easily and efficiently

be used by the C++ programmer with their own data structures.

• Howev er, as implementing data structures over and over is tedious and error-prone,
the STL has as a secondary goal to provide the common data structures itself.
Structures such as linked lists and hash tables are already included.

• By providing these components as part of the library, the programmer can work on
application code and know that the library authors have already spent much time
and effort on tuning the framework for their particular platform.

• Another auxiliary goal is to produce readable source code. As any experienced
programmer will tell you, the worst part of getting up to speed on new code is
understanding it at both a very high level ("What does this code do? And how does
it do it?") and at a much lower iplementation level ("I want to average the salaries
for all employees in these three departments. How do I do that?").

— By providing generic algorithms for iterating over a list of employees, a pro-
grammer who knows the basics of the STL can quickly get an idea of the big
picture behind the application. (Of course, documentation would be better,
but we all know how that goes, don’t we?)

— Similarly, those same algorithms might be used on a dozen different classes
throughout the application, but they always do the same thing so the imple-
mentation details of an application are easier to focus on when necessary.

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Standard Template Library

Page 06-06 (STL) Advanced C++ Programming All Rights Reserved.

Which Container Classes are Provided?

Classname Iterator Type Filename Description
Associative Containers
set<K> Bidirectional <set> Sets have keys, but no values.
multiset<K,T> Multiset keys are not unique.
map<K> Bidirectional <set> Maps have keys and values.
multimap<K,T> Multimap keys are not unique.

Sequence Containers
T a[n] Random - Built-in array type in C/C++
vector<T> Random <vector> Vectors mimic dynamically siz-

able arrays
deque<T> Random <deque> Deques are queues that can be

accessed from either end
list<T> Bidirectional <list> Lists contain nodes that are

connected from one to the next

• The following requirements must hold true for classes to be used by the generic
algorithms in the STL (some algorithms may work without all of these being
defined).

— Any object to be stored in a container class must implement the == operator
so that the container class can make comparisons.

— For merging and sorting, the object must have the < operator defined so that
the container can make decisions about lexical ordering. Interestingly, this
operator is defined for the container classes themselves. This allows contain-
ers to be stored inside other containers and to be "sorted" (what that means
depends on how the container defines these operators).

Standard Template Library Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (STL) Page 06-07

Which Iterator Types are Provided?
• The generic algorithms discussed in the next section require parameters that are

capable of iterating through a sequence of values.

• Some iterators have more features than others, so the algorithms are defined in
terms of the simplest possible implementation.

— For example, the Input iterator is for reading values from a list. It can move
forward through a sequence, but not backwards, and it does not support ran-
dom access. It defines operator== and operator!= so that iterators
themselves can be compared to determine whether they point to the same
element of a sequence. It also requires operator++(),
operator++(int), and operator*().

— Another iterator very similar to Input is Output. The only difference is that
it supports writing new values instead of reading them, and it does not
require the equality and inequality operators.

— And the Forward iterator is a combination of the previous two; it allows
both read and write, but only moving in a forward direction through the
sequence. It also requires operator=() to be implemented.

— Bidirectional iterators add the ability to move backwards, so they require
operator--() and operator--(int).

— Random Access iterators can do everything the above can do and also can
jump around within the sequence. This means adding operator+(int),
operator+=(int), operator-(int), and operator-=(int). It
also requires the relational operators operator<(), operator<=(),
operator>(), and operator>=().

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Standard Template Library

Page 06-08 (STL) Advanced C++ Programming All Rights Reserved.

Which Iterator Types are Provided? (continued)
• There are even iterators for data streams: Input iterators for reading data and out-

put iterators for writing data. A previous example in the Templates chapter demon-
strated ostream_iterator.

Iterator name Description
Input† Unidirectional; reading
Output† Unidirectional; writing
Forward Unidirectional; reading and writing; capable of multipass
Bidirectional† Bidirectional; reading and writing
Random Access Jump to any element; reading and writing

†Note: The prefix and postfix operators must be constant time operations or performance
will suffer greatly.

• You might think that the iterator with the most features will be the one you’ll want
to use most often, but actually that’s not true; you want the iterator with the least
features that still meets your criteria!

— The reason for this is that your iterator will work with a larger set of generic
algorithms if it is a simple iterator, and the algorithm itself can be more effi-
cient. This is an argument similar to using RISC technology instead of
CISC.

— Howev er, if you need the ability to jump around within a sequence of values,
then by all means use the random access iterators. But be aware that they
require more code (and often more complex code) to support their use.

Standard Template Library Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (STL) Page 06-09

Which Generic Algorithms are Provided?
• The iterators of the previous section are designed to work with the generic algo-

rithms of the STL. These algorithms are defined in terms of which iterators are
acceptable as parameters.

• All algorithms come from a single header file, <algorithm>.

Algorithm Iterator Description
accumulate Input Adds all elements from first to last
find Input Returns an iterator to the first occurence of a value
merge Input,Output Merges two containers into a third container

• For example, the accumulate algorithm requires two input iterators. It reads
data from the first iterator until it reaches the second iterator. All of the values are
added to an initializer value provided as the third parameter. And the result is
returned to the caller.

• Because all other iterators are built on top of the input and output iterators, any
kind of iterator can be used in calling the accumulate function.

• The merge function requires four input iterators (the begin and end iterators for
two sequences) and an output iterator for the destination.

• A huge advantage of the algorithms is that normal C/C++ arrays are a valid data
structure and pointers are valid iterators! A pointer is a random access iterator,
since it supports all of the features up the hierarchy. Pointers can point to const
data if they represent values that should be considered read-only.

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Standard Template Library

Page 06-10 (STL) Advanced C++ Programming All Rights Reserved.

Some Examples of What We’ve Seen
• Okay, enough with the basics. Let’s look at some code to see how these features

are used.

• You’ve already seen the list class used a few times in previous examples and
we’ve asked you to just bear with us. Now we’re ready to look at them in detail.

• We’ll start with a simple program that generates a series of random numbers to
store into a list, then we’ll go back and process those values in a number of dif-
ferent ways.

• First we’ll take a look at the output, then the actual code...

Standard Template Library Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (STL) Page 06-11

Some Examples of What We’ve Seen (continued)
bash$ exam-stl-list1 20
List of all random values being used:

102 113 84 19 -97 -34 -30 104 64 -81
-53 68 -66 -115 61 75 72 -116 -34 87

Result of adding them up: 223

Number of negative values: 9
Number of positive values: 11

Number of times each bit was set (average is 10):
bit: 7 6 5 4 3 2 1 0
qty: 9 13 7 9 12 12 11 9

bash$ _

bash$ exam-stl-list1 20
List of all random values being used:

60 87 114 65 -25 117 -25 -3 2 10
23 -18 37 -115 18 -76 2 -37 95 -39

Result of adding them up: 292

Number of negative values: 8
Number of positive values: 12

Number of times each bit was set (average is 10):
bit: 7 6 5 4 3 2 1 0
qty: 8 11 9 11 8 12 12 12

bash$ _

bash$ exam-stl-list1 20
List of all random values being used:

-40 51 -60 -86 109 114 -2 -21 15 -97
-16 39 -21 46 -66 -87 8 76 67 -102

Result of adding them up: -73

Number of negative values: 11
Number of positive values: 9

Number of times each bit was set (average is 10):
bit: 7 6 5 4 3 2 1 0
qty: 11 10 12 8 14 9 13 9

bash$ _

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Standard Template Library

Page 06-12 (STL) Advanced C++ Programming All Rights Reserved.

Some Examples of What We’ve Seen (continued)
bash$ cat exam-stl-list1.cpp

1 #include <iostream> // For cout
2 #include <iomanip> // For setw()
3 #include <list> // For list<T>
4 #include <numeric> // All numeric algorithms
5
6 using namespace std;
7 typedef list<int> MySequence;
8
9 int main(int argc, char **argv)
10 {
11 int qty = 20; // Default to 20 elements
12 if (argc > 1)
13 qty = atoi(argv[1]); // but let the user specify
14
15 MySequence nums;
16 srandomdev();
17 for (int i=qty; i-- > 0;)
18 nums.push_back(static_cast<int>(random()&255)-128);
19
20 // Start by printing out the values.
21 {
22 cout << "List of all random values being used:"
23 << endl;
24 int count = 0;
25 MySequence::const_iterator begin = nums.begin();
26 while (begin != nums.end()) {
27 cout << setw(6) << *begin++;
28 if (++count % 10 == 0)
29 cout << endl;
30 }
31 if (count % 10 != 0)
32 cout << endl;
33 }
34
35 // If the random number generator is truly random, we
36 // should be able to add up all the number and get zero,
37 // or at least something close to zero.
38
39 // Initialize sum to zero, then start adding’em up...
40 int result = accumulate(nums.begin(), nums.end(), 0);
41 cout << "Result of adding them up: "
42 << result << endl;
43

Standard Template Library Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (STL) Page 06-13

Some Examples of What We’ve Seen (continued)
44 // Count how many are negative vs. positive.
45 {
46 int count[2] = { 0 }; // 0=negative, 1=positive
47 MySequence::const_iterator begin = nums.begin();
48 while (begin != nums.end()) {
49 count[(*begin++ < 0) ? 0 : 1]++;
50 }
51 cout << endl;
52 cout << "Number of negative values: "
53 << count[0] << endl;
54 cout << "Number of positive values: "
55 << count[1] << endl;
56 }
57
58 // Only bits 0..7 are used in the values. Let’s count
59 // how many times each bit was turned on. There are
60 // two ways to implement this; this is the easy way!
61 cout << endl;
62 cout << "Number of times each bit was set (average is "
63 << qty/2 << "):" << endl;
64 cout << " bit:";
65 int bits[8] = { 0 };
66
67 for (int bit=8; --bit >= 0;) {
68 cout << setw(6) << bit;
69 MySequence::const_iterator begin = nums.begin();
70 while (begin != nums.end()) {
71 bits[bit] += (*begin++ & (1 << bit)) ? 1 : 0;
72 }
73 }
74 cout << endl << " qty:";
75 for (int bit=8; --bit >= 0;) {
76 cout << setw(6) << bits[bit];
77 }
78 cout << endl;
79 return 0;
80 }

bash$ _

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Standard Template Library

Page 06-14 (STL) Advanced C++ Programming All Rights Reserved.

Some Examples of What We’ve Seen (continued)
• Using the list class is recommended when data needs to be inserted into the mid-

dle of the sequence on a regular basis. This is because the list class has a con-
stant-time insertion anywhere in the list, while the vector class, for instance, is
linear-time insertion: the closer to the front of the sequence that the new data is
inserted, the longer the insertion takes because more elements need to be shifted.

• Because our previous example didn’t do any insertions, we shouldn’t see much of a
performance difference between list’s and vector’s.

• To prove that, let’s do some timings, first with lists and then with vectors.

bash$ time exam-stl-list1 2000000 > /dev/null
real 0m1.879s
user 0m1.802s
sys 0m0.052s
bash$ time exam-stl-vec1 2000000 > /dev/null
real 0m1.321s
user 0m1.265s
sys 0m0.028s
bash$ _

• Wow! The vector was about 30% faster than the list! But why would that
be? We know that the code is the same except for the data structure used. Iterating
through a data structure that’s been built already should be virtually identical.

• The only other portion that might vary significantly is the loop that populates the
data structure in the first place. Apparently, putting 2 million entries into a
vector is quite a bit faster than putting 2 million entries into a list.

• Howev er, in most applications, the creation and population of the data structure is
amortized over a longer period of time. For example, the database is read in
chunks of a thousand or so before being presented to the user.

• But what about using those two classes together? Here are some example pro-
grams that use the merge and find algorithms to show that it’s the iterators that
provide the flexibility!

Standard Template Library Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (STL) Page 06-15

Some Examples of What We’ve Seen (continued)
bash$ cat exam-stl-mix1.cpp

1 #include <iostream> // For cout
2 #include <iomanip> // For setw()
3 #include <list> // For list<T>
4 #include <vector> // For vector<T>
5 #include <numeric> // All numeric algorithms
6 using namespace std;
7
8 typedef list<int> MySequence1;
9 typedef vector<int> MySequence2;
10
11 template <typename T>
12 void printContainer(T from, T to)
13 {
14 const int valsPerLine = 8;
15 int count = 0;
16 while (from != to) {
17 cout << setw(6) << *from++;
18 if (++count % valsPerLine == 0)
19 cout << endl;
20 }
21 if (count % valsPerLine != 0)
22 cout << endl;
23 }
24
25 int main(int argc, char **argv)
26 {
27 MySequence1 nums1;
28 MySequence2 nums2;
29
30 srandomdev();
31 // Fill the list with positive numbers and the vector
32 // with negative numbers.
33 for (int i=8; i-- > 0;) {
34 nums1.push_back(static_cast<int>(random()&255));
35 nums2.push_back(static_cast<int>(random()&255)-256);
36 }
37 cout << "List of all random values in the list:"
38 << endl;
39 printContainer(nums1.begin(), nums1.end());
40
41 cout << "List of all random values in the vector:"
42 << endl;
43 printContainer(nums2.begin(), nums2.end());

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Standard Template Library

Page 06-16 (STL) Advanced C++ Programming All Rights Reserved.

Some Examples of What We’ve Seen (continued)
44
45 // Make room for the results
46 MySequence2 combo(nums1.size() + nums2.size());
47 merge(nums1.begin(), nums1.end(),
48 nums2.begin(), nums2.end(),
49 combo.begin());
50 cout << "List of all values after merging:" << endl;
51 printContainer(combo.begin(), combo.end());
52
53 sort(combo.begin(), combo.end());
54 cout << "List of all values after sorting:" << endl;
55 printContainer(combo.begin(), combo.end());
56 return 0;
57 }

bash$ _

bash$ exam-stl-mix1
List of all random values in the list:

206 33 146 194 29 167 136 114
List of all random values in the vector:

-103 -89 -232 -102 -126 -35 -194 -3
List of all values after merging:

-103 -89 -232 -102 -126 -35 -194 -3
206 33 146 194 29 167 136 114

List of all values after sorting:
-232 -194 -126 -103 -102 -89 -35 -3

29 33 114 136 146 167 194 206
bash$ _

Standard Template Library Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (STL) Page 06-17

Some Examples of What We’ve Seen (continued)
• Did you notice that the combo object has to have it’s size preallocated in the con-

structor call? This is because the merge function uses the iterator to perform *i
= ... and that is an overwrite operation. However, the next code snippet shows
how we can work around that.

MySequence combo;
std::merge(nums1.begin(), nums1.end(),

nums2.begin(), nums2.end(),
back_inserter(combo));

• The templated function called back_inserter will use the passed in parameter
to create an iterator adaptor; that is, an iterator that adapts the object (in this case,
combo) for a different use.

— Any class which provides a push_back() method can be used with
back_inserter. The iterator adaptor modifies *i = ... to be an
insert (via push_back()) instead of an overwrite.

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Standard Template Library

Page 06-18 (STL) Advanced C++ Programming All Rights Reserved.

Some Examples of What We’ve Seen (continued)
bash$ cat exam-stl-mix2.cpp

1 #include <iostream> // For cout
2 #include <iomanip> // For setw()
3 #include <list> // For list<T>
4 #include <vector> // For vector<T>
5 #include <algorithm> // All non-numeric algorithms
6 using namespace std;
7
8 typedef list<int> MySequence1;
9 typedef vector<int> MySequence2;
10
11 template <typename T>
12 void printContainer(T from, T to)
13 {
14 const int valsPerLine = 8;
15 int count = 0;
16 while (from != to) {
17 cout << setw(6) << *from++;
18 if (++count % valsPerLine == 0)
19 cout << endl;
20 }
21 if (count % valsPerLine != 0)
22 cout << endl;
23 }
24
25 int main(int argc, char **argv)
26 {
27 MySequence1 nums1;
28 MySequence2 nums2;
29
30 srandomdev();
31 // Fill the list with positive numbers and the vector
32 // with negative numbers.
33 for (int i=8; i-- > 0;) {
34 nums1.push_back(static_cast<int>(random()&255));
35 nums2.push_back(static_cast<int>(random()&255)-256);
36 }
37 cout << "List of all random values in the list:"
38 << endl;
39 printContainer(nums1.begin(), nums1.end());
40
41 cout << "List of all random values in the vector:"
42 << endl;
43 printContainer(nums2.begin(), nums2.end());

Standard Template Library Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (STL) Page 06-19

Some Examples of What We’ve Seen (continued)
44
45 // Make room for the results
46 MySequence2 combo;
47 merge(nums1.begin(), nums1.end(),
48 nums2.begin(), nums2.end(),
49 back_inserter(combo));
50 cout << "List of all values after merging:" << endl;
51 printContainer(combo.begin(), combo.end());
52
53 sort(combo.begin(), combo.end());
54 cout << "List of all values after sorting:" << endl;
55 printContainer(combo.begin(), combo.end());
56 return 0;
57 }

bash$ _

bash$ exam-stl-mix2
List of all random values in the list:

26 59 89 230 238 126 250 129
List of all random values in the vector:

-47 -43 -8 -243 -109 -181 -12 -162
List of all values after merging:

-47 -43 -8 -243 -109 -181 -12 -162
26 59 89 230 238 126 250 129

List of all values after sorting:
-243 -181 -162 -109 -47 -43 -12 -8

26 59 89 126 129 230 238 250
bash$ _

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Standard Template Library

Page 06-20 (STL) Advanced C++ Programming All Rights Reserved.

Review
• The STL contain generic algorithms that can be used with a wide variety of data

types.

• These algorithms are implemented as efficiently as possible for the architecture of
the machine by the compiler vendor (some do a better job than others!).

• Many of these algorithms are designed to work with different types of iterators. If
the algorithms work with iterators and the container classes provide those iterators,
the algorithms can be used with many container classes. And adding a new con-
tainer that the STL authors didn’t think of only requires adding an efficient iterator.

• Iterators are fail-fast, meaning that if some operation invalidates the iterator (such
as modifying a link list while iterating over it) the iterator will throw an exception.

• The flexibility of the STL comes at a price: when used properly it can greatly
increase the readability and performance of an application, but when used improp-
erly it can increase the size of the application code and require extra layers of soft-
ware to manage compatibility with multiple container types.

Standard Template Library Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

TAB HERE

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Miscellaneous

Miscellaneous Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

Advanced C++ Programming

Miscellaneous

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Miscellaneous

Page 07-02 (Miscellaneous) Advanced C++ Programming All Rights Reserved.

Miscellaneous Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Miscellaneous) Page 07-03

Objectives
• Iterator Concepts

• Exception Handling

• New-style Cast Operations

• Run-Time Type Identification

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Miscellaneous

Page 07-04 (Miscellaneous) Advanced C++ Programming All Rights Reserved.

Miscellaneous
• This chapter covers some miscellaneous topics which have not already been cov-

ered in any detail in previous chapters.

• For example, the idea of iterators and how they’re used was discussed briefly in the
chapter on templates, but the full discussion has been deferred until now.

• Exception handling is a technique for returning error codes to calling functions
without the use of return values. This allows a function to return, for example, an
int but to throw a DivisionByZeroException as an error condition independent of
any declared return value.

• Run-time type identification hasn’t been mentioned previously, and this is due
partly to the author’s opinion that, like multiple inheritance, it should be avoided
unless absolutely necessary. And generally, beginning designers/programmers will
not have a good grasp of what is "necessary" until they hav e worked in C++ for
some time.

Miscellaneous Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Miscellaneous) Page 07-05

Iterator Concepts
• The first topic is iterators.

• The Standard C++ Library provides quite a few container classes as templates,
ready to be used by the application (or library) programmer.

• These containers need to provide some technique to allow the programmer to
examine each element in turn.

• This is done with iterators. They provide something analagous to using a pointer to
iterate through an array.

• Each container class declares a typedef for iterator, const_iterator, re verse_itera-
tor, and re verse_const_iterator for iterating through the container.

• The actual type of the iterator will vary from class to class (after all, a vector itera-
tor would function differently than a linked-list iterator).

• In fact, iterator classes are usually friends of the container class so that internal
information about the container can be obtained easily without exposing it with a
public interface.

bash$ cat demo-template2.cpp
1 #include <iostream>
2 #include <iterator>
3 #include <list>

4 using namespace std;

5 template <class T>
6 ostream &operator << (ostream &os, const list<T>& t)
7 {
8 // Copy from begin to end...
9 copy(t.begin(), t.end(), ostream_iterator<T>(os, "\n"));
10 }

bash$ _

• Other member functions of the container class return reverse iterators, rbegin() and
rend(). Of course, they are simply the opposite ends of the sequence.

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Miscellaneous

Page 07-06 (Miscellaneous) Advanced C++ Programming All Rights Reserved.

Exception Handling
• Exception handling is the handling of errors without the programmer having to

check the return value of every funtion call.

• For example, assume that a particular loop performs I/O operations on up to 4 files
at a time.

• The easiest way to handle error checking would be to have the individual functions
being called notify the calling subroutine that something had gone wrong (this
would be much easier than checking every return value).

• This is precisely the functionality provided by exception handling.

• Of course, there are a few details. Such as stack unwinding and constructed objects
being destroyed...

• The following example implements a merge sort.

— It opens up to 20 files at once.

— If any attempt to open a file fails, an exception is thrown.

— In this example, the exception is thrown locally and handled locally, but
that’s unusual. Typically the exception is thrown in a low-level function and
caught at a higher level in the call stack.

Miscellaneous Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Miscellaneous) Page 07-07

Exception Handling (continued)
bash$ cat demo-excpt.cpp

1 #include <list>
2 #include <string>
3 #include <iostream>
4 #include <fstream>
5 using namespace std;

6 struct BadFileOpen {
7 string which;
8 BadFileOpen(string s) : which(s) { }
9 };

10 class FileList : public list<ifstream*> {
11 public:
12 ˜FileList() {
13 // Loop through our internal list of pointers and
14 // delete each one. This closes the stream as well.
15 while (size() > 0) {
16 delete back();
17 pop_back();
18 }
19 }
20 };

21 int main()
22 {
23 list<string> filelist;
24 FileList openfiles;

25 filelist.push_back("demo-excpt.cpp");
26 try {
27 // If we exit the "try" block, call the destructor.
28 ofstream output("output.txt");

29 // do a merge sort...
30 const int MAXFILES = 20;
31 while (filelist.size() > 0) {
32 // inner loop 1 - open files
33 while (filelist.size() > 0 &&
34 openfiles.size() < MAXFILES) {
35 ifstream *next =
36 new ifstream(filelist.back().data());
37 if (!next)
38 throw BadFileOpen(filelist.back());

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Miscellaneous

Page 07-08 (Miscellaneous) Advanced C++ Programming All Rights Reserved.

Exception Handling (continued)
39 filelist.pop_back();
40 openfiles.push_back(next);
41 }
42 // Here when MAXFILES files are open or
43 // list of files is empty.

44 // inner loop 2 - merge/sort files
45 while (openfiles.size() > 0) {
46 // Merge sort the data streams that are
47 // in ’openfiles’. When all streams
48 // have been merged, the loop will break.
49 //
50 // Actual implementation of the merge is
51 // left as an exercise for the student. :)
52 }
53 }
54 }
55 catch (BadFileOpen &bfo) {
56 // Display an error and terminate the merge
57 cerr << bfo.which << endl;
58 }
59 catch (...) {
60 cerr << "Some other error occurred..." << endl;
61 // Rethrow exception up to the next level. This
62 // will terminate the application since we’re
63 // inside main().
64 throw;
65 }
66 // This message is printed if:
67 // the BadFileOpen exception is thrown, or
68 // the merge completes successfully.
69 cout << "Completed!" << endl;
70 return 0;
71 }

bash$ _

Miscellaneous Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Miscellaneous) Page 07-09

Exception Handling (continued)
• The following are the primary motivations for exceptions:

— State variables to keep track of "an error occurred" are not needed when
using exceptions.

— It is a better strategy to keep error-handling code separate from "normal"
code as much as possible.

— Doing error-handling at the same level of abstraction as the code that caused
the error might repeat the same error that triggered the error handling in the
first place!

— It is generally more work to modify the "normal" code to add error-handling
code than to add separate error-handling routines.

• Exception handling is designed for dealing with non-local errors. If an error can be
handled locally, it almost always should be.

• Lastly, don’t use exceptions when loop control structures are sufficient.

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Miscellaneous

Page 07-10 (Miscellaneous) Advanced C++ Programming All Rights Reserved.

New-style Cast Operations
• The latest version of the language (ISO/IEC 14882:2011, as of this writing)

includes the specification of 4 versions of C++-specific cast operations.

• The use of C language casts is frowned upon since there are many ambiguities with
their application.

• There are four new-style casts, as they are called. They are listed on the following
page.

Miscellaneous Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Miscellaneous) Page 07-11

New-style Cast Operations (continued)
const_cast<type>(arg)

Can only be used to remove const-ness from a object, pointer, or reference. Type
and arg must be of exactly the same types except for the const modifier.

static_cast<type>(arg)
The static_cast operator converts between related types such as one pointer to
another, an enumeration to an integral type, or a floating-point type to an integral
type. Some of these casts are portable.

dynamic_cast<type>(arg)
This cast converts a pointer (or reference) arg into a pointer (or reference) of type
"type" if such a conversion is valid, otherwise it returns a null pointer (or throws an
exception). A null pointer is also returned if arg is a null pointer. The conversion
requires that arg be a unique base class of type and that it is a polymorphic type
(that is, that it contain virtual functions).

— The requirement for being polymorphic makes the implementation easier
since a pointer to a "type information object" can be included in the vtbl for
the class. Such an implementation makes sense from a logical perspective as
well.

— Type need not be polymorphic.

— dynamic_casts of references cannot return a null reference, so such cast
operations throw the bad_cast exception instead of returning some kind of
null value.

reinterpret_cast<type>(arg)
This cast handles conversions between unrelated types such as an integer to a
pointer. Few of these are portable.

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Miscellaneous

Page 07-12 (Miscellaneous) Advanced C++ Programming All Rights Reserved.

Run-Time Type Identification
• dynamic_cast serves most purposes for determining the run-time type informa-

tion for objects involved in a class hierarchy.

• But it is occasionally necessary to know the exact type of an object.

• This information can be obtained with the typeid operator. It returns an object
representing the type of its operand.

#include <typeinfo>
const type_info& typeid(type_name) throw(bad_typeid);
const type_info& typeid(expression);

• If the value of a pointer or reference operand is 0, a bad_typeid exception is
thrown.

• There is no guarantee that only a single type_info structure exists as the infor-
mation block for a type. (In fact, it can be nearly impossible to guarantee when
shared libraries are considered.) Consequently, the == operator should be used on
type_info objects, and not type_info pointers.

• Usually we want to know the exact type of an object to provide some kind of com-
mon service. Ideally, such a service would be provided as a virtual function.

• Unfortunately, no assumption can be made that such a function exists for all types
in use within a given application.

• Another simpler use is to obtain the name of an object class for diagnostic pur-
poses.

• The programmer should use RTTI only when necessary. Static checking is safer,
implies less overhead, and — where applicable — leads to better-structured pro-
grams.

Miscellaneous Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

All Rights Reserved. Advanced C++ Programming (Miscellaneous) Page 07-13

Review
• Iterator Concepts

• Exception Handling

• New-style Cast Operations

• Run-Time Type Identification

• C++ is still evolving. The most recent iteration includes lambda functions, initial-
izer lists for arrays of objects, new for loop syntax, a nullptr keyword, thread-
local storage, and many more features. A good place to start is the C++11 page on
wikipedia: http://en.wikipedia.org/wiki/C%2B%2B11

+1 813 406 0604 Edwards & Edwards Consulting, LLC © 1994-2011 Miscellaneous

Page 07-14 (Miscellaneous) Advanced C++ Programming All Rights Reserved.

Notes:

Miscellaneous Edwards & Edwards Consulting, LLC © 1994-2011 +1 813 406 0604

