
cplusplus.com

C++ Language Tutorial

Written by: Juan Soulié

Last revision: June, 2007

Available online at: http://www.cplusplus.com/doc/tutorial/

 The online version is constantly revised and may contain corrections and changes

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

2

 © cplusplus.com 2008. All rights reserved

This document and its content is copyright of cplusplus.com © cplusplus.com, 2008. All rights reserved.

Any redistribution or reproduction of part or all of the content in any form is prohibited other than to print a

personal copy of the entire document or download it to a local hard disk, without modifying its content in any way

(including, but not limited to, this copyright notice).

You may not, except with express written permission from cplusplus.com, distribute the content of this document.

Nor may you transmit it or store it in any other website or other form of electronic retrieval system.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

3

 © cplusplus.com 2008. All rights reserved

Table of contents

Table of contents ...3

Introduction ..5

Instructions for use ... 5

Basics of C++ ..7

Structure of a program ... 7

Variables. Data Types. ... 11

Constants .. 17

Operators .. 21

Basic Input/Output .. 29

Control Structures .. 34

Control Structures ... 34

Functions (I) .. 41

Functions (II) ... 47

Compound data types .. 54

Arrays .. 54

Character Sequences .. 60

Pointers ... 63

Dynamic Memory .. 74

Data structures.. 77

Other Data Types .. 82

Object Oriented Programming .. 86

Classes (I)... 86

Classes (II) ... 95

Friendship and inheritance ... 100

Polymorphism ... 107

Advanced concepts .. 113

Templates.. 113

Namespaces .. 120

Exceptions ... 123

Type Casting .. 127

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

4

 © cplusplus.com 2008. All rights reserved

Preprocessor directives ... 133

C++ Standard Library .. 138

Input/Output with files ... 138

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

5

 © cplusplus.com 2008. All rights reserved

Introduction

Instructions for use

To whom is this tutorial directed?

This tutorial is for those people who want to learn programming in C++ and do not necessarily have any previous
knowledge of other programming languages. Of course any knowledge of other programming languages or any
general computer skill can be useful to better understand this tutorial, although it is not essential.

It is also suitable for those who need a little update on the new features the language has acquired from the latest
standards.

If you are familiar with the C language, you can take the first 3 parts of this tutorial as a review of concepts, since
they mainly explain the C part of C++. There are slight differences in the C++ syntax for some C features, so I
recommend you its reading anyway.

The 4th part describes object-oriented programming.

The 5th part mostly describes the new features introduced by ANSI-C++ standard.

Structure of this tutorial

The tutorial is divided in 6 parts and each part is divided on its turn into different sections covering a topic each

one. You can access any section directly from the section index available on the left side bar, or begin the tutorial
from any point and follow the links at the bottom of each section.

Many sections include examples that describe the use of the newly acquired knowledge in the chapter. It is
recommended to read these examples and to be able to understand each of the code lines that constitute it before
passing to the next chapter.

A good way to gain experience with a programming language is by modifying and adding new functionalities on
your own to the example programs that you fully understand. Don't be scared to modify the examples provided
with this tutorial, that's the way to learn!

Compatibility Notes

The ANSI-C++ standard acceptation as an international standard is relatively recent. It was first published in
November 1997, and revised in 2003. Nevertheless, the C++ language exists from a long time before (1980s).
Therefore there are many compilers which do not support all the new capabilities included in ANSI-C++, especially
those released prior to the publication of the standard.

This tutorial is thought to be followed with modern compilers that support -at least on some degree- ANSI-C++

specifications. I encourage you to get one if yours is not adapted. There are many options, both commercial and
free.

Compilers

The examples included in this tutorial are all console programs. That means they use text to communicate with
the user and to show their results.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

6

 © cplusplus.com 2008. All rights reserved

All C++ compilers support the compilation of console programs. Check the user's manual of your compiler for more
info on how to compile them.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

7

 © cplusplus.com 2008. All rights reserved

Basics of C++

Structure of a program
Probably the best way to start learning a programming language is by writing a program. Therefore, here is our

first program:

// my first program in C++

#include <iostream>
using namespace std;

int main ()
{
 cout << "Hello World!";
 return 0;
}

Hello World!

The first panel shows the source code for our first program. The second one shows the result of the program once

compiled and executed. The way to edit and compile a program depends on the compiler you are using. Depending
on whether it has a Development Interface or not and on its version. Consult the compilers section and the manual
or help included with your compiler if you have doubts on how to compile a C++ console program.

The previous program is the typical program that programmer apprentices write for the first time, and its result is

the printing on screen of the "Hello World!" sentence. It is one of the simplest programs that can be written in
C++, but it already contains the fundamental components that every C++ program has. We are going to look line
by line at the code we have just written:

// my first program in C++

This is a comment line. All lines beginning with two slash signs (//) are considered comments and do not

have any effect on the behavior of the program. The programmer can use them to include short
explanations or observations within the source code itself. In this case, the line is a brief description of
what our program is.

#include <iostream>

Lines beginning with a hash sign (#) are directives for the preprocessor. They are not regular code lines
with expressions but indications for the compiler's preprocessor. In this case the directive #include
<iostream> tells the preprocessor to include the iostream standard file. This specific file (iostream)

includes the declarations of the basic standard input-output library in C++, and it is included because its
functionality is going to be used later in the program.

using namespace std;

All the elements of the standard C++ library are declared within what is called a namespace, the
namespace with the name std. So in order to access its functionality we declare with this expression that
we will be using these entities. This line is very frequent in C++ programs that use the standard library,
and in fact it will be included in most of the source codes included in these tutorials.

int main ()

This line corresponds to the beginning of the definition of the main function. The main function is the point
by where all C++ programs start their execution, independently of its location within the source code. It
does not matter whether there are other functions with other names defined before or after it - the
instructions contained within this function's definition will always be the first ones to be executed in any

C++ program. For that same reason, it is essential that all C++ programs have a main function.

The word main is followed in the code by a pair of parentheses (()). That is because it is a function
declaration: In C++, what differentiates a function declaration from other types of expressions are these
parentheses that follow its name. Optionally, these parentheses may enclose a list of parameters within
them.

Right after these parentheses we can find the body of the main function enclosed in braces ({}). What is

contained within these braces is what the function does when it is executed.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

8

 © cplusplus.com 2008. All rights reserved

cout << "Hello World!";

This line is a C++ statement. A statement is a simple or compound expression that can actually produce
some effect. In fact, this statement performs the only action that generates a visible effect in our first
program.

cout represents the standard output stream in C++, and the meaning of the entire statement is to insert

a sequence of characters (in this case the Hello World sequence of characters) into the standard output
stream (which usually is the screen).

cout is declared in the iostream standard file within the std namespace, so that's why we needed to

include that specific file and to declare that we were going to use this specific namespace earlier in our
code.

Notice that the statement ends with a semicolon character (;). This character is used to mark the end of

the statement and in fact it must be included at the end of all expression statements in all C++ programs
(one of the most common syntax errors is indeed to forget to include some semicolon after a statement).

return 0;

The return statement causes the main function to finish. return may be followed by a return code (in our

example is followed by the return code 0). A return code of 0 for the main function is generally interpreted

as the program worked as expected without any errors during its execution. This is the most usual way to
end a C++ console program.

You may have noticed that not all the lines of this program perform actions when the code is executed. There were

lines containing only comments (those beginning by //). There were lines with directives for the compiler's

preprocessor (those beginning by #). Then there were lines that began the declaration of a function (in this case,
the main function) and, finally lines with statements (like the insertion into cout), which were all included within
the block delimited by the braces ({}) of the main function.

The program has been structured in different lines in order to be more readable, but in C++, we do not have strict
rules on how to separate instructions in different lines. For example, instead of

int main ()
{
 cout << " Hello World!";
 return 0;
}

We could have written:

int main () { cout << "Hello World!"; return 0; }

All in just one line and this would have had exactly the same meaning as the previous code.

In C++, the separation between statements is specified with an ending semicolon (;) at the end of each one, so
the separation in different code lines does not matter at all for this purpose. We can write many statements per
line or write a single statement that takes many code lines. The division of code in different lines serves only to
make it more legible and schematic for the humans that may read it.

Let us add an additional instruction to our first program:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

9

 © cplusplus.com 2008. All rights reserved

// my second program in C++

#include <iostream>
using namespace std;

int main ()
{
 cout << "Hello World! ";
 cout << "I'm a C++ program";
 return 0;
}

Hello World! I'm a C++ program

In this case, we performed two insertions into cout in two different statements. Once again, the separation in

different lines of code has been done just to give greater readability to the program, since main could have been
perfectly valid defined this way:

int main () { cout << " Hello World! "; cout << " I'm a C++ program "; return 0; }

We were also free to divide the code into more lines if we considered it more convenient:

int main ()
{
 cout <<
 "Hello World!";
 cout
 << "I'm a C++ program";
 return 0;
}

And the result would again have been exactly the same as in the previous examples.

Preprocessor directives (those that begin by #) are out of this general rule since they are not statements. They are

lines read and processed by the preprocessor and do not produce any code by themselves. Preprocessor directives
must be specified in their own line and do not have to end with a semicolon (;).

Comments

Comments are parts of the source code disregarded by the compiler. They simply do nothing. Their purpose is only
to allow the programmer to insert notes or descriptions embedded within the source code.

C++ supports two ways to insert comments:

// line comment
/* block comment */

The first of them, known as line comment, discards everything from where the pair of slash signs (//) is found up

to the end of that same line. The second one, known as block comment, discards everything between the /*
characters and the first appearance of the */ characters, with the possibility of including more than one line.

We are going to add comments to our second program:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

10

 © cplusplus.com 2008. All rights reserved

/* my second program in C++
 with more comments */

#include <iostream>
using namespace std;

int main ()
{
 cout << "Hello World! "; // prints Hello
World!
 cout << "I'm a C++ program"; // prints I'm a
C++ program
 return 0;
}

Hello World! I'm a C++ program

If you include comments within the source code of your programs without using the comment characters

combinations //, /* or */, the compiler will take them as if they were C++ expressions, most likely causing one or

several error messages when you compile it.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

11

 © cplusplus.com 2008. All rights reserved

Variables. Data Types.
The usefulness of the "Hello World" programs shown in the previous section is quite questionable. We had to write
several lines of code, compile them, and then execute the resulting program just to obtain a simple sentence
written on the screen as result. It certainly would have been much faster to type the output sentence by ourselves.
However, programming is not limited only to printing simple texts on the screen. In order to go a little further on
and to become able to write programs that perform useful tasks that really save us work we need to introduce the
concept of variable.

Let us think that I ask you to retain the number 5 in your mental memory, and then I ask you to memorize also

the number 2 at the same time. You have just stored two different values in your memory. Now, if I ask you to add
1 to the first number I said, you should be retaining the numbers 6 (that is 5+1) and 2 in your memory. Values
that we could now for example subtract and obtain 4 as result.

The whole process that you have just done with your mental memory is a simile of what a computer can do with
two variables. The same process can be expressed in C++ with the following instruction set:

a = 5;
b = 2;
a = a + 1;
result = a - b;

Obviously, this is a very simple example since we have only used two small integer values, but consider that your

computer can store millions of numbers like these at the same time and conduct sophisticated mathematical
operations with them.

Therefore, we can define a variable as a portion of memory to store a determined value.

Each variable needs an identifier that distinguishes it from the others, for example, in the previous code the

variable identifiers were a, b and result, but we could have called the variables any names we wanted to invent,

as long as they were valid identifiers.

Identifiers

A valid identifier is a sequence of one or more letters, digits or underscore characters (_). Neither spaces nor
punctuation marks or symbols can be part of an identifier. Only letters, digits and single underscore characters are
valid. In addition, variable identifiers always have to begin with a letter. They can also begin with an underline

character (_), but in some cases these may be reserved for compiler specific keywords or external identifiers, as

well as identifiers containing two successive underscore characters anywhere. In no case they can begin with a
digit.

Another rule that you have to consider when inventing your own identifiers is that they cannot match any keyword

of the C++ language nor your compiler's specific ones, which are reserved keywords. The standard reserved
keywords are:

asm, auto, bool, break, case, catch, char, class, const, const_cast, continue, default, delete,
do, double, dynamic_cast, else, enum, explicit, export, extern, false, float, for, friend, goto,
if, inline, int, long, mutable, namespace, new, operator, private, protected, public, register,
reinterpret_cast, return, short, signed, sizeof, static, static_cast, struct, switch, template,
this, throw, true, try, typedef, typeid, typename, union, unsigned, using, virtual, void,
volatile, wchar_t, while

Additionally, alternative representations for some operators cannot be used as identifiers since they are reserved
words under some circumstances:

and, and_eq, bitand, bitor, compl, not, not_eq, or, or_eq, xor, xor_eq

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

12

 © cplusplus.com 2008. All rights reserved

Your compiler may also include some additional specific reserved keywords.

Very important: The C++ language is a "case sensitive" language. That means that an identifier written in capital
letters is not equivalent to another one with the same name but written in small letters. Thus, for example, the

RESULT variable is not the same as the result variable or the Result variable. These are three different variable
identifiers.

Fundamental data types

When programming, we store the variables in our computer's memory, but the computer has to know what kind of
data we want to store in them, since it is not going to occupy the same amount of memory to store a simple
number than to store a single letter or a large number, and they are not going to be interpreted the same way.

The memory in our computers is organized in bytes. A byte is the minimum amount of memory that we can

manage in C++. A byte can store a relatively small amount of data: one single character or a small integer
(generally an integer between 0 and 255). In addition, the computer can manipulate more complex data types that
come from grouping several bytes, such as long numbers or non-integer numbers.

Next you have a summary of the basic fundamental data types in C++, as well as the range of values that can be
represented with each one:

Name Description Size* Range*

char Character or small integer. 1byte
signed: -128 to 127
unsigned: 0 to 255

short int
(short)

Short Integer. 2bytes
signed: -32768 to 32767
unsigned: 0 to 65535

int Integer. 4bytes
signed: -2147483648 to
2147483647
unsigned: 0 to 4294967295

long int (long) Long integer. 4bytes
signed: -2147483648 to
2147483647
unsigned: 0 to 4294967295

bool Boolean value. It can take one of two values: true
or false.

1byte true or false

float Floating point number. 4bytes +/- 3.4e +/- 38 (~7 digits)

double Double precision floating point number. 8bytes +/- 1.7e +/- 308 (~15 digits)

long double Long double precision floating point number. 8bytes +/- 1.7e +/- 308 (~15 digits)

wchar_t Wide character.
2 or 4
bytes

1 wide character

* The values of the columns Size and Range depend on the system the program is compiled for. The values

shown above are those found on most 32-bit systems. But for other systems, the general specification is that int
has the natural size suggested by the system architecture (one "word") and the four integer types char, short,
int and long must each one be at least as large as the one preceding it, with char being always 1 byte in size.

The same applies to the floating point types float, double and long double, where each one must provide at

least as much precision as the preceding one.

Declaration of variables

In order to use a variable in C++, we must first declare it specifying which data type we want it to be. The syntax
to declare a new variable is to write the specifier of the desired data type (like int, bool, float...) followed by a valid
variable identifier. For example:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

13

 © cplusplus.com 2008. All rights reserved

int a;
float mynumber;

These are two valid declarations of variables. The first one declares a variable of type int with the identifier a. The

second one declares a variable of type float with the identifier mynumber. Once declared, the variables a and
mynumber can be used within the rest of their scope in the program.

If you are going to declare more than one variable of the same type, you can declare all of them in a single
statement by separating their identifiers with commas. For example:

int a, b, c;

This declares three variables (a, b and c), all of them of type int, and has exactly the same meaning as:

int a;
int b;
int c;

The integer data types char, short, long and int can be either signed or unsigned depending on the range of
numbers needed to be represented. Signed types can represent both positive and negative values, whereas
unsigned types can only represent positive values (and zero). This can be specified by using either the specifier
signed or the specifier unsigned before the type name. For example:

unsigned short int NumberOfSisters;
signed int MyAccountBalance;

By default, if we do not specify either signed or unsigned most compiler settings will assume the type to be

signed, therefore instead of the second declaration above we could have written:

int MyAccountBalance;

with exactly the same meaning (with or without the keyword signed)

An exception to this general rule is the char type, which exists by itself and is considered a different fundamental

data type from signed char and unsigned char, thought to store characters. You should use either signed or
unsigned if you intend to store numerical values in a char-sized variable.

short and long can be used alone as type specifiers. In this case, they refer to their respective integer
fundamental types: short is equivalent to short int and long is equivalent to long int. The following two
variable declarations are equivalent:

short Year;
short int Year;

Finally, signed and unsigned may also be used as standalone type specifiers, meaning the same as signed int
and unsigned int respectively. The following two declarations are equivalent:

unsigned NextYear;
unsigned int NextYear;

To see what variable declarations look like in action within a program, we are going to see the C++ code of the
example about your mental memory proposed at the beginning of this section:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

14

 © cplusplus.com 2008. All rights reserved

// operating with variables

#include <iostream>
using namespace std;

int main ()
{
 // declaring variables:
 int a, b;
 int result;

 // process:
 a = 5;
 b = 2;
 a = a + 1;
 result = a - b;

 // print out the result:
 cout << result;

 // terminate the program:
 return 0;
}

4

Do not worry if something else than the variable declarations themselves looks a bit strange to you. You will see
the rest in detail in coming sections.

Scope of variables

All the variables that we intend to use in a program must have been declared with its type specifier in an earlier
point in the code, like we did in the previous code at the beginning of the body of the function main when we

declared that a, b, and result were of type int.

A variable can be either of global or local scope. A global variable is a variable declared in the main body of the
source code, outside all functions, while a local variable is one declared within the body of a function or a block.

Global variables can be referred from anywhere in the code, even inside functions, whenever it is after its
declaration.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

15

 © cplusplus.com 2008. All rights reserved

The scope of local variables is limited to the block enclosed in braces ({}) where they are declared. For example, if

they are declared at the beginning of the body of a function (like in function main) their scope is between its
declaration point and the end of that function. In the example above, this means that if another function existed in

addition to main, the local variables declared in main could not be accessed from the other function and vice versa.

Initialization of variables

When declaring a regular local variable, its value is by default undetermined. But you may want a variable to store
a concrete value at the same moment that it is declared. In order to do that, you can initialize the variable. There
are two ways to do this in C++:

The first one, known as c-like, is done by appending an equal sign followed by the value to which the variable will
be initialized:

type identifier = initial_value ;

For example, if we want to declare an int variable called a initialized with a value of 0 at the moment in which it is
declared, we could write:

int a = 0;

The other way to initialize variables, known as constructor initialization, is done by enclosing the initial value

between parentheses (()):

type identifier (initial_value) ;

For example:

int a (0);

Both ways of initializing variables are valid and equivalent in C++.

// initialization of variables

#include <iostream>
using namespace std;

int main ()
{
 int a=5; // initial value = 5
 int b(2); // initial value = 2
 int result; // initial value
undetermined

 a = a + 3;
 result = a - b;
 cout << result;

 return 0;
}

6

Introduction to strings

Variables that can store non-numerical values that are longer than one single character are known as strings.

The C++ language library provides support for strings through the standard string class. This is not a
fundamental type, but it behaves in a similar way as fundamental types do in its most basic usage.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

16

 © cplusplus.com 2008. All rights reserved

A first difference with fundamental data types is that in order to declare and use objects (variables) of this type we

need to include an additional header file in our source code: <string> and have access to the std namespace

(which we already had in all our previous programs thanks to the using namespace statement).

// my first string
#include <iostream>
#include <string>
using namespace std;

int main ()
{
 string mystring = "This is a string";
 cout << mystring;
 return 0;
}

This is a string

As you may see in the previous example, strings can be initialized with any valid string literal just like numerical
type variables can be initialized to any valid numerical literal. Both initialization formats are valid with strings:

string mystring = "This is a string";
string mystring ("This is a string");

Strings can also perform all the other basic operations that fundamental data types can, like being declared without
an initial value and being assigned values during execution:

// my first string
#include <iostream>
#include <string>
using namespace std;

int main ()
{
 string mystring;
 mystring = "This is the initial string content";
 cout << mystring << endl;
 mystring = "This is a different string content";
 cout << mystring << endl;
 return 0;
}

This is the initial string content
This is a different string content

For more details on C++ strings, you can have a look at the string class reference.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

17

 © cplusplus.com 2008. All rights reserved

Constants
Constants are expressions with a fixed value.

Literals

Literals are used to express particular values within the source code of a program. We have already used these

previously to give concrete values to variables or to express messages we wanted our programs to print out, for

example, when we wrote:

a = 5;

the 5 in this piece of code was a literal constant.

Literal constants can be divided in Integer Numerals, Floating-Point Numerals, Characters, Strings and Boolean
Values.

Integer Numerals

1776
707
-273

They are numerical constants that identify integer decimal values. Notice that to express a numerical constant we

do not have to write quotes (") nor any special character. There is no doubt that it is a constant: whenever we
write 1776 in a program, we will be referring to the value 1776.

In addition to decimal numbers (those that all of us are used to use every day) C++ allows the use as literal
constants of octal numbers (base 8) and hexadecimal numbers (base 16). If we want to express an octal number

we have to precede it with a 0 (zero character). And in order to express a hexadecimal number we have to precede

it with the characters 0x (zero, x). For example, the following literal constants are all equivalent to each other:

75 // decimal
0113 // octal
0x4b // hexadecimal

All of these represent the same number: 75 (seventy-five) expressed as a base-10 numeral, octal numeral and
hexadecimal numeral, respectively.

Literal constants, like variables, are considered to have a specific data type. By default, integer literals are of type
int. However, we can force them to either be unsigned by appending the u character to it, or long by appending l:

75 // int
75u // unsigned int
75l // long
75ul // unsigned long

In both cases, the suffix can be specified using either upper or lowercase letters.

Floating Point Numbers
They express numbers with decimals and/or exponents. They can include either a decimal point, an e character

(that expresses "by ten at the Xth height", where X is an integer value that follows the e character), or both a

decimal point and an e character:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

18

 © cplusplus.com 2008. All rights reserved

3.14159 // 3.14159
6.02e23 // 6.02 x 10^23
1.6e-19 // 1.6 x 10^-19
3.0 // 3.0

These are four valid numbers with decimals expressed in C++. The first number is PI, the second one is the

number of Avogadro, the third is the electric charge of an electron (an extremely small number) -all of them
approximated- and the last one is the number three expressed as a floating-point numeric literal.

The default type for floating point literals is double. If you explicitly want to express a float or long double
numerical literal, you can use the f or l suffixes respectively:

3.14159L // long double
6.02e23f // float

Any of the letters that can be part of a floating-point numerical constant (e, f, l) can be written using either lower
or uppercase letters without any difference in their meanings.

Character and string literals
There also exist non-numerical constants, like:

'z'
'p'
"Hello world"
"How do you do?"

The first two expressions represent single character constants, and the following two represent string literals

composed of several characters. Notice that to represent a single character we enclose it between single quotes (')
and to express a string (which generally consists of more than one character) we enclose it between double quotes
(").

When writing both single character and string literals, it is necessary to put the quotation marks surrounding them
to distinguish them from possible variable identifiers or reserved keywords. Notice the difference between these
two expressions:

x
'x'

x alone would refer to a variable whose identifier is x, whereas 'x' (enclosed within single quotation marks) would

refer to the character constant 'x'.

Character and string literals have certain peculiarities, like the escape codes. These are special characters that are

difficult or impossible to express otherwise in the source code of a program, like newline (\n) or tab (\t). All of
them are preceded by a backslash (\). Here you have a list of some of such escape codes:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

19

 © cplusplus.com 2008. All rights reserved

\n newline

\r carriage return

\t tab

\v vertical tab

\b backspace

\f form feed (page feed)

\a alert (beep)

\' single quote (')

\" double quote (")

\? question mark (?)

\\ backslash (\)

For example:

'\n'
'\t'
"Left \t Right"
"one\ntwo\nthree"

Additionally, you can express any character by its numerical ASCII code by writing a backslash character (\)
followed by the ASCII code expressed as an octal (base-8) or hexadecimal (base-16) number. In the first case

(octal) the digits must immediately follow the backslash (for example \23 or \40), in the second case
(hexadecimal), an x character must be written before the digits themselves (for example \x20 or \x4A).

String literals can extend to more than a single line of code by putting a backslash sign (\) at the end of each
unfinished line.

"string expressed in \
two lines"

You can also concatenate several string constants separating them by one or several blank spaces, tabulators,
newline or any other valid blank character:

"this forms" "a single" "string" "of characters"

Finally, if we want the string literal to be explicitly made of wide characters (wchar_t), instead of narrow characters
(char), we can precede the constant with the L prefix:

L"This is a wide character string"

Wide characters are used mainly to represent non-English or exotic character sets.

Boolean literals
There are only two valid Boolean values: true and false. These can be expressed in C++ as values of type bool by

using the Boolean literals true and false.

Defined constants (#define)

You can define your own names for constants that you use very often without having to resort to memory-

consuming variables, simply by using the #define preprocessor directive. Its format is:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

20

 © cplusplus.com 2008. All rights reserved

#define identifier value

For example:

#define PI 3.14159
#define NEWLINE '\n'

This defines two new constants: PI and NEWLINE. Once they are defined, you can use them in the rest of the code

as if they were any other regular constant, for example:

// defined constants: calculate circumference

#include <iostream>
using namespace std;

#define PI 3.14159
#define NEWLINE '\n'

int main ()
{
 double r=5.0; // radius
 double circle;

 circle = 2 * PI * r;
 cout << circle;
 cout << NEWLINE;

 return 0;
}

31.4159

In fact the only thing that the compiler preprocessor does when it encounters #define directives is to literally
replace any occurrence of their identifier (in the previous example, these were PI and NEWLINE) by the code to
which they have been defined (3.14159 and '\n' respectively).

The #define directive is not a C++ statement but a directive for the preprocessor; therefore it assumes the entire

line as the directive and does not require a semicolon (;) at its end. If you append a semicolon character (;) at the
end, it will also be appended in all occurrences within the body of the program that the preprocessor replaces.

Declared constants (const)

With the const prefix you can declare constants with a specific type in the same way as you would do with a

variable:

const int pathwidth = 100;
const char tabulator = '\t';

Here, pathwidth and tabulator are two typed constants. They are treated just like regular variables except that
their values cannot be modified after their definition.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

21

 © cplusplus.com 2008. All rights reserved

Operators
Once we know of the existence of variables and constants, we can begin to operate with them. For that purpose,
C++ integrates operators. Unlike other languages whose operators are mainly keywords, operators in C++ are
mostly made of signs that are not part of the alphabet but are available in all keyboards. This makes C++ code
shorter and more international, since it relies less on English words, but requires a little of learning effort in the
beginning.

You do not have to memorize all the content of this page. Most details are only provided to serve as a later
reference in case you need it.

Assignment (=)

The assignment operator assigns a value to a variable.

a = 5;

This statement assigns the integer value 5 to the variable a. The part at the left of the assignment operator (=) is
known as the lvalue (left value) and the right one as the rvalue (right value). The lvalue has to be a variable
whereas the rvalue can be either a constant, a variable, the result of an operation or any combination of these.
The most important rule when assigning is the right-to-left rule: The assignment operation always takes place from
right to left, and never the other way:

a = b;

This statement assigns to variable a (the lvalue) the value contained in variable b (the rvalue). The value that was
stored until this moment in a is not considered at all in this operation, and in fact that value is lost.

Consider also that we are only assigning the value of b to a at the moment of the assignment operation. Therefore

a later change of b will not affect the new value of a.

For example, let us have a look at the following code - I have included the evolution of the content stored in the
variables as comments:

// assignment operator

#include <iostream>
using namespace std;

int main ()
{
 int a, b; // a:?, b:?
 a = 10; // a:10, b:?
 b = 4; // a:10, b:4
 a = b; // a:4, b:4
 b = 7; // a:4, b:7

 cout << "a:";
 cout << a;
 cout << " b:";
 cout << b;

 return 0;
}

a:4 b:7

This code will give us as result that the value contained in a is 4 and the one contained in b is 7. Notice how a was

not affected by the final modification of b, even though we declared a = b earlier (that is because of the right-to-
left rule).

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

22

 © cplusplus.com 2008. All rights reserved

A property that C++ has over other programming languages is that the assignment operation can be used as the
rvalue (or part of an rvalue) for another assignment operation. For example:

a = 2 + (b = 5);

is equivalent to:

b = 5;
a = 2 + b;

that means: first assign 5 to variable b and then assign to a the value 2 plus the result of the previous assignment

of b (i.e. 5), leaving a with a final value of 7.

The following expression is also valid in C++:

a = b = c = 5;

It assigns 5 to the all the three variables: a, b and c.

Arithmetic operators (+, -, *, /, %)

The five arithmetical operations supported by the C++ language are:

+ addition

- subtraction

* multiplication

/ division

% modulo

Operations of addition, subtraction, multiplication and division literally correspond with their respective

mathematical operators. The only one that you might not be so used to see is modulo; whose operator is the

percentage sign (%). Modulo is the operation that gives the remainder of a division of two values. For example, if

we write:

a = 11 % 3;

the variable a will contain the value 2, since 2 is the remainder from dividing 11 between 3.

Compound assignment (+=, -=, *=, /=, %=, >>=, <<=, &=,
^=, |=)

When we want to modify the value of a variable by performing an operation on the value currently stored in that
variable we can use compound assignment operators:

expression is equivalent to

value += increase; value = value + increase;

a -= 5; a = a - 5;

a /= b; a = a / b;

price *= units + 1; price = price * (units + 1);

and the same for all other operators. For example:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

23

 © cplusplus.com 2008. All rights reserved

// compound assignment operators

#include <iostream>
using namespace std;

int main ()
{
 int a, b=3;
 a = b;
 a+=2; // equivalent to a=a+2
 cout << a;
 return 0;
}

5

Increase and decrease (++, --)

Shortening even more some expressions, the increase operator (++) and the decrease operator (--) increase or
reduce by one the value stored in a variable. They are equivalent to +=1 and to -=1, respectively. Thus:

c++;
c+=1;
c=c+1;

are all equivalent in its functionality: the three of them increase by one the value of c.

In the early C compilers, the three previous expressions probably produced different executable code depending on
which one was used. Nowadays, this type of code optimization is generally done automatically by the compiler,
thus the three expressions should produce exactly the same executable code.

A characteristic of this operator is that it can be used both as a prefix and as a suffix. That means that it can be

written either before the variable identifier (++a) or after it (a++). Although in simple expressions like a++ or ++a
both have exactly the same meaning, in other expressions in which the result of the increase or decrease operation
is evaluated as a value in an outer expression they may have an important difference in their meaning: In the case
that the increase operator is used as a prefix (++a) the value is increased before the result of the expression is
evaluated and therefore the increased value is considered in the outer expression; in case that it is used as a suffix

(a++) the value stored in a is increased after being evaluated and therefore the value stored before the increase
operation is evaluated in the outer expression. Notice the difference:

Example 1 Example 2

B=3;
A=++B;
// A contains 4, B contains 4

B=3;
A=B++;
// A contains 3, B contains 4

In Example 1, B is increased before its value is copied to A. While in Example 2, the value of B is copied to A and
then B is increased.

Relational and equality operators (==, !=, >, <, >=, <=)

In order to evaluate a comparison between two expressions we can use the relational and equality operators. The
result of a relational operation is a Boolean value that can only be true or false, according to its Boolean result.

We may want to compare two expressions, for example, to know if they are equal or if one is greater than the
other is. Here is a list of the relational and equality operators that can be used in C++:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

24

 © cplusplus.com 2008. All rights reserved

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

Here there are some examples:

(7 == 5) // evaluates to false.
(5 > 4) // evaluates to true.
(3 != 2) // evaluates to true.
(6 >= 6) // evaluates to true.
(5 < 5) // evaluates to false.

Of course, instead of using only numeric constants, we can use any valid expression, including variables. Suppose

that a=2, b=3 and c=6,

(a == 5) // evaluates to false since a is not equal to 5.
(a*b >= c) // evaluates to true since (2*3 >= 6) is true.
(b+4 > a*c) // evaluates to false since (3+4 > 2*6) is false.
((b=2) == a) // evaluates to true.

Be careful! The operator = (one equal sign) is not the same as the operator == (two equal signs), the first one is an
assignment operator (assigns the value at its right to the variable at its left) and the other one (==) is the equality
operator that compares whether both expressions in the two sides of it are equal to each other. Thus, in the last

expression ((b=2) == a), we first assigned the value 2 to b and then we compared it to a, that also stores the
value 2, so the result of the operation is true.

Logical operators (!, &&, ||)

The Operator ! is the C++ operator to perform the Boolean operation NOT, it has only one operand, located at its

right, and the only thing that it does is to inverse the value of it, producing false if its operand is true and true if its
operand is false. Basically, it returns the opposite Boolean value of evaluating its operand. For example:

!(5 == 5) // evaluates to false because the expression at its right (5 == 5) is true.
!(6 <= 4) // evaluates to true because (6 <= 4) would be false.
!true // evaluates to false
!false // evaluates to true.

The logical operators && and || are used when evaluating two expressions to obtain a single relational result. The

operator && corresponds with Boolean logical operation AND. This operation results true if both its two operands
are true, and false otherwise. The following panel shows the result of operator && evaluating the expression a &&
b:

&& OPERATOR

a b a && b

true true true

true false false

false true false

false false false

The operator || corresponds with Boolean logical operation OR. This operation results true if either one of its two

operands is true, thus being false only when both operands are false themselves. Here are the possible results of a
|| b:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

25

 © cplusplus.com 2008. All rights reserved

|| OPERATOR

a b a || b

true true true

true false true

false true true

false false false

For example:

((5 == 5) && (3 > 6)) // evaluates to false (true && false).
((5 == 5) || (3 > 6)) // evaluates to true (true || false).

Conditional operator (?)

The conditional operator evaluates an expression returning a value if that expression is true and a different one if
the expression is evaluated as false. Its format is:

condition ? result1 : result2

If condition is true the expression will return result1, if it is not it will return result2.

7==5 ? 4 : 3 // returns 3, since 7 is not equal to 5.
7==5+2 ? 4 : 3 // returns 4, since 7 is equal to 5+2.
5>3 ? a : b // returns the value of a, since 5 is greater than 3.
a>b ? a : b // returns whichever is greater, a or b.

// conditional operator

#include <iostream>
using namespace std;

int main ()
{
 int a,b,c;

 a=2;
 b=7;
 c = (a>b) ? a : b;

 cout << c;

 return 0;
}

7

In this example a was 2 and b was 7, so the expression being evaluated (a>b) was not true, thus the first value

specified after the question mark was discarded in favor of the second value (the one after the colon) which was b,
with a value of 7.

Comma operator (,)

The comma operator (,) is used to separate two or more expressions that are included where only one expression

is expected. When the set of expressions has to be evaluated for a value, only the rightmost expression is
considered.

For example, the following code:

a = (b=3, b+2);

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

26

 © cplusplus.com 2008. All rights reserved

Would first assign the value 3 to b, and then assign b+2 to variable a. So, at the end, variable a would contain the
value 5 while variable b would contain value 3.

Bitwise Operators (&, |, ^, ~, <<, >>)

Bitwise operators modify variables considering the bit patterns that represent the values they store.

operator asm equivalent description

& AND Bitwise AND

| OR Bitwise Inclusive OR

^ XOR Bitwise Exclusive OR

~ NOT Unary complement (bit inversion)

<< SHL Shift Left

>> SHR Shift Right

Explicit type casting operator

Type casting operators allow you to convert a datum of a given type to another. There are several ways to do this
in C++. The simplest one, which has been inherited from the C language, is to precede the expression to be

converted by the new type enclosed between parentheses (()):

int i;
float f = 3.14;
i = (int) f;

The previous code converts the float number 3.14 to an integer value (3), the remainder is lost. Here, the

typecasting operator was (int). Another way to do the same thing in C++ is using the functional notation:

preceding the expression to be converted by the type and enclosing the expression between parentheses:

i = int (f);

Both ways of type casting are valid in C++.

sizeof()

This operator accepts one parameter, which can be either a type or a variable itself and returns the size in bytes of
that type or object:

a = sizeof (char);

This will assign the value 1 to a because char is a one-byte long type.
The value returned by sizeof is a constant, so it is always determined before program execution.

Other operators

Later in these tutorials, we will see a few more operators, like the ones referring to pointers or the specifics for
object-oriented programming. Each one is treated in its respective section.

Precedence of operators

When writing complex expressions with several operands, we may have some doubts about which operand is
evaluated first and which later. For example, in this expression:

a = 5 + 7 % 2

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

27

 © cplusplus.com 2008. All rights reserved

we may doubt if it really means:

a = 5 + (7 % 2) // with a result of 6, or
a = (5 + 7) % 2 // with a result of 0

The correct answer is the first of the two expressions, with a result of 6. There is an established order with the
priority of each operator, and not only the arithmetic ones (those whose preference come from mathematics) but
for all the operators which can appear in C++. From greatest to lowest priority, the priority order is as follows:

Level Operator Description Grouping

1 :: scope
Left-to-
right

2
() [] . -> ++ -- dynamic_cast static_cast
reinterpret_cast const_cast typeid postfix

Left-to-
right

3

++ -- ~ ! sizeof new delete unary (prefix)

Right-to-
left

* & indirection and reference
(pointers)

+ - unary sign operator

4 (type) type casting
Right-to-
left

5 .* ->* pointer-to-member
Left-to-
right

6 * / % multiplicative
Left-to-
right

7 + - additive
Left-to-
right

8 << >> shift
Left-to-
right

9 < > <= >= relational
Left-to-
right

10 == != equality
Left-to-
right

11 & bitwise AND
Left-to-
right

12 ^ bitwise XOR
Left-to-

right

13 | bitwise OR
Left-to-
right

14 && logical AND
Left-to-
right

15 || logical OR
Left-to-
right

16 ?: conditional
Right-to-
left

17 = *= /= %= += -= >>= <<= &= ^= |= assignment
Right-to-
left

18 , comma
Left-to-
right

Grouping defines the precedence order in which operators are evaluated in the case that there are several
operators of the same level in an expression.

All these precedence levels for operators can be manipulated or become more legible by removing possible
ambiguities using parentheses signs (and), as in this example:

a = 5 + 7 % 2;

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

28

 © cplusplus.com 2008. All rights reserved

might be written either as:

a = 5 + (7 % 2);

or

a = (5 + 7) % 2;

depending on the operation that we want to perform.

So if you want to write complicated expressions and you are not completely sure of the precedence levels, always
include parentheses. It will also become a code easier to read.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

29

 © cplusplus.com 2008. All rights reserved

Basic Input/Output
Until now, the example programs of previous sections provided very little interaction with the user, if any at all.
Using the standard input and output library, we will be able to interact with the user by printing messages on the
screen and getting the user's input from the keyboard.

C++ uses a convenient abstraction called streams to perform input and output operations in sequential media such
as the screen or the keyboard. A stream is an object where a program can either insert or extract characters

to/from it. We do not really need to care about many specifications about the physical media associated with the
stream - we only need to know it will accept or provide characters sequentially.

The standard C++ library includes the header file iostream, where the standard input and output stream objects

are declared.

Standard Output (cout)

By default, the standard output of a program is the screen, and the C++ stream object defined to access it is cout.

cout is used in conjunction with the insertion operator, which is written as << (two "less than" signs).

cout << "Output sentence"; // prints Output sentence on screen
cout << 120; // prints number 120 on screen
cout << x; // prints the content of x on screen

The << operator inserts the data that follows it into the stream preceding it. In the examples above it inserted the

constant string Output sentence, the numerical constant 120 and variable x into the standard output stream cout.
Notice that the sentence in the first instruction is enclosed between double quotes (") because it is a constant
string of characters. Whenever we want to use constant strings of characters we must enclose them between

double quotes (") so that they can be clearly distinguished from variable names. For example, these two sentences

have very different results:

cout << "Hello"; // prints Hello
cout << Hello; // prints the content of Hello variable

The insertion operator (<<) may be used more than once in a single statement:

cout << "Hello, " << "I am " << "a C++ statement";

This last statement would print the message Hello, I am a C++ statement on the screen. The utility of repeating

the insertion operator (<<) is demonstrated when we want to print out a combination of variables and constants or

more than one variable:

cout << "Hello, I am " << age << " years old and my zipcode is " << zipcode;

If we assume the age variable to contain the value 24 and the zipcode variable to contain 90064 the output of the
previous statement would be:

Hello, I am 24 years old and my zipcode is 90064

It is important to notice that cout does not add a line break after its output unless we explicitly indicate it,
therefore, the following statements:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

30

 © cplusplus.com 2008. All rights reserved

cout << "This is a sentence.";
cout << "This is another sentence.";

will be shown on the screen one following the other without any line break between them:

This is a sentence.This is another sentence.

even though we had written them in two different insertions into cout. In order to perform a line break on the

output we must explicitly insert a new-line character into cout. In C++ a new-line character can be specified as \n
(backslash, n):

cout << "First sentence.\n ";
cout << "Second sentence.\nThird sentence.";

This produces the following output:

First sentence.
Second sentence.
Third sentence.

Additionally, to add a new-line, you may also use the endl manipulator. For example:

cout << "First sentence." << endl;
cout << "Second sentence." << endl;

would print out:

First sentence.
Second sentence.

The endl manipulator produces a newline character, exactly as the insertion of '\n' does, but it also has an
additional behavior when it is used with buffered streams: the buffer is flushed. Anyway, cout will be an
unbuffered stream in most cases, so you can generally use both the \n escape character and the endl manipulator

in order to specify a new line without any difference in its behavior.

Standard Input (cin).

The standard input device is usually the keyboard. Handling the standard input in C++ is done by applying the

overloaded operator of extraction (>>) on the cin stream. The operator must be followed by the variable that will

store the data that is going to be extracted from the stream. For example:

int age;
cin >> age;

The first statement declares a variable of type int called age, and the second one waits for an input from cin (the
keyboard) in order to store it in this integer variable.

cin can only process the input from the keyboard once the RETURN key has been pressed. Therefore, even if you
request a single character, the extraction from cin will not process the input until the user presses RETURN after
the character has been introduced.

You must always consider the type of the variable that you are using as a container with cin extractions. If you
request an integer you will get an integer, if you request a character you will get a character and if you request a
string of characters you will get a string of characters.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

31

 © cplusplus.com 2008. All rights reserved

// i/o example

#include <iostream>
using namespace std;

int main ()
{
 int i;
 cout << "Please enter an integer value: ";
 cin >> i;
 cout << "The value you entered is " << i;
 cout << " and its double is " << i*2 << ".\n";
 return 0;
}

Please enter an integer value: 702
The value you entered is 702 and its double is
1404.

The user of a program may be one of the factors that generate errors even in the simplest programs that use cin
(like the one we have just seen). Since if you request an integer value and the user introduces a name (which
generally is a string of characters), the result may cause your program to misoperate since it is not what we were

expecting from the user. So when you use the data input provided by cin extractions you will have to trust that
the user of your program will be cooperative and that he/she will not introduce his/her name or something similar

when an integer value is requested. A little ahead, when we see the stringstream class we will see a possible
solution for the errors that can be caused by this type of user input.

You can also use cin to request more than one datum input from the user:

cin >> a >> b;

is equivalent to:

cin >> a;
cin >> b;

In both cases the user must give two data, one for variable a and another one for variable b that may be separated

by any valid blank separator: a space, a tab character or a newline.

cin and strings

We can use cin to get strings with the extraction operator (>>) as we do with fundamental data type variables:

cin >> mystring;

However, as it has been said, cin extraction stops reading as soon as if finds any blank space character, so in this
case we will be able to get just one word for each extraction. This behavior may or may not be what we want; for
example if we want to get a sentence from the user, this extraction operation would not be useful.

In order to get entire lines, we can use the function getline, which is the more recommendable way to get user

input with cin:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

32

 © cplusplus.com 2008. All rights reserved

// cin with strings
#include <iostream>
#include <string>
using namespace std;

int main ()
{
 string mystr;
 cout << "What's your name? ";
 getline (cin, mystr);
 cout << "Hello " << mystr << ".\n";
 cout << "What is your favorite team? ";
 getline (cin, mystr);
 cout << "I like " << mystr << " too!\n";
 return 0;
}

What's your name? Juan SouliÃ‾Â¿Â½
Hello Juan SouliÃ‾Â¿Â½.
What is your favorite team? The Isotopes
I like The Isotopes too!

Notice how in both calls to getline we used the same string identifier (mystr). What the program does in the

second call is simply to replace the previous content by the new one that is introduced.

stringstream

The standard header file <sstream> defines a class called stringstream that allows a string-based object to be
treated as a stream. This way we can perform extraction or insertion operations from/to strings, which is especially
useful to convert strings to numerical values and vice versa. For example, if we want to extract an integer from a
string we can write:

string mystr ("1204");
int myint;
stringstream(mystr) >> myint;

This declares a string object with a value of "1204", and an int object. Then we use stringstream's constructor

to construct an object of this type from the string object. Because we can use stringstream objects as if they
were streams, we can extract an integer from it as we would have done on cin by applying the extractor operator
(>>) on it followed by a variable of type int.

After this piece of code, the variable myint will contain the numerical value 1204.

// stringstreams
#include <iostream>
#include <string>
#include <sstream>
using namespace std;

int main ()
{
 string mystr;
 float price=0;
 int quantity=0;

 cout << "Enter price: ";
 getline (cin,mystr);
 stringstream(mystr) >> price;
 cout << "Enter quantity: ";
 getline (cin,mystr);
 stringstream(mystr) >> quantity;
 cout << "Total price: " << price*quantity <<
endl;
 return 0;
}

Enter price: 22.25
Enter quantity: 7
Total price: 155.75

In this example, we acquire numeric values from the standard input indirectly. Instead of extracting numeric values

directly from the standard input, we get lines from the standard input (cin) into a string object (mystr), and then
we extract the integer values from this string into a variable of type int (quantity).

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

33

 © cplusplus.com 2008. All rights reserved

Using this method, instead of direct extractions of integer values, we have more control over what happens with
the input of numeric values from the user, since we are separating the process of obtaining input from the user (we
now simply ask for lines) with the interpretation of that input. Therefore, this method is usually preferred to get
numerical values from the user in all programs that are intensive in user input.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

34

 © cplusplus.com 2008. All rights reserved

Control Structures

Control Structures
A program is usually not limited to a linear sequence of instructions. During its process it may bifurcate, repeat

code or take decisions. For that purpose, C++ provides control structures that serve to specify what has to be done

by our program, when and under which circumstances.

With the introduction of control structures we are going to have to introduce a new concept: the compound-

statement or block. A block is a group of statements which are separated by semicolons (;) like all C++
statements, but grouped together in a block enclosed in braces: { }:

{ statement1; statement2; statement3; }

Most of the control structures that we will see in this section require a generic statement as part of its syntax. A
statement can be either a simple statement (a simple instruction ending with a semicolon) or a compound
statement (several instructions grouped in a block), like the one just described. In the case that we want the

statement to be a simple statement, we do not need to enclose it in braces ({}). But in the case that we want the
statement to be a compound statement it must be enclosed between braces ({}), forming a block.

Conditional structure: if and else

The if keyword is used to execute a statement or block only if a condition is fulfilled. Its form is:

if (condition) statement

Where condition is the expression that is being evaluated. If this condition is true, statement is executed. If it is
false, statement is ignored (not executed) and the program continues right after this conditional structure.

For example, the following code fragment prints x is 100 only if the value stored in the x variable is indeed 100:

if (x == 100)
 cout << "x is 100";

If we want more than a single statement to be executed in case that the condition is true we can specify a block
using braces { }:

if (x == 100)
{
 cout << "x is ";
 cout << x;
}

We can additionally specify what we want to happen if the condition is not fulfilled by using the keyword else. Its
form used in conjunction with if is:

if (condition) statement1 else statement2

For example:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

35

 © cplusplus.com 2008. All rights reserved

if (x == 100)
 cout << "x is 100";
else
 cout << "x is not 100";

prints on the screen x is 100 if indeed x has a value of 100, but if it has not -and only if not- it prints out x is
not 100.

The if + else structures can be concatenated with the intention of verifying a range of values. The following
example shows its use telling if the value currently stored in x is positive, negative or none of them (i.e. zero):

if (x > 0)
 cout << "x is positive";
else if (x < 0)
 cout << "x is negative";
else
 cout << "x is 0";

Remember that in case that we want more than a single statement to be executed, we must group them in a block

by enclosing them in braces { }.

Iteration structures (loops)

Loops have as purpose to repeat a statement a certain number of times or while a condition is fulfilled.

The while loop
Its format is:

while (expression) statement

and its functionality is simply to repeat statement while the condition set in expression is true.
For example, we are going to make a program to countdown using a while-loop:

// custom countdown using while

#include <iostream>
using namespace std;

int main ()
{
 int n;
 cout << "Enter the starting number > ";
 cin >> n;

 while (n>0) {
 cout << n << ", ";
 --n;
 }

 cout << "FIRE!\n";
 return 0;
}

Enter the starting number > 8
8, 7, 6, 5, 4, 3, 2, 1, FIRE!

When the program starts the user is prompted to insert a starting number for the countdown. Then the while loop

begins, if the value entered by the user fulfills the condition n>0 (that n is greater than zero) the block that follows
the condition will be executed and repeated while the condition (n>0) remains being true.

The whole process of the previous program can be interpreted according to the following script (beginning in
main):

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

36

 © cplusplus.com 2008. All rights reserved

1. User assigns a value to n

2. The while condition is checked (n>0). At this point there are two posibilities:
* condition is true: statement is executed (to step 3)
* condition is false: ignore statement and continue after it (to step 5)

3. Execute statement:
cout << n << ", ";
--n;
(prints the value of n on the screen and decreases n by 1)

4. End of block. Return automatically to step 2

5. Continue the program right after the block: print FIRE! and end program.

When creating a while-loop, we must always consider that it has to end at some point, therefore we must provide
within the block some method to force the condition to become false at some point, otherwise the loop will

continue looping forever. In this case we have included --n; that decreases the value of the variable that is being
evaluated in the condition (n) by one - this will eventually make the condition (n>0) to become false after a certain

number of loop iterations: to be more specific, when n becomes 0, that is where our while-loop and our countdown
end.

Of course this is such a simple action for our computer that the whole countdown is performed instantly without
any practical delay between numbers.

The do-while loop

Its format is:

do statement while (condition);

Its functionality is exactly the same as the while loop, except that condition in the do-while loop is evaluated after
the execution of statement instead of before, granting at least one execution of statement even if condition is
never fulfilled. For example, the following example program echoes any number you enter until you enter 0.

// number echoer

#include <iostream>
using namespace std;

int main ()
{
 unsigned long n;
 do {
 cout << "Enter number (0 to end): ";
 cin >> n;
 cout << "You entered: " << n << "\n";
 } while (n != 0);
 return 0;
}

Enter number (0 to end): 12345
You entered: 12345
Enter number (0 to end): 160277
You entered: 160277
Enter number (0 to end): 0
You entered: 0

The do-while loop is usually used when the condition that has to determine the end of the loop is determined within

the loop statement itself, like in the previous case, where the user input within the block is what is used to

determine if the loop has to end. In fact if you never enter the value 0 in the previous example you can be

prompted for more numbers forever.

The for loop

Its format is:

for (initialization; condition; increase) statement;

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

37

 © cplusplus.com 2008. All rights reserved

and its main function is to repeat statement while condition remains true, like the while loop. But in addition, the

for loop provides specific locations to contain an initialization statement and an increase statement. So this

loop is specially designed to perform a repetitive action with a counter which is initialized and increased on each
iteration.

It works in the following way:

1. initialization is executed. Generally it is an initial value setting for a counter variable. This is executed
only once.

2. condition is checked. If it is true the loop continues, otherwise the loop ends and statement is skipped
(not executed).

3. statement is executed. As usual, it can be either a single statement or a block enclosed in braces { }.

4. finally, whatever is specified in the increase field is executed and the loop gets back to step 2.

Here is an example of countdown using a for loop:

// countdown using a for loop
#include <iostream>
using namespace std;
int main ()
{
 for (int n=10; n>0; n--) {
 cout << n << ", ";
 }
 cout << "FIRE!\n";
 return 0;
}

10, 9, 8, 7, 6, 5, 4, 3, 2, 1, FIRE!

The initialization and increase fields are optional. They can remain empty, but in all cases the semicolon signs

between them must be written. For example we could write: for (;n<10;) if we wanted to specify no initialization
and no increase; or for (;n<10;n++) if we wanted to include an increase field but no initialization (maybe because

the variable was already initialized before).

Optionally, using the comma operator (,) we can specify more than one expression in any of the fields included in

a for loop, like in initialization, for example. The comma operator (,) is an expression separator, it serves to
separate more than one expression where only one is generally expected. For example, suppose that we wanted to
initialize more than one variable in our loop:

for (n=0, i=100 ; n!=i ; n++, i--)
{
 // whatever here...
}

This loop will execute for 50 times if neither n or i are modified within the loop:

n starts with a value of 0, and i with 100, the condition is n!=i (that n is not equal to i). Because n is increased by
one and i decreased by one, the loop's condition will become false after the 50th loop, when both n and i will be
equal to 50.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

38

 © cplusplus.com 2008. All rights reserved

Jump statements.

The break statement

Using break we can leave a loop even if the condition for its end is not fulfilled. It can be used to end an infinite
loop, or to force it to end before its natural end. For example, we are going to stop the count down before its
natural end (maybe because of an engine check failure?):

// break loop example

#include <iostream>
using namespace std;

int main ()
{
 int n;
 for (n=10; n>0; n--)
 {
 cout << n << ", ";
 if (n==3)
 {
 cout << "countdown aborted!";
 break;
 }
 }
 return 0;
}

10, 9, 8, 7, 6, 5, 4, 3, countdown aborted!

The continue statement

The continue statement causes the program to skip the rest of the loop in the current iteration as if the end of the

statement block had been reached, causing it to jump to the start of the following iteration. For example, we are
going to skip the number 5 in our countdown:

// continue loop example
#include <iostream>
using namespace std;

int main ()
{
 for (int n=10; n>0; n--) {
 if (n==5) continue;
 cout << n << ", ";
 }
 cout << "FIRE!\n";
 return 0;
}

10, 9, 8, 7, 6, 4, 3, 2, 1, FIRE!

The goto statement
goto allows to make an absolute jump to another point in the program. You should use this feature with caution

since its execution causes an unconditional jump ignoring any type of nesting limitations.

The destination point is identified by a label, which is then used as an argument for the goto statement. A label is

made of a valid identifier followed by a colon (:).

Generally speaking, this instruction has no concrete use in structured or object oriented programming aside from
those that low-level programming fans may find for it. For example, here is our countdown loop using goto:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

39

 © cplusplus.com 2008. All rights reserved

// goto loop example

#include <iostream>
using namespace std;

int main ()
{
 int n=10;
 loop:
 cout << n << ", ";
 n--;
 if (n>0) goto loop;
 cout << "FIRE!\n";
 return 0;
}

10, 9, 8, 7, 6, 5, 4, 3, 2, 1, FIRE!

The exit function

exit is a function defined in the cstdlib library.

The purpose of exit is to terminate the current program with a specific exit code. Its prototype is:

void exit (int exitcode);

The exitcode is used by some operating systems and may be used by calling programs. By convention, an exit

code of 0 means that the program finished normally and any other value means that some error or unexpected

results happened.

The selective structure: switch.

The syntax of the switch statement is a bit peculiar. Its objective is to check several possible constant values for an

expression. Something similar to what we did at the beginning of this section with the concatenation of several if

and else if instructions. Its form is the following:

switch (expression)
{
 case constant1:
 group of statements 1;
 break;
 case constant2:
 group of statements 2;
 break;
 .
 .
 .
 default:
 default group of statements
}

It works in the following way: switch evaluates expression and checks if it is equivalent to constant1, if it is, it

executes group of statements 1 until it finds the break statement. When it finds this break statement the

program jumps to the end of the switch selective structure.

If expression was not equal to constant1 it will be checked against constant2. If it is equal to this, it will execute
group of statements 2 until a break keyword is found, and then will jump to the end of the switch selective
structure.

Finally, if the value of expression did not match any of the previously specified constants (you can include as

many case labels as values you want to check), the program will execute the statements included after the

default: label, if it exists (since it is optional).

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

40

 © cplusplus.com 2008. All rights reserved

Both of the following code fragments have the same behavior:

switch example if-else equivalent

switch (x) {
 case 1:
 cout << "x is 1";
 break;
 case 2:
 cout << "x is 2";
 break;
 default:
 cout << "value of x unknown";
 }

if (x == 1) {
 cout << "x is 1";
 }
else if (x == 2) {
 cout << "x is 2";
 }
else {
 cout << "value of x unknown";
 }

The switch statement is a bit peculiar within the C++ language because it uses labels instead of blocks. This

forces us to put break statements after the group of statements that we want to be executed for a specific

condition. Otherwise the remainder statements -including those corresponding to other labels- will also be
executed until the end of the switch selective block or a break statement is reached.

For example, if we did not include a break statement after the first group for case one, the program will not

automatically jump to the end of the switch selective block and it would continue executing the rest of statements

until it reaches either a break instruction or the end of the switch selective block. This makes unnecessary to

include braces { } surrounding the statements for each of the cases, and it can also be useful to execute the same

block of instructions for different possible values for the expression being evaluated. For example:

switch (x) {
 case 1:
 case 2:
 case 3:
 cout << "x is 1, 2 or 3";
 break;
 default:
 cout << "x is not 1, 2 nor 3";
 }

Notice that switch can only be used to compare an expression against constants. Therefore we cannot put variables

as labels (for example case n: where n is a variable) or ranges (case (1..3):) because they are not valid C++
constants.

If you need to check ranges or values that are not constants, use a concatenation of if and else if statements.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

41

 © cplusplus.com 2008. All rights reserved

Functions (I)
Using functions we can structure our programs in a more modular way, accessing all the potential that structured

programming can offer to us in C++.

A function is a group of statements that is executed when it is called from some point of the program. The
following is its format:

type name (parameter1, parameter2, ...) { statements }

where:

• type is the data type specifier of the data returned by the function.

• name is the identifier by which it will be possible to call the function.

• parameters (as many as needed): Each parameter consists of a data type specifier followed by an

identifier, like any regular variable declaration (for example: int x) and which acts within the function as
a regular local variable. They allow to pass arguments to the function when it is called. The different
parameters are separated by commas.

• statements is the function's body. It is a block of statements surrounded by braces { }.

Here you have the first function example:

// function example
#include <iostream>
using namespace std;

int addition (int a, int b)
{
 int r;
 r=a+b;
 return (r);
}

int main ()
{
 int z;
 z = addition (5,3);
 cout << "The result is " << z;
 return 0;
}

The result is 8

In order to examine this code, first of all remember something said at the beginning of this tutorial: a C++
program always begins its execution by the main function. So we will begin there.

We can see how the main function begins by declaring the variable z of type int. Right after that, we see a call to
a function called addition. Paying attention we will be able to see the similarity between the structure of the call

to the function and the declaration of the function itself some code lines above:

The parameters and arguments have a clear correspondence. Within the main function we called to addition
passing two values: 5 and 3, that correspond to the int a and int b parameters declared for function addition.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

42

 © cplusplus.com 2008. All rights reserved

At the point at which the function is called from within main, the control is lost by main and passed to function
addition. The value of both arguments passed in the call (5 and 3) are copied to the local variables int a and int
b within the function.

Function addition declares another local variable (int r), and by means of the expression r=a+b, it assigns to r
the result of a plus b. Because the actual parameters passed for a and b are 5 and 3 respectively, the result is 8.

The following line of code:

return (r);

finalizes function addition, and returns the control back to the function that called it in the first place (in this case,

main). At this moment the program follows it regular course from the same point at which it was interrupted by the

call to addition. But additionally, because the return statement in function addition specified a value: the
content of variable r (return (r);), which at that moment had a value of 8. This value becomes the value of

evaluating the function call.

So being the value returned by a function the value given to the function call itself when it is evaluated, the

variable z will be set to the value returned by addition (5, 3), that is 8. To explain it another way, you can
imagine that the call to a function (addition (5,3)) is literally replaced by the value it returns (8).

The following line of code in main is:

cout << "The result is " << z;

That, as you may already expect, produces the printing of the result on the screen.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

43

 © cplusplus.com 2008. All rights reserved

Scope of variables

The scope of variables declared within a function or any other inner block is only their own function or their own

block and cannot be used outside of them. For example, in the previous example it would have been impossible to

use the variables a, b or r directly in function main since they were variables local to function addition. Also, it
would have been impossible to use the variable z directly within function addition, since this was a variable local
to the function main.

Therefore, the scope of local variables is limited to the same block level in which they are declared. Nevertheless,
we also have the possibility to declare global variables; These are visible from any point of the code, inside and
outside all functions. In order to declare global variables you simply have to declare the variable outside any
function or block; that means, directly in the body of the program.

And here is another example about functions:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

44

 © cplusplus.com 2008. All rights reserved

// function example
#include <iostream>
using namespace std;

int subtraction (int a, int b)
{
 int r;
 r=a-b;
 return (r);
}

int main ()
{
 int x=5, y=3, z;
 z = subtraction (7,2);
 cout << "The first result is " << z << '\n';
 cout << "The second result is " << subtraction (7,2) << '\n';
 cout << "The third result is " << subtraction (x,y) << '\n';
 z= 4 + subtraction (x,y);
 cout << "The fourth result is " << z << '\n';
 return 0;
}

The first result is 5
The second result is 5
The third result is 2
The fourth result is 6

In this case we have created a function called subtraction. The only thing that this function does is to subtract
both passed parameters and to return the result.

Nevertheless, if we examine function main we will see that we have made several calls to function subtraction.
We have used some different calling methods so that you see other ways or moments when a function can be
called.

In order to fully understand these examples you must consider once again that a call to a function could be
replaced by the value that the function call itself is going to return. For example, the first case (that you should
already know because it is the same pattern that we have used in previous examples):

z = subtraction (7,2);
cout << "The first result is " << z;

If we replace the function call by the value it returns (i.e., 5), we would have:

z = 5;
cout << "The first result is " << z;

As well as

cout << "The second result is " << subtraction (7,2);

has the same result as the previous call, but in this case we made the call to subtraction directly as an insertion
parameter for cout. Simply consider that the result is the same as if we had written:

cout << "The second result is " << 5;

since 5 is the value returned by subtraction (7,2).

In the case of:

cout << "The third result is " << subtraction (x,y);

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

45

 © cplusplus.com 2008. All rights reserved

The only new thing that we introduced is that the parameters of subtraction are variables instead of constants.
That is perfectly valid. In this case the values passed to function subtraction are the values of x and y, that are 5
and 3 respectively, giving 2 as result.

The fourth case is more of the same. Simply note that instead of:

z = 4 + subtraction (x,y);

we could have written:

z = subtraction (x,y) + 4;

with exactly the same result. I have switched places so you can see that the semicolon sign (;) goes at the end of
the whole statement. It does not necessarily have to go right after the function call. The explanation might be once
again that you imagine that a function can be replaced by its returned value:

z = 4 + 2;
z = 2 + 4;

Functions with no type. The use of void.

If you remember the syntax of a function declaration:

type name (argument1, argument2 ...) statement

you will see that the declaration begins with a type, that is the type of the function itself (i.e., the type of the
datum that will be returned by the function with the return statement). But what if we want to return no value?

Imagine that we want to make a function just to show a message on the screen. We do not need it to return any

value. In this case we should use the void type specifier for the function. This is a special specifier that indicates
absence of type.

// void function example
#include <iostream>
using namespace std;

void printmessage ()
{
 cout << "I'm a function!";
}

int main ()
{
 printmessage ();
 return 0;
}

I'm a function!

void can also be used in the function's parameter list to explicitly specify that we want the function to take no

actual parameters when it is called. For example, function printmessage could have been declared as:

void printmessage (void)
{
 cout << "I'm a function!";
}

Although it is optional to specify void in the parameter list. In C++, a parameter list can simply be left blank if we

want a function with no parameters.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

46

 © cplusplus.com 2008. All rights reserved

What you must always remember is that the format for calling a function includes specifying its name and
enclosing its parameters between parentheses. The non-existence of parameters does not exempt us from the
obligation to write the parentheses. For that reason the call to printmessage is:

printmessage ();

The parentheses clearly indicate that this is a call to a function and not the name of a variable or some other C++
statement. The following call would have been incorrect:

printmessage;

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

47

 © cplusplus.com 2008. All rights reserved

Functions (II)

Arguments passed by value and by reference.

Until now, in all the functions we have seen, the arguments passed to the functions have been passed by value.
This means that when calling a function with parameters, what we have passed to the function were copies of their

values but never the variables themselves. For example, suppose that we called our first function addition using
the following code:

int x=5, y=3, z;
z = addition (x , y);

What we did in this case was to call to function addition passing the values of x and y, i.e. 5 and 3 respectively, but
not the variables x and y themselves.

This way, when the function addition is called, the value of its local variables a and b become 5 and 3 respectively,
but any modification to either a or b within the function addition will not have any effect in the values of x and y
outside it, because variables x and y were not themselves passed to the function, but only copies of their values at

the moment the function was called.

But there might be some cases where you need to manipulate from inside a function the value of an external
variable. For that purpose we can use arguments passed by reference, as in the function duplicate of the following
example:

// passing parameters by reference
#include <iostream>
using namespace std;

void duplicate (int& a, int& b, int& c)
{
 a*=2;
 b*=2;
 c*=2;
}

int main ()
{
 int x=1, y=3, z=7;
 duplicate (x, y, z);
 cout << "x=" << x << ", y=" << y << ", z=" << z;
 return 0;
}

x=2, y=6, z=14

The first thing that should call your attention is that in the declaration of duplicate the type of each parameter

was followed by an ampersand sign (&). This ampersand is what specifies that their corresponding arguments are

to be passed by reference instead of by value.

When a variable is passed by reference we are not passing a copy of its value, but we are somehow passing the
variable itself to the function and any modification that we do to the local variables will have an effect in their
counterpart variables passed as arguments in the call to the function.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

48

 © cplusplus.com 2008. All rights reserved

To explain it in another way, we associate a, b and c with the arguments passed on the function call (x, y and z)
and any change that we do on a within the function will affect the value of x outside it. Any change that we do on b
will affect y, and the same with c and z.

That is why our program's output, that shows the values stored in x, y and z after the call to duplicate, shows the
values of all the three variables of main doubled.

If when declaring the following function:

void duplicate (int& a, int& b, int& c)

we had declared it this way:

void duplicate (int a, int b, int c)

i.e., without the ampersand signs (&), we would have not passed the variables by reference, but a copy of their

values instead, and therefore, the output on screen of our program would have been the values of x, y and z
without having been modified.

Passing by reference is also an effective way to allow a function to return more than one value. For example, here
is a function that returns the previous and next numbers of the first parameter passed.

// more than one returning value
#include <iostream>
using namespace std;

void prevnext (int x, int& prev, int& next)
{
 prev = x-1;
 next = x+1;
}

int main ()
{
 int x=100, y, z;
 prevnext (x, y, z);
 cout << "Previous=" << y << ", Next=" << z;
 return 0;
}

Previous=99, Next=101

Default values in parameters.

When declaring a function we can specify a default value for each of the last parameters. This value will be used if
the corresponding argument is left blank when calling to the function. To do that, we simply have to use the
assignment operator and a value for the arguments in the function declaration. If a value for that parameter is not
passed when the function is called, the default value is used, but if a value is specified this default value is ignored
and the passed value is used instead. For example:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

49

 © cplusplus.com 2008. All rights reserved

// default values in functions
#include <iostream>
using namespace std;

int divide (int a, int b=2)
{
 int r;
 r=a/b;
 return (r);
}

int main ()
{
 cout << divide (12);
 cout << endl;
 cout << divide (20,4);
 return 0;
}

6
5

As we can see in the body of the program there are two calls to function divide. In the first one:

divide (12)

we have only specified one argument, but the function divide allows up to two. So the function divide has
assumed that the second parameter is 2 since that is what we have specified to happen if this parameter was not

passed (notice the function declaration, which finishes with int b=2, not just int b). Therefore the result of this
function call is 6 (12/2).

In the second call:

divide (20,4)

there are two parameters, so the default value for b (int b=2) is ignored and b takes the value passed as
argument, that is 4, making the result returned equal to 5 (20/4).

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

50

 © cplusplus.com 2008. All rights reserved

Overloaded functions.

In C++ two different functions can have the same name if their parameter types or number are different. That
means that you can give the same name to more than one function if they have either a different number of
parameters or different types in their parameters. For example:

// overloaded function
#include <iostream>
using namespace std;

int operate (int a, int b)
{
 return (a*b);
}

float operate (float a, float b)
{
 return (a/b);
}

int main ()
{
 int x=5,y=2;
 float n=5.0,m=2.0;
 cout << operate (x,y);
 cout << "\n";
 cout << operate (n,m);
 cout << "\n";
 return 0;
}

10
2.5

In this case we have defined two functions with the same name, operate, but one of them accepts two parameters

of type int and the other one accepts them of type float. The compiler knows which one to call in each case by

examining the types passed as arguments when the function is called. If it is called with two ints as its arguments

it calls to the function that has two int parameters in its prototype and if it is called with two floats it will call to

the one which has two float parameters in its prototype.

In the first call to operate the two arguments passed are of type int, therefore, the function with the first
prototype is called; This function returns the result of multiplying both parameters. While the second call passes

two arguments of type float, so the function with the second prototype is called. This one has a different
behavior: it divides one parameter by the other. So the behavior of a call to operate depends on the type of the
arguments passed because the function has been overloaded.

Notice that a function cannot be overloaded only by its return type. At least one of its parameters must have a
different type.

inline functions.

The inline specifier indicates the compiler that inline substitution is preferred to the usual function call mechanism

for a specific function. This does not change the behavior of a function itself, but is used to suggest to the compiler
that the code generated by the function body is inserted at each point the function is called, instead of being
inserted only once and perform a regular call to it, which generally involves some additional overhead in running
time.

The format for its declaration is:

inline type name (arguments ...) { instructions ... }

and the call is just like the call to any other function. You do not have to include the inline keyword when calling
the function, only in its declaration.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

51

 © cplusplus.com 2008. All rights reserved

Most compilers already optimize code to generate inline functions when it is more convenient. This specifier only
indicates the compiler that inline is preferred for this function.

Recursivity.

Recursivity is the property that functions have to be called by themselves. It is useful for many tasks, like sorting
or calculate the factorial of numbers. For example, to obtain the factorial of a number (n!) the mathematical
formula would be:
n! = n * (n-1) * (n-2) * (n-3) ... * 1

more concretely, 5! (factorial of 5) would be:

5! = 5 * 4 * 3 * 2 * 1 = 120

and a recursive function to calculate this in C++ could be:

// factorial calculator
#include <iostream>
using namespace std;

long factorial (long a)
{
 if (a > 1)
 return (a * factorial (a-1));
 else
 return (1);
}

int main ()
{
 long number;
 cout << "Please type a number: ";
 cin >> number;
 cout << number << "! = " << factorial (number);
 return 0;
}

Please type a number: 9
9! = 362880

Notice how in function factorial we included a call to itself, but only if the argument passed was greater than 1,

since otherwise the function would perform an infinite recursive loop in which once it arrived to 0 it would continue
multiplying by all the negative numbers (probably provoking a stack overflow error on runtime).

This function has a limitation because of the data type we used in its design (long) for more simplicity. The results

given will not be valid for values much greater than 10! or 15!, depending on the system you compile it.

Declaring functions.

Until now, we have defined all of the functions before the first appearance of calls to them in the source code.

These calls were generally in function main which we have always left at the end of the source code. If you try to

repeat some of the examples of functions described so far, but placing the function main before any of the other
functions that were called from within it, you will most likely obtain compiling errors. The reason is that to be able
to call a function it must have been declared in some earlier point of the code, like we have done in all our
examples.

But there is an alternative way to avoid writing the whole code of a function before it can be used in main or in
some other function. This can be achieved by declaring just a prototype of the function before it is used, instead of
the entire definition. This declaration is shorter than the entire definition, but significant enough for the compiler to
determine its return type and the types of its parameters.

Its form is:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

52

 © cplusplus.com 2008. All rights reserved

type name (argument_type1, argument_type2, ...);

It is identical to a function definition, except that it does not include the body of the function itself (i.e., the

function statements that in normal definitions are enclosed in braces { }) and instead of that we end the prototype
declaration with a mandatory semicolon (;).

The parameter enumeration does not need to include the identifiers, but only the type specifiers. The inclusion of a
name for each parameter as in the function definition is optional in the prototype declaration. For example, we can
declare a function called protofunction with two int parameters with any of the following declarations:

int protofunction (int first, int second);
int protofunction (int, int);

Anyway, including a name for each variable makes the prototype more legible.

// declaring functions prototypes
#include <iostream>
using namespace std;

void odd (int a);
void even (int a);

int main ()
{
 int i;
 do {
 cout << "Type a number (0 to exit): ";
 cin >> i;
 odd (i);
 } while (i!=0);
 return 0;
}

void odd (int a)
{
 if ((a%2)!=0) cout << "Number is odd.\n";
 else even (a);
}

void even (int a)
{
 if ((a%2)==0) cout << "Number is even.\n";
 else odd (a);
}

Type a number (0 to exit): 9
Number is odd.
Type a number (0 to exit): 6
Number is even.
Type a number (0 to exit): 1030
Number is even.
Type a number (0 to exit): 0
Number is even.

This example is indeed not an example of efficiency. I am sure that at this point you can already make a program
with the same result, but using only half of the code lines that have been used in this example. Anyway this
example illustrates how prototyping works. Moreover, in this concrete example the prototyping of at least one of
the two functions is necessary in order to compile the code without errors.

The first things that we see are the declaration of functions odd and even:

void odd (int a);
void even (int a);

This allows these functions to be used before they are defined, for example, in main, which now is located where
some people find it to be a more logical place for the start of a program: the beginning of the source code.

Anyway, the reason why this program needs at least one of the functions to be declared before it is defined is

because in odd there is a call to even and in even there is a call to odd. If none of the two functions had been

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

53

 © cplusplus.com 2008. All rights reserved

previously declared, a compilation error would happen, since either odd would not not be visible from even
(because it has still not been declared), or even would not be visible from odd (for the same reason).

Having the prototype of all functions together in the same place within the source code is found practical by some
programmers, and this can be easily achieved by declaring all functions prototypes at the beginning of a program.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

54

 © cplusplus.com 2008. All rights reserved

Compound data types

Arrays
An array is a series of elements of the same type placed in contiguous memory locations that can be individually

referenced by adding an index to a unique identifier.

That means that, for example, we can store 5 values of type int in an array without having to declare 5 different
variables, each one with a different identifier. Instead of that, using an array we can store 5 different values of the
same type, int for example, with a unique identifier.

For example, an array to contain 5 integer values of type int called billy could be represented like this:

where each blank panel represents an element of the array, that in this case are integer values of type int. These
elements are numbered from 0 to 4 since in arrays the first index is always 0, independently of its length.

Like a regular variable, an array must be declared before it is used. A typical declaration for an array in C++ is:

type name [elements];

where type is a valid type (like int, float...), name is a valid identifier and the elements field (which is always
enclosed in square brackets []), specifies how many of these elements the array has to contain.

Therefore, in order to declare an array called billy as the one shown in the above diagram it is as simple as:

int billy [5];

NOTE: The elements field within brackets [] which represents the number of elements the array is going to hold,

must be a constant value, since arrays are blocks of non-dynamic memory whose size must be determined before
execution. In order to create arrays with a variable length dynamic memory is needed, which is explained later in
these tutorials.

Initializing arrays.

When declaring a regular array of local scope (within a function, for example), if we do not specify otherwise, its
elements will not be initialized to any value by default, so their content will be undetermined until we store some
value in them. The elements of global and static arrays, on the other hand, are automatically initialized with their
default values, which for all fundamental types this means they are filled with zeros.

In both cases, local and global, when we declare an array, we have the possibility to assign initial values to each

one of its elements by enclosing the values in braces { }. For example:

int billy [5] = { 16, 2, 77, 40, 12071 };

This declaration would have created an array like this:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

55

 © cplusplus.com 2008. All rights reserved

The amount of values between braces { } must not be larger than the number of elements that we declare for the

array between square brackets []. For example, in the example of array billy we have declared that it has 5
elements and in the list of initial values within braces { } we have specified 5 values, one for each element.

When an initialization of values is provided for an array, C++ allows the possibility of leaving the square brackets

empty []. In this case, the compiler will assume a size for the array that matches the number of values included

between braces { }:

int billy [] = { 16, 2, 77, 40, 12071 };

After this declaration, array billy would be 5 ints long, since we have provided 5 initialization values.

Accessing the values of an array.

In any point of a program in which an array is visible, we can access the value of any of its elements individually as
if it was a normal variable, thus being able to both read and modify its value. The format is as simple as:

name[index]

Following the previous examples in which billy had 5 elements and each of those elements was of type int, the
name which we can use to refer to each element is the following:

For example, to store the value 75 in the third element of billy, we could write the following statement:

billy[2] = 75;

and, for example, to pass the value of the third element of billy to a variable called a, we could write:

a = billy[2];

Therefore, the expression billy[2] is for all purposes like a variable of type int.

Notice that the third element of billy is specified billy[2], since the first one is billy[0], the second one is
billy[1], and therefore, the third one is billy[2]. By this same reason, its last element is billy[4]. Therefore, if
we write billy[5], we would be accessing the sixth element of billy and therefore exceeding the size of the array.

In C++ it is syntactically correct to exceed the valid range of indices for an array. This can create problems, since
accessing out-of-range elements do not cause compilation errors but can cause runtime errors. The reason why
this is allowed will be seen further ahead when we begin to use pointers.

At this point it is important to be able to clearly distinguish between the two uses that brackets [] have related to
arrays. They perform two different tasks: one is to specify the size of arrays when they are declared; and the

second one is to specify indices for concrete array elements. Do not confuse these two possible uses of brackets [
] with arrays.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

56

 © cplusplus.com 2008. All rights reserved

int billy[5]; // declaration of a new array
billy[2] = 75; // access to an element of the array.

If you read carefully, you will see that a type specifier always precedes a variable or array declaration, while it
never precedes an access.

Some other valid operations with arrays:

billy[0] = a;
billy[a] = 75;
b = billy [a+2];
billy[billy[a]] = billy[2] + 5;

// arrays example
#include <iostream>
using namespace std;

int billy [] = {16, 2, 77, 40, 12071};
int n, result=0;

int main ()
{
 for (n=0 ; n<5 ; n++)
 {
 result += billy[n];
 }
 cout << result;
 return 0;
}

12206

Multidimensional arrays

Multidimensional arrays can be described as "arrays of arrays". For example, a bidimensional array can be
imagined as a bidimensional table made of elements, all of them of a same uniform data type.

jimmy represents a bidimensional array of 3 per 5 elements of type int. The way to declare this array in C++
would be:

int jimmy [3][5];

and, for example, the way to reference the second element vertically and fourth horizontally in an expression
would be:

jimmy[1][3]

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

57

 © cplusplus.com 2008. All rights reserved

(remember that array indices always begin by zero).

Multidimensional arrays are not limited to two indices (i.e., two dimensions). They can contain as many indices as
needed. But be careful! The amount of memory needed for an array rapidly increases with each dimension. For
example:

char century [100][365][24][60][60];

declares an array with a char element for each second in a century, that is more than 3 billion chars. So this

declaration would consume more than 3 gigabytes of memory!

Multidimensional arrays are just an abstraction for programmers, since we can obtain the same results with a
simple array just by putting a factor between its indices:

int jimmy [3][5]; // is equivalent to
int jimmy [15]; // (3 * 5 = 15)

With the only difference that with multidimensional arrays the compiler remembers the depth of each imaginary

dimension for us. Take as example these two pieces of code, with both exactly the same result. One uses a
bidimensional array and the other one uses a simple array:

multidimensional array pseudo-multidimensional array

#define WIDTH 5
#define HEIGHT 3

int jimmy [HEIGHT][WIDTH];
int n,m;

int main ()
{
 for (n=0;n<HEIGHT;n++)
 for (m=0;m<WIDTH;m++)
 {
 jimmy[n][m]=(n+1)*(m+1);
 }
 return 0;
}

#define WIDTH 5
#define HEIGHT 3

int jimmy [HEIGHT * WIDTH];
int n,m;

int main ()
{
 for (n=0;n<HEIGHT;n++)
 for (m=0;m<WIDTH;m++)
 {
 jimmy[n*WIDTH+m]=(n+1)*(m+1);
 }
 return 0;
}

None of the two source codes above produce any output on the screen, but both assign values to the memory
block called jimmy in the following way:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

58

 © cplusplus.com 2008. All rights reserved

We have used "defined constants" (#define) to simplify possible future modifications of the program. For example,

in case that we decided to enlarge the array to a height of 4 instead of 3 it could be done simply by changing the
line:

#define HEIGHT 3

to:

#define HEIGHT 4

with no need to make any other modifications to the program.

Arrays as parameters

At some moment we may need to pass an array to a function as a parameter. In C++ it is not possible to pass a
complete block of memory by value as a parameter to a function, but we are allowed to pass its address. In
practice this has almost the same effect and it is a much faster and more efficient operation.

In order to accept arrays as parameters the only thing that we have to do when declaring the function is to specify

in its parameters the element type of the array, an identifier and a pair of void brackets []. For example, the

following function:

void procedure (int arg[])

accepts a parameter of type "array of int" called arg. In order to pass to this function an array declared as:

int myarray [40];

it would be enough to write a call like this:

procedure (myarray);

Here you have a complete example:

// arrays as parameters
#include <iostream>
using namespace std;

void printarray (int arg[], int length) {
 for (int n=0; n<length; n++)
 cout << arg[n] << " ";
 cout << "\n";
}

int main ()
{
 int firstarray[] = {5, 10, 15};
 int secondarray[] = {2, 4, 6, 8, 10};
 printarray (firstarray,3);
 printarray (secondarray,5);
 return 0;
}

5 10 15
2 4 6 8 10

As you can see, the first parameter (int arg[]) accepts any array whose elements are of type int, whatever its
length. For that reason we have included a second parameter that tells the function the length of each array that

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

59

 © cplusplus.com 2008. All rights reserved

we pass to it as its first parameter. This allows the for loop that prints out the array to know the range to iterate in
the passed array without going out of range.

In a function declaration it is also possible to include multidimensional arrays. The format for a tridimensional array
parameter is:

base_type[][depth][depth]

for example, a function with a multidimensional array as argument could be:

void procedure (int myarray[][3][4])

Notice that the first brackets [] are left blank while the following ones are not. This is so because the compiler

must be able to determine within the function which is the depth of each additional dimension.

Arrays, both simple or multidimensional, passed as function parameters are a quite common source of errors for
novice programmers. I recommend the reading of the chapter about Pointers for a better understanding on how
arrays operate.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

60

 © cplusplus.com 2008. All rights reserved

Character Sequences
As you may already know, the C++ Standard Library implements a powerful string class, which is very useful to
handle and manipulate strings of characters. However, because strings are in fact sequences of characters, we can

represent them also as plain arrays of char elements.

For example, the following array:

char jenny [20];

is an array that can store up to 20 elements of type char. It can be represented as:

Therefore, in this array, in theory, we can store sequences of characters up to 20 characters long. But we can also

store shorter sequences. For example, jenny could store at some point in a program either the sequence "Hello"
or the sequence "Merry christmas", since both are shorter than 20 characters.

Therefore, since the array of characters can store shorter sequences than its total length, a special character is

used to signal the end of the valid sequence: the null character, whose literal constant can be written as '\0'
(backslash, zero).

Our array of 20 elements of type char, called jenny, can be represented storing the characters sequences "Hello"
and "Merry Christmas" as:

Notice how after the valid content a null character ('\0') has been included in order to indicate the end of the
sequence. The panels in gray color represent char elements with undetermined values.

Initialization of null-terminated character sequences

Because arrays of characters are ordinary arrays they follow all their same rules. For example, if we want to
initialize an array of characters with some predetermined sequence of characters we can do it just like any other
array:

char myword[] = { 'H', 'e', 'l', 'l', 'o', '\0' };

In this case we would have declared an array of 6 elements of type char initialized with the characters that form

the word "Hello" plus a null character '\0' at the end.
But arrays of char elements have an additional method to initialize their values: using string literals.

In the expressions we have used in some examples in previous chapters, constants that represent entire strings of
characters have already showed up several times. These are specified enclosing the text to become a string literal
between double quotes ("). For example:

"the result is: "

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

61

 © cplusplus.com 2008. All rights reserved

is a constant string literal that we have probably used already.

Double quoted strings (") are literal constants whose type is in fact a null-terminated array of characters. So string

literals enclosed between double quotes always have a null character ('\0') automatically appended at the end.

Therefore we can initialize the array of char elements called myword with a null-terminated sequence of characters

by either one of these two methods:

char myword [] = { 'H', 'e', 'l', 'l', 'o', '\0' };
char myword [] = "Hello";

In both cases the array of characters myword is declared with a size of 6 elements of type char: the 5 characters

that compose the word "Hello" plus a final null character ('\0') which specifies the end of the sequence and that,
in the second case, when using double quotes (") it is appended automatically.

Please notice that we are talking about initializing an array of characters in the moment it is being declared, and
not about assigning values to them once they have already been declared. In fact because this type of null-
terminated arrays of characters are regular arrays we have the same restrictions that we have with any other
array, so we are not able to copy blocks of data with an assignment operation.

Assuming mystext is a char[] variable, expressions within a source code like:

mystext = "Hello";
mystext[] = "Hello";

would not be valid, like neither would be:

mystext = { 'H', 'e', 'l', 'l', 'o', '\0' };

The reason for this may become more comprehensible once you know a bit more about pointers, since then it will
be clarified that an array is in fact a constant pointer pointing to a block of memory.

Using null-terminated sequences of characters

Null-terminated sequences of characters are the natural way of treating strings in C++, so they can be used as

such in many procedures. In fact, regular string literals have this type (char[]) and can also be used in most

cases.

For example, cin and cout support null-terminated sequences as valid containers for sequences of characters, so

they can be used directly to extract strings of characters from cin or to insert them into cout. For example:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

62

 © cplusplus.com 2008. All rights reserved

// null-terminated sequences of characters
#include <iostream>
using namespace std;

int main ()
{
 char question[] = "Please, enter your first
name: ";
 char greeting[] = "Hello, ";
 char yourname [80];
 cout << question;
 cin >> yourname;
 cout << greeting << yourname << "!";
 return 0;
}

Please, enter your first name: John
Hello, John!

As you can see, we have declared three arrays of char elements. The first two were initialized with string literal

constants, while the third one was left uninitialized. In any case, we have to speficify the size of the array: in the

first two (question and greeting) the size was implicitly defined by the length of the literal constant they were

initialized to. While for yourname we have explicitly specified that it has a size of 80 chars.

Finally, sequences of characters stored in char arrays can easily be converted into string objects just by using the
assignment operator:

string mystring;
char myntcs[]="some text";
mystring = myntcs;

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

63

 © cplusplus.com 2008. All rights reserved

Pointers
We have already seen how variables are seen as memory cells that can be accessed using their identifiers. This
way we did not have to care about the physical location of our data within memory, we simply used its identifier
whenever we wanted to refer to our variable.

The memory of your computer can be imagined as a succession of memory cells, each one of the minimal size that
computers manage (one byte). These single-byte memory cells are numbered in a consecutive way, so as, within
any block of memory, every cell has the same number as the previous one plus one.

This way, each cell can be easily located in the memory because it has a unique address and all the memory cells
follow a successive pattern. For example, if we are looking for cell 1776 we know that it is going to be right
between cells 1775 and 1777, exactly one thousand cells after 776 and exactly one thousand cells before cell 2776.

Reference operator (&)

As soon as we declare a variable, the amount of memory needed is assigned for it at a specific location in memory
(its memory address). We generally do not actively decide the exact location of the variable within the panel of
cells that we have imagined the memory to be - Fortunately, that is a task automatically performed by the
operating system during runtime. However, in some cases we may be interested in knowing the address where our
variable is being stored during runtime in order to operate with relative positions to it.

The address that locates a variable within memory is what we call a reference to that variable. This reference to a

variable can be obtained by preceding the identifier of a variable with an ampersand sign (&), known as reference
operator, and which can be literally translated as "address of". For example:

ted = &andy;

This would assign to ted the address of variable andy, since when preceding the name of the variable andy with

the reference operator (&) we are no longer talking about the content of the variable itself, but about its reference
(i.e., its address in memory).

From now on we are going to assume that andy is placed during runtime in the memory address 1776. This number

(1776) is just an arbitrary assumption we are inventing right now in order to help clarify some concepts in this

tutorial, but in reality, we cannot know before runtime the real value the address of a variable will have in memory.

Consider the following code fragment:

andy = 25;
fred = andy;
ted = &andy;

The values contained in each variable after the execution of this, are shown in the following diagram:

First, we have assigned the value 25 to andy (a variable whose address in memory we have assumed to be 1776).

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

64

 © cplusplus.com 2008. All rights reserved

The second statement copied to fred the content of variable andy (which is 25). This is a standard assignment

operation, as we have done so many times before.

Finally, the third statement copies to ted not the value contained in andy but a reference to it (i.e., its address,
which we have assumed to be 1776). The reason is that in this third assignment operation we have preceded the

identifier andy with the reference operator (&), so we were no longer referring to the value of andy but to its
reference (its address in memory).

The variable that stores the reference to another variable (like ted in the previous example) is what we call a

pointer. Pointers are a very powerful feature of the C++ language that has many uses in advanced programming.
Farther ahead, we will see how this type of variable is used and declared.

Dereference operator (*)

We have just seen that a variable which stores a reference to another variable is called a pointer. Pointers are said
to "point to" the variable whose reference they store.

Using a pointer we can directly access the value stored in the variable which it points to. To do this, we simply
have to precede the pointer's identifier with an asterisk (*), which acts as dereference operator and that can be
literally translated to "value pointed by".

Therefore, following with the values of the previous example, if we write:

beth = *ted;

(that we could read as: "beth equal to value pointed by ted") beth would take the value 25, since ted is 1776, and
the value pointed by 1776 is 25.

You must clearly differentiate that the expression ted refers to the value 1776, while *ted (with an asterisk *
preceding the identifier) refers to the value stored at address 1776, which in this case is 25. Notice the difference of
including or not including the dereference operator (I have included an explanatory commentary of how each of
these two expressions could be read):

beth = ted; // beth equal to ted (1776)
beth = *ted; // beth equal to value pointed by ted (25)

Notice the difference between the reference and dereference operators:

• & is the reference operator and can be read as "address of"

• * is the dereference operator and can be read as "value pointed by"

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

65

 © cplusplus.com 2008. All rights reserved

Thus, they have complementary (or opposite) meanings. A variable referenced with & can be dereferenced with *.

Earlier we performed the following two assignment operations:

andy = 25;
ted = &andy;

Right after these two statements, all of the following expressions would give true as result:

andy == 25
&andy == 1776
ted == 1776
*ted == 25

The first expression is quite clear considering that the assignment operation performed on andy was andy=25. The
second one uses the reference operator (&), which returns the address of variable andy, which we assumed it to

have a value of 1776. The third one is somewhat obvious since the second expression was true and the assignment

operation performed on ted was ted=&andy. The fourth expression uses the dereference operator (*) that, as we
have just seen, can be read as "value pointed by", and the value pointed by ted is indeed 25.

So, after all that, you may also infer that for as long as the address pointed by ted remains unchanged the

following expression will also be true:

*ted == andy

Declaring variables of pointer types

Due to the ability of a pointer to directly refer to the value that it points to, it becomes necessary to specify in its

declaration which data type a pointer is going to point to. It is not the same thing to point to a char as to point to

an int or a float.

The declaration of pointers follows this format:

type * name;

where type is the data type of the value that the pointer is intended to point to. This type is not the type of the
pointer itself! but the type of the data the pointer points to. For example:

int * number;
char * character;
float * greatnumber;

These are three declarations of pointers. Each one is intended to point to a different data type, but in fact all of

them are pointers and all of them will occupy the same amount of space in memory (the size in memory of a
pointer depends on the platform where the code is going to run). Nevertheless, the data to which they point to do

not occupy the same amount of space nor are of the same type: the first one points to an int, the second one to a
char and the last one to a float. Therefore, although these three example variables are all of them pointers which

occupy the same size in memory, they are said to have different types: int*, char* and float* respectively,
depending on the type they point to.

I want to emphasize that the asterisk sign (*) that we use when declaring a pointer only means that it is a pointer

(it is part of its type compound specifier), and should not be confused with the dereference operator that we have

seen a bit earlier, but which is also written with an asterisk (*). They are simply two different things represented

with the same sign.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

66

 © cplusplus.com 2008. All rights reserved

Now have a look at this code:

// my first pointer
#include <iostream>
using namespace std;

int main ()
{
 int firstvalue, secondvalue;
 int * mypointer;

 mypointer = &firstvalue;
 *mypointer = 10;
 mypointer = &secondvalue;
 *mypointer = 20;
 cout << "firstvalue is " << firstvalue << endl;
 cout << "secondvalue is " << secondvalue << endl;
 return 0;
}

firstvalue is 10
secondvalue is 20

Notice that even though we have never directly set a value to either firstvalue or secondvalue, both end up with
a value set indirectly through the use of mypointer. This is the procedure:

First, we have assigned as value of mypointer a reference to firstvalue using the reference operator (&). And

then we have assigned the value 10 to the memory location pointed by mypointer, that because at this moment is

pointing to the memory location of firstvalue, this in fact modifies the value of firstvalue.

In order to demonstrate that a pointer may take several different values during the same program I have repeated
the process with secondvalue and that same pointer, mypointer.

Here is an example a little bit more elaborated:

// more pointers
#include <iostream>
using namespace std;

int main ()
{
 int firstvalue = 5, secondvalue = 15;
 int * p1, * p2;

 p1 = &firstvalue; // p1 = address of firstvalue
 p2 = &secondvalue; // p2 = address of secondvalue
 *p1 = 10; // value pointed by p1 = 10
 *p2 = *p1; // value pointed by p2 = value pointed by
p1
 p1 = p2; // p1 = p2 (value of pointer is copied)
 *p1 = 20; // value pointed by p1 = 20

 cout << "firstvalue is " << firstvalue << endl;
 cout << "secondvalue is " << secondvalue << endl;
 return 0;
}

firstvalue is 10
secondvalue is 20

I have included as a comment on each line how the code can be read: ampersand (&) as "address of" and asterisk
(*) as "value pointed by".

Notice that there are expressions with pointers p1 and p2, both with and without dereference operator (*). The
meaning of an expression using the dereference operator (*) is very different from one that does not: When this

operator precedes the pointer name, the expression refers to the value being pointed, while when a pointer name

appears without this operator, it refers to the value of the pointer itself (i.e. the address of what the pointer is
pointing to).

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

67

 © cplusplus.com 2008. All rights reserved

Another thing that may call your attention is the line:

int * p1, * p2;

This declares the two pointers used in the previous example. But notice that there is an asterisk (*) for each

pointer, in order for both to have type int* (pointer to int).

Otherwise, the type for the second variable declared in that line would have been int (and not int*) because of
precedence relationships. If we had written:

int * p1, p2;

p1 would indeed have int* type, but p2 would have type int (spaces do not matter at all for this purpose). This is

due to operator precedence rules. But anyway, simply remembering that you have to put one asterisk per pointer
is enough for most pointer users.

Pointers and arrays

The concept of array is very much bound to the one of pointer. In fact, the identifier of an array is equivalent to the
address of its first element, as a pointer is equivalent to the address of the first element that it points to, so in fact
they are the same concept. For example, supposing these two declarations:

int numbers [20];
int * p;

The following assignment operation would be valid:

p = numbers;

After that, p and numbers would be equivalent and would have the same properties. The only difference is that we

could change the value of pointer p by another one, whereas numbers will always point to the first of the 20
elements of type int with which it was defined. Therefore, unlike p, which is an ordinary pointer, numbers is an
array, and an array can be considered a constant pointer. Therefore, the following allocation would not be valid:

numbers = p;

Because numbers is an array, so it operates as a constant pointer, and we cannot assign values to constants.

Due to the characteristics of variables, all expressions that include pointers in the following example are perfectly
valid:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

68

 © cplusplus.com 2008. All rights reserved

// more pointers
#include <iostream>
using namespace std;

int main ()
{
 int numbers[5];
 int * p;
 p = numbers; *p = 10;
 p++; *p = 20;
 p = &numbers[2]; *p = 30;
 p = numbers + 3; *p = 40;
 p = numbers; *(p+4) = 50;
 for (int n=0; n<5; n++)
 cout << numbers[n] << ", ";
 return 0;
}

10, 20, 30, 40, 50,

In the chapter about arrays we used brackets ([]) several times in order to specify the index of an element of the

array to which we wanted to refer. Well, these bracket sign operators [] are also a dereference operator known as
offset operator. They dereference the variable they follow just as * does, but they also add the number between

brackets to the address being dereferenced. For example:

a[5] = 0; // a [offset of 5] = 0
*(a+5) = 0; // pointed by (a+5) = 0

These two expressions are equivalent and valid both if a is a pointer or if a is an array.

Pointer initialization

When declaring pointers we may want to explicitly specify which variable we want them to point to:

int number;
int *tommy = &number;

The behavior of this code is equivalent to:

int number;
int *tommy;
tommy = &number;

When a pointer initialization takes place we are always assigning the reference value to where the pointer points

(tommy), never the value being pointed (*tommy). You must consider that at the moment of declaring a pointer, the

asterisk (*) indicates only that it is a pointer, it is not the dereference operator (although both use the same sign:

*). Remember, they are two different functions of one sign. Thus, we must take care not to confuse the previous
code with:

int number;
int *tommy;
*tommy = &number;

that is incorrect, and anyway would not have much sense in this case if you think about it.

As in the case of arrays, the compiler allows the special case that we want to initialize the content at which the
pointer points with constants at the same moment the pointer is declared:

char * terry = "hello";

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

69

 © cplusplus.com 2008. All rights reserved

In this case, memory space is reserved to contain "hello" and then a pointer to the first character of this memory

block is assigned to terry. If we imagine that "hello" is stored at the memory locations that start at addresses

1702, we can represent the previous declaration as:

It is important to indicate that terry contains the value 1702, and not 'h' nor "hello", although 1702 indeed is
the address of both of these.

The pointer terry points to a sequence of characters and can be read as if it was an array (remember that an

array is just like a constant pointer). For example, we can access the fifth element of the array with any of these
two expression:

*(terry+4)
terry[4]

Both expressions have a value of 'o' (the fifth element of the array).

Pointer arithmetics

To conduct arithmetical operations on pointers is a little different than to conduct them on regular integer data
types. To begin with, only addition and subtraction operations are allowed to be conducted with them, the others
make no sense in the world of pointers. But both addition and subtraction have a different behavior with pointers
according to the size of the data type to which they point.

When we saw the different fundamental data types, we saw that some occupy more or less space than others in

the memory. For example, let's assume that in a given compiler for a specific machine, char takes 1 byte, short
takes 2 bytes and long takes 4.

Suppose that we define three pointers in this compiler:

char *mychar;
short *myshort;
long *mylong;

and that we know that they point to memory locations 1000, 2000 and 3000 respectively.

So if we write:

mychar++;
myshort++;
mylong++;

mychar, as you may expect, would contain the value 1001. But not so obviously, myshort would contain the value

2002, and mylong would contain 3004, even though they have each been increased only once. The reason is that
when adding one to a pointer we are making it to point to the following element of the same type with which it has
been defined, and therefore the size in bytes of the type pointed is added to the pointer.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

70

 © cplusplus.com 2008. All rights reserved

This is applicable both when adding and subtracting any number to a pointer. It would happen exactly the same if
we write:

mychar = mychar + 1;
myshort = myshort + 1;
mylong = mylong + 1;

Both the increase (++) and decrease (--) operators have greater operator precedence than the dereference

operator (*), but both have a special behavior when used as suffix (the expression is evaluated with the value it
had before being increased). Therefore, the following expression may lead to confusion:

*p++

Because ++ has greater precedence than *, this expression is equivalent to *(p++). Therefore, what it does is to
increase the value of p (so it now points to the next element), but because ++ is used as postfix the whole
expression is evaluated as the value pointed by the original reference (the address the pointer pointed to before
being increased).

Notice the difference with:

(*p)++

Here, the expression would have been evaluated as the value pointed by p increased by one. The value of p (the
pointer itself) would not be modified (what is being modified is what it is being pointed to by this pointer).

If we write:

*p++ = *q++;

Because ++ has a higher precedence than *, both p and q are increased, but because both increase operators (++)

are used as postfix and not prefix, the value assigned to *p is *q before both p and q are increased. And then both
are increased. It would be roughly equivalent to:

*p = *q;
++p;
++q;

Like always, I recommend you to use parentheses () in order to avoid unexpected results and to give more

legibility to the code.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

71

 © cplusplus.com 2008. All rights reserved

Pointers to pointers

C++ allows the use of pointers that point to pointers, that these, in its turn, point to data (or even to other

pointers). In order to do that, we only need to add an asterisk (*) for each level of reference in their declarations:

char a;
char * b;
char ** c;
a = 'z';
b = &a;
c = &b;

This, supposing the randomly chosen memory locations for each variable of 7230, 8092 and 10502, could be
represented as:

The value of each variable is written inside each cell; under the cells are their respective addresses in memory.

The new thing in this example is variable c, which can be used in three different levels of indirection, each one of
them would correspond to a different value:

• c has type char** and a value of 8092

• *c has type char* and a value of 7230

• **c has type char and a value of 'z'

void pointers

The void type of pointer is a special type of pointer. In C++, void represents the absence of type, so void pointers
are pointers that point to a value that has no type (and thus also an undetermined length and undetermined
dereference properties).

This allows void pointers to point to any data type, from an integer value or a float to a string of characters. But in

exchange they have a great limitation: the data pointed by them cannot be directly dereferenced (which is logical,
since we have no type to dereference to), and for that reason we will always have to cast the address in the void
pointer to some other pointer type that points to a concrete data type before dereferencing it.

One of its uses may be to pass generic parameters to a function:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

72

 © cplusplus.com 2008. All rights reserved

// increaser
#include <iostream>
using namespace std;

void increase (void* data, int psize)
{
 if (psize == sizeof(char))
 { char* pchar; pchar=(char*)data; ++(*pchar); }
 else if (psize == sizeof(int))
 { int* pint; pint=(int*)data; ++(*pint); }
}

int main ()
{
 char a = 'x';
 int b = 1602;
 increase (&a,sizeof(a));
 increase (&b,sizeof(b));
 cout << a << ", " << b << endl;
 return 0;
}

y, 1603

sizeof is an operator integrated in the C++ language that returns the size in bytes of its parameter. For non-

dynamic data types this value is a constant. Therefore, for example, sizeof(char) is 1, because char type is one
byte long.

Null pointer

A null pointer is a regular pointer of any pointer type which has a special value that indicates that it is not pointing
to any valid reference or memory address. This value is the result of type-casting the integer value zero to any
pointer type.

int * p;
p = 0; // p has a null pointer value

Do not confuse null pointers with void pointers. A null pointer is a value that any pointer may take to represent

that it is pointing to "nowhere", while a void pointer is a special type of pointer that can point to somewhere
without a specific type. One refers to the value stored in the pointer itself and the other to the type of data it points
to.

Pointers to functions

C++ allows operations with pointers to functions. The typical use of this is for passing a function as an argument to
another function, since these cannot be passed dereferenced. In order to declare a pointer to a function we have to
declare it like the prototype of the function except that the name of the function is enclosed between parentheses

() and an asterisk (*) is inserted before the name:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

73

 © cplusplus.com 2008. All rights reserved

// pointer to functions
#include <iostream>
using namespace std;

int addition (int a, int b)
{ return (a+b); }

int subtraction (int a, int b)
{ return (a-b); }

int operation (int x, int y, int
(*functocall)(int,int))
{
 int g;
 g = (*functocall)(x,y);
 return (g);
}

int main ()
{
 int m,n;
 int (*minus)(int,int) = subtraction;

 m = operation (7, 5, addition);
 n = operation (20, m, minus);
 cout <<n;
 return 0;
}

8

In the example, minus is a pointer to a function that has two parameters of type int. It is immediately assigned to

point to the function subtraction, all in a single line:

int (* minus)(int,int) = subtraction;

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

74

 © cplusplus.com 2008. All rights reserved

Dynamic Memory
Until now, in all our programs, we have only had as much memory available as we declared for our variables,
having the size of all of them to be determined in the source code, before the execution of the program. But, what
if we need a variable amount of memory that can only be determined during runtime? For example, in the case
that we need some user input to determine the necessary amount of memory space.

The answer is dynamic memory, for which C++ integrates the operators new and delete.

Operators new and new[]

In order to request dynamic memory we use the operator new. new is followed by a data type specifier and -if a
sequence of more than one element is required- the number of these within brackets []. It returns a pointer to the
beginning of the new block of memory allocated. Its form is:

pointer = new type
pointer = new type [number_of_elements]

The first expression is used to allocate memory to contain one single element of type type. The second one is used
to assign a block (an array) of elements of type type, where number_of_elements is an integer value representing
the amount of these. For example:

int * bobby;
bobby = new int [5];

In this case, the system dynamically assigns space for five elements of type int and returns a pointer to the first
element of the sequence, which is assigned to bobby. Therefore, now, bobby points to a valid block of memory with

space for five elements of type int.

The first element pointed by bobby can be accessed either with the expression bobby[0] or the expression *bobby.
Both are equivalent as has been explained in the section about pointers. The second element can be accessed
either with bobby[1] or *(bobby+1) and so on...

You could be wondering the difference between declaring a normal array and assigning dynamic memory to a
pointer, as we have just done. The most important difference is that the size of an array has to be a constant
value, which limits its size to what we decide at the moment of designing the program, before its execution,
whereas the dynamic memory allocation allows us to assign memory during the execution of the program
(runtime) using any variable or constant value as its size.

The dynamic memory requested by our program is allocated by the system from the memory heap. However,
computer memory is a limited resource, and it can be exhausted. Therefore, it is important to have some
mechanism to check if our request to allocate memory was successful or not.

C++ provides two standard methods to check if the allocation was successful:

One is by handling exceptions. Using this method an exception of type bad_alloc is thrown when the allocation
fails. Exceptions are a powerful C++ feature explained later in these tutorials. But for now you should know that if
this exception is thrown and it is not handled by a specific handler, the program execution is terminated.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

75

 © cplusplus.com 2008. All rights reserved

This exception method is the default method used by new, and is the one used in a declaration like:

bobby = new int [5]; // if it fails an exception is thrown

The other method is known as nothrow, and what happens when it is used is that when a memory allocation fails,

instead of throwing a bad_alloc exception or terminating the program, the pointer returned by new is a null
pointer, and the program continues its execution.

This method can be specified by using a special object called nothrow, declared in header <new>, as argument for

new:

bobby = new (nothrow) int [5];

In this case, if the allocation of this block of memory failed, the failure could be detected by checking if bobby took
a null pointer value:

int * bobby;
bobby = new (nothrow) int [5];
if (bobby == 0) {
 // error assigning memory. Take measures.
 };

This nothrow method requires more work than the exception method, since the value returned has to be checked

after each and every memory allocation, but I will use it in our examples due to its simplicity. Anyway this method
can become tedious for larger projects, where the exception method is generally preferred. The exception method
will be explained in detail later in this tutorial.

Operators delete and delete[]

Since the necessity of dynamic memory is usually limited to specific moments within a program, once it is no
longer needed it should be freed so that the memory becomes available again for other requests of dynamic

memory. This is the purpose of the operator delete, whose format is:

delete pointer;
delete [] pointer;

The first expression should be used to delete memory allocated for a single element, and the second one for
memory allocated for arrays of elements.

The value passed as argument to delete must be either a pointer to a memory block previously allocated with new,
or a null pointer (in the case of a null pointer, delete produces no effect).

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

76

 © cplusplus.com 2008. All rights reserved

// rememb-o-matic
#include <iostream>
#include <new>
using namespace std;

int main ()
{
 int i,n;
 int * p;
 cout << "How many numbers would you like to type? ";
 cin >> i;
 p= new (nothrow) int[i];
 if (p == 0)
 cout << "Error: memory could not be allocated";
 else
 {
 for (n=0; n<i; n++)
 {
 cout << "Enter number: ";
 cin >> p[n];
 }
 cout << "You have entered: ";
 for (n=0; n<i; n++)
 cout << p[n] << ", ";
 delete[] p;
 }
 return 0;
}

How many numbers would you like to type? 5
Enter number : 75
Enter number : 436
Enter number : 1067
Enter number : 8
Enter number : 32
You have entered: 75, 436, 1067, 8, 32,

Notice how the value within brackets in the new statement is a variable value entered by the user (i), not a
constant value:

p= new (nothrow) int[i];

But the user could have entered a value for i so big that our system could not handle it. For example, when I tried

to give a value of 1 billion to the "How many numbers" question, my system could not allocate that much memory

for the program and I got the text message we prepared for this case (Error: memory could not be allocated).
Remember that in the case that we tried to allocate the memory without specifying the nothrow parameter in the
new expression, an exception would be thrown, which if it's not handled terminates the program.

It is a good practice to always check if a dynamic memory block was successfully allocated. Therefore, if you use

the nothrow method, you should always check the value of the pointer returned. Otherwise, use the exception

method, even if you do not handle the exception. This way, the program will terminate at that point without
causing the unexpected results of continuing executing a code that assumes a block of memory to have been
allocated when in fact it has not.

Dynamic memory in ANSI-C

Operators new and delete are exclusive of C++. They are not available in the C language. But using pure C
language and its library, dynamic memory can also be used through the functions malloc, calloc, realloc and free,
which are also available in C++ including the <cstdlib> header file (see cstdlib for more info).

The memory blocks allocated by these functions are not necessarily compatible with those returned by new, so
each one should be manipulated with its own set of functions or operators.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

77

 © cplusplus.com 2008. All rights reserved

Data structures
We have already learned how groups of sequential data can be used in C++. But this is somewhat restrictive, since
in many occasions what we want to store are not mere sequences of elements all of the same data type, but sets
of different elements with different data types.

Data structures

A data structure is a group of data elements grouped together under one name. These data elements, known as
members, can have different types and different lengths. Data structures are declared in C++ using the following
syntax:

struct structure_name {

member_type1 member_name1;
member_type2 member_name2;
member_type3 member_name3;
.
.
} object_names;

where structure_name is a name for the structure type, object_name can be a set of valid identifiers for objects
that have the type of this structure. Within braces { } there is a list with the data members, each one is specified

with a type and a valid identifier as its name.

The first thing we have to know is that a data structure creates a new type: Once a data structure is declared, a

new type with the identifier specified as structure_name is created and can be used in the rest of the program as

if it was any other type. For example:

struct product {
 int weight;
 float price;
} ;

product apple;
product banana, melon;

We have first declared a structure type called product with two members: weight and price, each of a different

fundamental type. We have then used this name of the structure type (product) to declare three objects of that
type: apple, banana and melon as we would have done with any fundamental data type.

Once declared, product has become a new valid type name like the fundamental ones int, char or short and
from that point on we are able to declare objects (variables) of this compound new type, like we have done with
apple, banana and melon.

Right at the end of the struct declaration, and before the ending semicolon, we can use the optional field

object_name to directly declare objects of the structure type. For example, we can also declare the structure

objects apple, banana and melon at the moment we define the data structure type this way:

struct product {
 int weight;
 float price;
} apple, banana, melon;

It is important to clearly differentiate between what is the structure type name, and what is an object (variable)

that has this structure type. We can instantiate many objects (i.e. variables, like apple, banana and melon) from a

single structure type (product).

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

78

 © cplusplus.com 2008. All rights reserved

Once we have declared our three objects of a determined structure type (apple, banana and melon) we can
operate directly with their members. To do that we use a dot (.) inserted between the object name and the

member name. For example, we could operate with any of these elements as if they were standard variables of
their respective types:

apple.weight
apple.price
banana.weight
banana.price
melon.weight
melon.price

Each one of these has the data type corresponding to the member they refer to: apple.weight, banana.weight
and melon.weight are of type int, while apple.price, banana.price and melon.price are of type float.

Let's see a real example where you can see how a structure type can be used in the same way as fundamental
types:

// example about structures
#include <iostream>
#include <string>
#include <sstream>
using namespace std;

struct movies_t {
 string title;
 int year;
} mine, yours;

void printmovie (movies_t movie);

int main ()
{
 string mystr;

 mine.title = "2001 A Space Odyssey";
 mine.year = 1968;

 cout << "Enter title: ";
 getline (cin,yours.title);
 cout << "Enter year: ";
 getline (cin,mystr);
 stringstream(mystr) >> yours.year;

 cout << "My favorite movie is:\n ";
 printmovie (mine);
 cout << "And yours is:\n ";
 printmovie (yours);
 return 0;
}

void printmovie (movies_t movie)
{
 cout << movie.title;
 cout << " (" << movie.year << ")\n";
}

Enter title: Alien
Enter year: 1979

My favorite movie is:
 2001 A Space Odyssey (1968)
And yours is:
 Alien (1979)

The example shows how we can use the members of an object as regular variables. For example, the member

yours.year is a valid variable of type int, and mine.title is a valid variable of type string.

The objects mine and yours can also be treated as valid variables of type movies_t, for example we have passed

them to the function printmovie as we would have done with regular variables. Therefore, one of the most

important advantages of data structures is that we can either refer to their members individually or to the entire
structure as a block with only one identifier.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

79

 © cplusplus.com 2008. All rights reserved

Data structures are a feature that can be used to represent databases, especially if we consider the possibility of
building arrays of them:

// array of structures
#include <iostream>
#include <string>
#include <sstream>
using namespace std;

#define N_MOVIES 3

struct movies_t {
 string title;
 int year;
} films [N_MOVIES];

void printmovie (movies_t movie);

int main ()
{
 string mystr;
 int n;

 for (n=0; n<N_MOVIES; n++)
 {
 cout << "Enter title: ";
 getline (cin,films[n].title);
 cout << "Enter year: ";
 getline (cin,mystr);
 stringstream(mystr) >> films[n].year;
 }

 cout << "\nYou have entered these movies:\n";
 for (n=0; n<N_MOVIES; n++)
 printmovie (films[n]);
 return 0;
}

void printmovie (movies_t movie)
{
 cout << movie.title;
 cout << " (" << movie.year << ")\n";
}

Enter title: Blade Runner
Enter year: 1982
Enter title: Matrix
Enter year: 1999
Enter title: Taxi Driver
Enter year: 1976

You have entered these movies:
Blade Runner (1982)
Matrix (1999)
Taxi Driver (1976)

Pointers to structures

Like any other type, structures can be pointed by its own type of pointers:

struct movies_t {
 string title;
 int year;
};

movies_t amovie;
movies_t * pmovie;

Here amovie is an object of structure type movies_t, and pmovie is a pointer to point to objects of structure type
movies_t. So, the following code would also be valid:

pmovie = &amovie;

The value of the pointer pmovie would be assigned to a reference to the object amovie (its memory address).

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

80

 © cplusplus.com 2008. All rights reserved

We will now go with another example that includes pointers, which will serve to introduce a new operator: the
arrow operator (->):

// pointers to structures
#include <iostream>
#include <string>
#include <sstream>
using namespace std;

struct movies_t {
 string title;
 int year;
};

int main ()
{
 string mystr;

 movies_t amovie;
 movies_t * pmovie;
 pmovie = &amovie;

 cout << "Enter title: ";
 getline (cin, pmovie->title);
 cout << "Enter year: ";
 getline (cin, mystr);
 (stringstream) mystr >> pmovie->year;

 cout << "\nYou have entered:\n";
 cout << pmovie->title;
 cout << " (" << pmovie->year << ")\n";

 return 0;
}

Enter title: Invasion of the body snatchers
Enter year: 1978

You have entered:
Invasion of the body snatchers (1978)

The previous code includes an important introduction: the arrow operator (->). This is a dereference operator that
is used exclusively with pointers to objects with members. This operator serves to access a member of an object to
which we have a reference. In the example we used:

pmovie->title

Which is for all purposes equivalent to:

(*pmovie).title

Both expressions pmovie->title and (*pmovie).title are valid and both mean that we are evaluating the

member title of the data structure pointed by a pointer called pmovie. It must be clearly differentiated from:

*pmovie.title

which is equivalent to:

*(pmovie.title)

And that would access the value pointed by a hypothetical pointer member called title of the structure object

pmovie (which in this case would not be a pointer). The following panel summarizes possible combinations of

pointers and structure members:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

81

 © cplusplus.com 2008. All rights reserved

Expression What is evaluated Equivalent

a.b Member b of object a

a->b Member b of object pointed by a (*a).b

*a.b Value pointed by member b of object a *(a.b)

Nesting structures

Structures can also be nested so that a valid element of a structure can also be in its turn another structure.

struct movies_t {
 string title;
 int year;
};

struct friends_t {
 string name;
 string email;
 movies_t favorite_movie;
 } charlie, maria;

friends_t * pfriends = &charlie;

After the previous declaration we could use any of the following expressions:

charlie.name
maria.favorite_movie.title
charlie.favorite_movie.year
pfriends->favorite_movie.year

(where, by the way, the last two expressions refer to the same member).

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

82

 © cplusplus.com 2008. All rights reserved

Other Data Types

Defined data types (typedef)

C++ allows the definition of our own types based on other existing data types. We can do this using the keyword

typedef, whose format is:

typedef existing_type new_type_name ;

where existing_type is a C++ fundamental or compound type and new_type_name is the name for the new type

we are defining. For example:

typedef char C;
typedef unsigned int WORD;
typedef char * pChar;
typedef char field [50];

In this case we have defined four data types: C, WORD, pChar and field as char, unsigned int, char* and
char[50] respectively, that we could perfectly use in declarations later as any other valid type:

C mychar, anotherchar, *ptc1;
WORD myword;
pChar ptc2;
field name;

typedef does not create different types. It only creates synonyms of existing types. That means that the type of

myword can be considered to be either WORD or unsigned int, since both are in fact the same type.

typedef can be useful to define an alias for a type that is frequently used within a program. It is also useful to

define types when it is possible that we will need to change the type in later versions of our program, or if a type
you want to use has a name that is too long or confusing.

Unions

Unions allow one same portion of memory to be accessed as different data types, since all of them are in fact the
same location in memory. Its declaration and use is similar to the one of structures but its functionality is totally
different:

union union_name {
 member_type1 member_name1;
 member_type2 member_name2;
 member_type3 member_name3;
 .
 .
} object_names;

All the elements of the union declaration occupy the same physical space in memory. Its size is the one of the

greatest element of the declaration. For example:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

83

 © cplusplus.com 2008. All rights reserved

union mytypes_t {
 char c;
 int i;
 float f;
 } mytypes;

defines three elements:

mytypes.c
mytypes.i
mytypes.f

each one with a different data type. Since all of them are referring to the same location in memory, the

modification of one of the elements will affect the value of all of them. We cannot store different values in them
independent of each other.

One of the uses a union may have is to unite an elementary type with an array or structures of smaller elements.
For example:

union mix_t {
 long l;
 struct {
 short hi;
 short lo;
 } s;
 char c[4];
} mix;

defines three names that allow us to access the same group of 4 bytes: mix.l, mix.s and mix.c and which we can

use according to how we want to access these bytes, as if they were a single long-type data, as if they were two
short elements or as an array of char elements, respectively. I have mixed types, arrays and structures in the

union so that you can see the different ways that we can access the data. For a little-endian system (most PC
platforms), this union could be represented as:

The exact alignment and order of the members of a union in memory is platform dependant. Therefore be aware of
possible portability issues with this type of use.

Anonymous unions

In C++ we have the option to declare anonymous unions. If we declare a union without any name, the union will
be anonymous and we will be able to access its members directly by their member names. For example, look at the
difference between these two structure declarations:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

84

 © cplusplus.com 2008. All rights reserved

structure with regular union structure with anonymous union

struct {
 char title[50];
 char author[50];
 union {
 float dollars;
 int yens;
 } price;
} book;

struct {
 char title[50];
 char author[50];
 union {
 float dollars;
 int yens;
 };
} book;

The only difference between the two pieces of code is that in the first one we have given a name to the union

(price) and in the second one we have not. The difference is seen when we access the members dollars and
yens of an object of this type. For an object of the first type, it would be:

book.price.dollars
book.price.yens

whereas for an object of the second type, it would be:

book.dollars
book.yens

Once again I remind you that because it is a union and not a struct, the members dollars and yens occupy the
same physical space in the memory so they cannot be used to store two different values simultaneously. You can
set a value for price in dollars or in yens, but not in both.

Enumerations (enum)

Enumerations create new data types to contain something different that is not limited to the values fundamental
data types may take. Its form is the following:

enum enumeration_name {
 value1,
 value2,
 value3,
 .
 .
} object_names;

For example, we could create a new type of variable called color to store colors with the following declaration:

enum colors_t {black, blue, green, cyan, red, purple, yellow, white};

Notice that we do not include any fundamental data type in the declaration. To say it somehow, we have created a

whole new data type from scratch without basing it on any other existing type. The possible values that variables

of this new type color_t may take are the new constant values included within braces. For example, once the

colors_t enumeration is declared the following expressions will be valid:

colors_t mycolor;

mycolor = blue;
if (mycolor == green) mycolor = red;

Enumerations are type compatible with numeric variables, so their constants are always assigned an integer
numerical value internally. If it is not specified, the integer value equivalent to the first possible value is equivalent

to 0 and the following ones follow a +1 progression. Thus, in our data type colors_t that we have defined above,
black would be equivalent to 0, blue would be equivalent to 1, green to 2, and so on.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

85

 © cplusplus.com 2008. All rights reserved

We can explicitly specify an integer value for any of the constant values that our enumerated type can take. If the
constant value that follows it is not given an integer value, it is automatically assumed the same value as the
previous one plus one. For example:

enum months_t { january=1, february, march, april,
 may, june, july, august,
 september, october, november, december} y2k;

In this case, variable y2k of enumerated type months_t can contain any of the 12 possible values that go from

january to december and that are equivalent to values between 1 and 12 (not between 0 and 11, since we have
made january equal to 1).

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

86

 © cplusplus.com 2008. All rights reserved

Object Oriented Programming

Classes (I)
A class is an expanded concept of a data structure: instead of holding only data, it can hold both data and

functions.

An object is an instantiation of a class. In terms of variables, a class would be the type, and an object would be the
variable.

Classes are generally declared using the keyword class, with the following format:

class class_name {
 access_specifier_1:
 member1;
 access_specifier_2:
 member2;
 ...
 } object_names;

Where class_name is a valid identifier for the class, object_names is an optional list of names for objects of this

class. The body of the declaration can contain members, that can be either data or function declarations, and
optionally access specifiers.

All is very similar to the declaration on data structures, except that we can now include also functions and
members, but also this new thing called access specifier. An access specifier is one of the following three

keywords: private, public or protected. These specifiers modify the access rights that the members following

them acquire:

• private members of a class are accessible only from within other members of the same class or from

their friends.

• protected members are accessible from members of their same class and from their friends, but also

from members of their derived classes.

• Finally, public members are accessible from anywhere where the object is visible.

By default, all members of a class declared with the class keyword have private access for all its members.

Therefore, any member that is declared before one other class specifier automatically has private access. For
example:

class CRectangle {
 int x, y;
 public:
 void set_values (int,int);
 int area (void);
 } rect;

Declares a class (i.e., a type) called CRectangle and an object (i.e., a variable) of this class called rect. This class
contains four members: two data members of type int (member x and member y) with private access (because
private is the default access level) and two member functions with public access: set_values() and area(), of
which for now we have only included their declaration, not their definition.

Notice the difference between the class name and the object name: In the previous example, CRectangle was the
class name (i.e., the type), whereas rect was an object of type CRectangle. It is the same relationship int and a
have in the following declaration:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

87

 © cplusplus.com 2008. All rights reserved

int a;

where int is the type name (the class) and a is the variable name (the object).

After the previous declarations of CRectangle and rect, we can refer within the body of the program to any of the

public members of the object rect as if they were normal functions or normal variables, just by putting the object's

name followed by a dot (.) and then the name of the member. All very similar to what we did with plain data

structures before. For example:

rect.set_values (3,4);
myarea = rect.area();

The only members of rect that we cannot access from the body of our program outside the class are x and y, since
they have private access and they can only be referred from within other members of that same class.

Here is the complete example of class CRectangle:

// classes example
#include <iostream>
using namespace std;

class CRectangle {
 int x, y;
 public:
 void set_values (int,int);
 int area () {return (x*y);}
};

void CRectangle::set_values (int a, int b) {
 x = a;
 y = b;
}

int main () {
 CRectangle rect;
 rect.set_values (3,4);
 cout << "area: " << rect.area();
 return 0;
}

area: 12

The most important new thing in this code is the operator of scope (::, two colons) included in the definition of
set_values(). It is used to define a member of a class from outside the class definition itself.

You may notice that the definition of the member function area() has been included directly within the definition of
the CRectangle class given its extreme simplicity, whereas set_values() has only its prototype declared within
the class, but its definition is outside it. In this outside declaration, we must use the operator of scope (::) to
specify that we are defining a function that is a member of the class CRectangle and not a regular global function.

The scope operator (::) specifies the class to which the member being declared belongs, granting exactly the same

scope properties as if this function definition was directly included within the class definition. For example, in the

function set_values() of the previous code, we have been able to use the variables x and y, which are private
members of class CRectangle, which means they are only accessible from other members of their class.

The only difference between defining a class member function completely within its class or to include only the
prototype and later its definition, is that in the first case the function will automatically be considered an inline
member function by the compiler, while in the second it will be a normal (not-inline) class member function, which
in fact supposes no difference in behavior.

Members x and y have private access (remember that if nothing else is said, all members of a class defined with

keyword class have private access). By declaring them private we deny access to them from anywhere outside the

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

88

 © cplusplus.com 2008. All rights reserved

class. This makes sense, since we have already defined a member function to set values for those members within

the object: the member function set_values(). Therefore, the rest of the program does not need to have direct

access to them. Perhaps in a so simple example as this, it is difficult to see an utility in protecting those two
variables, but in greater projects it may be very important that values cannot be modified in an unexpected way
(unexpected from the point of view of the object).

One of the greater advantages of a class is that, as any other type, we can declare several objects of it. For

example, following with the previous example of class CRectangle, we could have declared the object rectb in
addition to the object rect:

// example: one class, two objects
#include <iostream>
using namespace std;

class CRectangle {
 int x, y;
 public:
 void set_values (int,int);
 int area () {return (x*y);}
};

void CRectangle::set_values (int a, int b) {
 x = a;
 y = b;
}

int main () {
 CRectangle rect, rectb;
 rect.set_values (3,4);
 rectb.set_values (5,6);
 cout << "rect area: " << rect.area() << endl;
 cout << "rectb area: " << rectb.area() << endl;
 return 0;
}

rect area: 12
rectb area: 30

In this concrete case, the class (type of the objects) to which we are talking about is CRectangle, of which there
are two instances or objects: rect and rectb. Each one of them has its own member variables and member

functions.

Notice that the call to rect.area() does not give the same result as the call to rectb.area(). This is because
each object of class CRectangle has its own variables x and y, as they, in some way, have also their own function

members set_value() and area() that each uses its object's own variables to operate.

That is the basic concept of object-oriented programming: Data and functions are both members of the object. We
no longer use sets of global variables that we pass from one function to another as parameters, but instead we
handle objects that have their own data and functions embedded as members. Notice that we have not had to give

any parameters in any of the calls to rect.area or rectb.area. Those member functions directly used the data

members of their respective objects rect and rectb.

Constructors and destructors

Objects generally need to initialize variables or assign dynamic memory during their process of creation to become
operative and to avoid returning unexpected values during their execution. For example, what would happen if in

the previous example we called the member function area() before having called function set_values()? Probably
we would have gotten an undetermined result since the members x and y would have never been assigned a value.

In order to avoid that, a class can include a special function called constructor, which is automatically called

whenever a new object of this class is created. This constructor function must have the same name as the class,
and cannot have any return type; not even void.

We are going to implement CRectangle including a constructor:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

89

 © cplusplus.com 2008. All rights reserved

// example: class constructor
#include <iostream>
using namespace std;

class CRectangle {
 int width, height;
 public:
 CRectangle (int,int);
 int area () {return (width*height);}
};

CRectangle::CRectangle (int a, int b) {
 width = a;
 height = b;
}

int main () {
 CRectangle rect (3,4);
 CRectangle rectb (5,6);
 cout << "rect area: " << rect.area() << endl;
 cout << "rectb area: " << rectb.area() << endl;
 return 0;
}

rect area: 12
rectb area: 30

As you can see, the result of this example is identical to the previous one. But now we have removed the member

function set_values(), and have included instead a constructor that performs a similar action: it initializes the

values of x and y with the parameters that are passed to it.

Notice how these arguments are passed to the constructor at the moment at which the objects of this class are
created:

CRectangle rect (3,4);
CRectangle rectb (5,6);

Constructors cannot be called explicitly as if they were regular member functions. They are only executed when a
new object of that class is created.

You can also see how neither the constructor prototype declaration (within the class) nor the latter constructor
definition include a return value; not even void.

The destructor fulfills the opposite functionality. It is automatically called when an object is destroyed, either
because its scope of existence has finished (for example, if it was defined as a local object within a function and the
function ends) or because it is an object dynamically assigned and it is released using the operator delete.

The destructor must have the same name as the class, but preceded with a tilde sign (~) and it must also return no

value.

The use of destructors is especially suitable when an object assigns dynamic memory during its lifetime and at the
moment of being destroyed we want to release the memory that the object was allocated.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

90

 © cplusplus.com 2008. All rights reserved

// example on constructors and destructors
#include <iostream>
using namespace std;

class CRectangle {
 int *width, *height;
 public:
 CRectangle (int,int);
 ~CRectangle ();
 int area () {return (*width * *height);}
};

CRectangle::CRectangle (int a, int b) {
 width = new int;
 height = new int;
 *width = a;
 *height = b;
}

CRectangle::~CRectangle () {
 delete width;
 delete height;
}

int main () {
 CRectangle rect (3,4), rectb (5,6);
 cout << "rect area: " << rect.area() << endl;
 cout << "rectb area: " << rectb.area() << endl;
 return 0;
}

rect area: 12
rectb area: 30

Overloading Constructors

Like any other function, a constructor can also be overloaded with more than one function that have the same
name but different types or number of parameters. Remember that for overloaded functions the compiler will call
the one whose parameters match the arguments used in the function call. In the case of constructors, which are
automatically called when an object is created, the one executed is the one that matches the arguments passed on
the object declaration:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

91

 © cplusplus.com 2008. All rights reserved

// overloading class constructors
#include <iostream>
using namespace std;

class CRectangle {
 int width, height;
 public:
 CRectangle ();
 CRectangle (int,int);
 int area (void) {return (width*height);}
};

CRectangle::CRectangle () {
 width = 5;
 height = 5;
}

CRectangle::CRectangle (int a, int b) {
 width = a;
 height = b;
}

int main () {
 CRectangle rect (3,4);
 CRectangle rectb;
 cout << "rect area: " << rect.area() << endl;
 cout << "rectb area: " << rectb.area() << endl;
 return 0;
}

rect area: 12
rectb area: 25

In this case, rectb was declared without any arguments, so it has been initialized with the constructor that has no

parameters, which initializes both width and height with a value of 5.

Important: Notice how if we declare a new object and we want to use its default constructor (the one without
parameters), we do not include parentheses ():

CRectangle rectb; // right
CRectangle rectb(); // wrong!

Default constructor

If you do not declare any constructors in a class definition, the compiler assumes the class to have a default
constructor with no arguments. Therefore, after declaring a class like this one:

class CExample {
 public:
 int a,b,c;
 void multiply (int n, int m) { a=n; b=m; c=a*b; };
 };

The compiler assumes that CExample has a default constructor, so you can declare objects of this class by simply

declaring them without any arguments:

CExample ex;

But as soon as you declare your own constructor for a class, the compiler no longer provides an implicit default

constructor. So you have to declare all objects of that class according to the constructor prototypes you defined for
the class:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

92

 © cplusplus.com 2008. All rights reserved

class CExample {
 public:
 int a,b,c;
 CExample (int n, int m) { a=n; b=m; };
 void multiply () { c=a*b; };
 };

Here we have declared a constructor that takes two parameters of type int. Therefore the following object
declaration would be correct:

CExample ex (2,3);

But,

CExample ex;

Would not be correct, since we have declared the class to have an explicit constructor, thus replacing the default
constructor.

But the compiler not only creates a default constructor for you if you do not specify your own. It provides three
special member functions in total that are implicitly declared if you do not declare your own. These are the copy
constructor, the copy assignment operator, and the default destructor.

The copy constructor and the copy assignment operator copy all the data contained in another object to the data

members of the current object. For CExample, the copy constructor implicitly declared by the compiler would be

something similar to:

CExample::CExample (const CExample& rv) {
 a=rv.a; b=rv.b; c=rv.c;
 }

Therefore, the two following object declarations would be correct:

CExample ex (2,3);
CExample ex2 (ex); // copy constructor (data copied from ex)

Pointers to classes

It is perfectly valid to create pointers that point to classes. We simply have to consider that once declared, a class
becomes a valid type, so we can use the class name as the type for the pointer. For example:

CRectangle * prect;

is a pointer to an object of class CRectangle.

As it happened with data structures, in order to refer directly to a member of an object pointed by a pointer we can
use the arrow operator (->) of indirection. Here is an example with some possible combinations:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

93

 © cplusplus.com 2008. All rights reserved

// pointer to classes example
#include <iostream>
using namespace std;

class CRectangle {
 int width, height;
 public:
 void set_values (int, int);
 int area (void) {return (width * height);}
};

void CRectangle::set_values (int a, int b) {
 width = a;
 height = b;
}

int main () {
 CRectangle a, *b, *c;
 CRectangle * d = new CRectangle[2];
 b= new CRectangle;
 c= &a;
 a.set_values (1,2);
 b->set_values (3,4);
 d->set_values (5,6);
 d[1].set_values (7,8);
 cout << "a area: " << a.area() << endl;
 cout << "*b area: " << b->area() << endl;
 cout << "*c area: " << c->area() << endl;
 cout << "d[0] area: " << d[0].area() << endl;
 cout << "d[1] area: " << d[1].area() << endl;
 delete[] d;
 delete b;
 return 0;
}

a area: 2
*b area: 12
*c area: 2
d[0] area: 30
d[1] area: 56

Next you have a summary on how can you read some pointer and class operators (*, &, ., ->, []) that appear in
the previous example:

expression can be read as

*x pointed by x

&x address of x

x.y member y of object x

x->y member y of object pointed by x

(*x).y member y of object pointed by x (equivalent to the previous one)

x[0] first object pointed by x

x[1] second object pointed by x

x[n] (n+1)th object pointed by x

Be sure that you understand the logic under all of these expressions before proceeding with the next sections. If
you have doubts, read again this section and/or consult the previous sections about pointers and data structures.

Classes defined with struct and union

Classes can be defined not only with keyword class, but also with keywords struct and union.

The concepts of class and data structure are so similar that both keywords (struct and class) can be used in C++

to declare classes (i.e. structs can also have function members in C++, not only data members). The only

difference between both is that members of classes declared with the keyword struct have public access by
default, while members of classes declared with the keyword class have private access. For all other purposes
both keywords are equivalent.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

94

 © cplusplus.com 2008. All rights reserved

The concept of unions is different from that of classes declared with struct and class, since unions only store one
data member at a time, but nevertheless they are also classes and can thus also hold function members. The
default access in union classes is public.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

95

 © cplusplus.com 2008. All rights reserved

Classes (II)

Overloading operators

C++ incorporates the option to use standard operators to perform operations with classes in addition to with
fundamental types. For example:

int a, b, c;
a = b + c;

This is obviously valid code in C++, since the different variables of the addition are all fundamental types.
Nevertheless, it is not so obvious that we could perform an operation similar to the following one:

struct {
 string product;
 float price;
} a, b, c;
a = b + c;

In fact, this will cause a compilation error, since we have not defined the behavior our class should have with
addition operations. However, thanks to the C++ feature to overload operators, we can design classes able to
perform operations using standard operators. Here is a list of all the operators that can be overloaded:

Overloadable operators

+ - * / = < > += -= *= /= << >>
<<= >>= == != <= >= ++ -- % & ^ ! |
~ &= ^= |= && || %= [] () , ->* -> new
delete new[] delete[]

To overload an operator in order to use it with classes we declare operator functions, which are regular functions
whose names are the operator keyword followed by the operator sign that we want to overload. The format is:

type operator sign (parameters) { /*...*/ }

Here you have an example that overloads the addition operator (+). We are going to create a class to store

bidimensional vectors and then we are going to add two of them: a(3,1) and b(1,2). The addition of two
bidimensional vectors is an operation as simple as adding the two x coordinates to obtain the resulting x coordinate
and adding the two y coordinates to obtain the resulting y. In this case the result will be (3+1,1+2) = (4,3).

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

96

 © cplusplus.com 2008. All rights reserved

// vectors: overloading operators example
#include <iostream>
using namespace std;

class CVector {
 public:
 int x,y;
 CVector () {};
 CVector (int,int);
 CVector operator + (CVector);
};

CVector::CVector (int a, int b) {
 x = a;
 y = b;
}

CVector CVector::operator+ (CVector param) {
 CVector temp;
 temp.x = x + param.x;
 temp.y = y + param.y;
 return (temp);
}

int main () {
 CVector a (3,1);
 CVector b (1,2);
 CVector c;
 c = a + b;
 cout << c.x << "," << c.y;
 return 0;
}

4,3

It may be a little confusing to see so many times the CVector identifier. But, consider that some of them refer to

the class name (type) CVector and some others are functions with that name (constructors must have the same

name as the class). Do not confuse them:

CVector (int, int); // function name CVector (constructor)
CVector operator+ (CVector); // function returns a CVector

The function operator+ of class CVector is the one that is in charge of overloading the addition operator (+). This
function can be called either implicitly using the operator, or explicitly using the function name:

c = a + b;
c = a.operator+ (b);

Both expressions are equivalent.

Notice also that we have included the empty constructor (without parameters) and we have defined it with an
empty block:

CVector () { };

This is necessary, since we have explicitly declared another constructor:

CVector (int, int);

And when we explicitly declare any constructor, with any number of parameters, the default constructor with no

parameters that the compiler can declare automatically is not declared, so we need to declare it ourselves in order
to be able to construct objects of this type without parameters. Otherwise, the declaration:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

97

 © cplusplus.com 2008. All rights reserved

CVector c;

included in main() would not have been valid.

Anyway, I have to warn you that an empty block is a bad implementation for a constructor, since it does not fulfill
the minimum functionality that is generally expected from a constructor, which is the initialization of all the

member variables in its class. In our case this constructor leaves the variables x and y undefined. Therefore, a
more advisable definition would have been something similar to this:

CVector () { x=0; y=0; };

which in order to simplify and show only the point of the code I have not included in the example.

As well as a class includes a default constructor and a copy constructor even if they are not declared, it also

includes a default definition for the assignment operator (=) with the class itself as parameter. The behavior which

is defined by default is to copy the whole content of the data members of the object passed as argument (the one
at the right side of the sign) to the one at the left side:

CVector d (2,3);
CVector e;
e = d; // copy assignment operator

The copy assignment operator function is the only operator member function implemented by default. Of course,
you can redefine it to any other functionality that you want, like for example, copy only certain class members or
perform additional initialization procedures.

The overload of operators does not force its operation to bear a relation to the mathematical or usual meaning of

the operator, although it is recommended. For example, the code may not be very intuitive if you use operator +
to subtract two classes or operator== to fill with zeros a class, although it is perfectly possible to do so.

Although the prototype of a function operator+ can seem obvious since it takes what is at the right side of the

operator as the parameter for the operator member function of the object at its left side, other operators may not
be so obvious. Here you have a table with a summary on how the different operator functions have to be declared
(replace @ by the operator in each case):

Expression Operator Member function Global function

@a + - * & ! ~ ++ -- A::operator@() operator@(A)

a@ ++ -- A::operator@(int) operator@(A,int)

a@b + - * / % ^ & | < > == != <= >= << >> && || , A::operator@ (B) operator@(A,B)

a@b = += -= *= /= %= ^= &= |= <<= >>= [] A::operator@ (B) -

a(b, c...) () A::operator() (B, C...) -

a->x -> A::operator->() -

Where a is an object of class A, b is an object of class B and c is an object of class C.

You can see in this panel that there are two ways to overload some class operators: as a member function and as a
global function. Its use is indistinct, nevertheless I remind you that functions that are not members of a class
cannot access the private or protected members of that class unless the global function is its friend (friendship is
explained later).

The keyword this

The keyword this represents a pointer to the object whose member function is being executed. It is a pointer to

the object itself.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

98

 © cplusplus.com 2008. All rights reserved

One of its uses can be to check if a parameter passed to a member function is the object itself. For example,

// this
#include <iostream>
using namespace std;

class CDummy {
 public:
 int isitme (CDummy& param);
};

int CDummy::isitme (CDummy& param)
{
 if (¶m == this) return true;
 else return false;
}

int main () {
 CDummy a;
 CDummy* b = &a;
 if (b->isitme(a))
 cout << "yes, &a is b";
 return 0;
}

yes, &a is b

It is also frequently used in operator= member functions that return objects by reference (avoiding the use of

temporary objects). Following with the vector's examples seen before we could have written an operator= function
similar to this one:

CVector& CVector::operator= (const CVector& param)
{
 x=param.x;
 y=param.y;
 return *this;
}

In fact this function is very similar to the code that the compiler generates implicitly for this class if we do not

include an operator= member function to copy objects of this class.

Static members

A class can contain static members, either data or functions.

Static data members of a class are also known as "class variables", because there is only one unique value for all
the objects of that same class. Their content is not different from one object of this class to another.

For example, it may be used for a variable within a class that can contain a counter with the number of objects of
that class that are currently allocated, as in the following example:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

99

 © cplusplus.com 2008. All rights reserved

// static members in classes
#include <iostream>
using namespace std;

class CDummy {
 public:
 static int n;
 CDummy () { n++; };
 ~CDummy () { n--; };
};

int CDummy::n=0;

int main () {
 CDummy a;
 CDummy b[5];
 CDummy * c = new CDummy;
 cout << a.n << endl;
 delete c;
 cout << CDummy::n << endl;
 return 0;
}

7
6

In fact, static members have the same properties as global variables but they enjoy class scope. For that reason,

and to avoid them to be declared several times, we can only include the prototype (its declaration) in the class
declaration but not its definition (its initialization). In order to initialize a static data-member we must include a
formal definition outside the class, in the global scope, as in the previous example:

int CDummy::n=0;

Because it is a unique variable value for all the objects of the same class, it can be referred to as a member of any
object of that class or even directly by the class name (of course this is only valid for static members):

cout << a.n;
cout << CDummy::n;

These two calls included in the previous example are referring to the same variable: the static variable n within
class CDummy shared by all objects of this class.

Once again, I remind you that in fact it is a global variable. The only difference is its name and possible access
restrictions outside its class.

Just as we may include static data within a class, we can also include static functions. They represent the same:
they are global functions that are called as if they were object members of a given class. They can only refer to
static data, in no case to non-static members of the class, as well as they do not allow the use of the keyword

this, since it makes reference to an object pointer and these functions in fact are not members of any object but

direct members of the class.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

100

 © cplusplus.com 2008. All rights reserved

Friendship and inheritance

Friend functions

In principle, private and protected members of a class cannot be accessed from outside the same class in which
they are declared. However, this rule does not affect friends.

Friends are functions or classes declared as such.

If we want to declare an external function as friend of a class, thus allowing this function to have access to the
private and protected members of this class, we do it by declaring a prototype of this external function within the
class, and preceding it with the keyword friend:

// friend functions
#include <iostream>
using namespace std;

class CRectangle {
 int width, height;
 public:
 void set_values (int, int);
 int area () {return (width * height);}
 friend CRectangle duplicate (CRectangle);
};

void CRectangle::set_values (int a, int b) {
 width = a;
 height = b;
}

CRectangle duplicate (CRectangle rectparam)
{
 CRectangle rectres;
 rectres.width = rectparam.width*2;
 rectres.height = rectparam.height*2;
 return (rectres);
}

int main () {
 CRectangle rect, rectb;
 rect.set_values (2,3);
 rectb = duplicate (rect);
 cout << rectb.area();
 return 0;
}

24

The duplicate function is a friend of CRectangle. From within that function we have been able to access the

members width and height of different objects of type CRectangle, which are private members. Notice that

neither in the declaration of duplicate() nor in its later use in main() have we considered duplicate a member

of class CRectangle. It isn't! It simply has access to its private and protected members without being a member.

The friend functions can serve, for example, to conduct operations between two different classes. Generally, the
use of friend functions is out of an object-oriented programming methodology, so whenever possible it is better to
use members of the same class to perform operations with them. Such as in the previous example, it would have

been shorter to integrate duplicate() within the class CRectangle.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

101

 © cplusplus.com 2008. All rights reserved

Friend classes

Just as we have the possibility to define a friend function, we can also define a class as friend of another one,
granting that first class access to the protected and private members of the second one.

// friend class
#include <iostream>
using namespace std;

class CSquare;

class CRectangle {
 int width, height;
 public:
 int area ()
 {return (width * height);}
 void convert (CSquare a);
};

class CSquare {
 private:
 int side;
 public:
 void set_side (int a)
 {side=a;}
 friend class CRectangle;
};

void CRectangle::convert (CSquare a) {
 width = a.side;
 height = a.side;
}

int main () {
 CSquare sqr;
 CRectangle rect;
 sqr.set_side(4);
 rect.convert(sqr);
 cout << rect.area();
 return 0;
}

16

In this example, we have declared CRectangle as a friend of CSquare so that CRectangle member functions could

have access to the protected and private members of CSquare, more concretely to CSquare::side, which describes
the side width of the square.

You may also see something new at the beginning of the program: an empty declaration of class CSquare. This is
necessary because within the declaration of CRectangle we refer to CSquare (as a parameter in convert()). The
definition of CSquare is included later, so if we did not include a previous empty declaration for CSquare this class
would not be visible from within the definition of CRectangle.

Consider that friendships are not corresponded if we do not explicitly specify so. In our example, CRectangle is
considered as a friend class by CSquare, but CRectangle does not consider CSquare to be a friend, so CRectangle
can access the protected and private members of CSquare but not the reverse way. Of course, we could have
declared also CSquare as friend of CRectangle if we wanted to.

Another property of friendships is that they are not transitive: The friend of a friend is not considered to be a friend
unless explicitly specified.

Inheritance between classes

A key feature of C++ classes is inheritance. Inheritance allows to create classes which are derived from other
classes, so that they automatically include some of its "parent's" members, plus its own. For example, we are going

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

102

 © cplusplus.com 2008. All rights reserved

to suppose that we want to declare a series of classes that describe polygons like our CRectangle, or like
CTriangle. They have certain common properties, such as both can be described by means of only two sides:

height and base.

This could be represented in the world of classes with a class CPolygon from which we would derive the two other

ones: CRectangle and CTriangle.

The class CPolygon would contain members that are common for both types of polygon. In our case: width and
height. And CRectangle and CTriangle would be its derived classes, with specific features that are different from

one type of polygon to the other.

Classes that are derived from others inherit all the accessible members of the base class. That means that if a base

class includes a member A and we derive it to another class with another member called B, the derived class will
contain both members A and B.

In order to derive a class from another, we use a colon (:) in the declaration of the derived class using the
following format:

class derived_class_name: public base_class_name
{ /*...*/ };

Where derived_class_name is the name of the derived class and base_class_name is the name of the class on

which it is based. The public access specifier may be replaced by any one of the other access specifiers protected
and private. This access specifier describes the minimum access level for the members that are inherited from the

base class.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

103

 © cplusplus.com 2008. All rights reserved

// derived classes
#include <iostream>
using namespace std;

class CPolygon {
 protected:
 int width, height;
 public:
 void set_values (int a, int b)
 { width=a; height=b;}
 };

class CRectangle: public CPolygon {
 public:
 int area ()
 { return (width * height); }
 };

class CTriangle: public CPolygon {
 public:
 int area ()
 { return (width * height / 2); }
 };

int main () {
 CRectangle rect;
 CTriangle trgl;
 rect.set_values (4,5);
 trgl.set_values (4,5);
 cout << rect.area() << endl;
 cout << trgl.area() << endl;
 return 0;
}

20
10

The objects of the classes CRectangle and CTriangle each contain members inherited from CPolygon. These are:
width, height and set_values().

The protected access specifier is similar to private. Its only difference occurs in fact with inheritance. When a

class inherits from another one, the members of the derived class can access the protected members inherited
from the base class, but not its private members.

Since we wanted width and height to be accessible from members of the derived classes CRectangle and
CTriangle and not only by members of CPolygon, we have used protected access instead of private.

We can summarize the different access types according to who can access them in the following way:

Access public protected private

members of the same class yes yes yes

members of derived classes yes yes no

not members yes no no

Where "not members" represent any access from outside the class, such as from main(), from another class or

from a function.

In our example, the members inherited by CRectangle and CTriangle have the same access permissions as they

had in their base class CPolygon:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

104

 © cplusplus.com 2008. All rights reserved

CPolygon::width // protected access
CRectangle::width // protected access

CPolygon::set_values() // public access
CRectangle::set_values() // public access

This is because we have used the public keyword to define the inheritance relationship on each of the derived
classes:

class CRectangle: public CPolygon { ... }

This public keyword after the colon (:) denotes the maximum access level for all the members inherited from the

class that follows it (in this case CPolygon). Since public is the most accessible level, by specifying this keyword

the derived class will inherit all the members with the same levels they had in the base class.

If we specify a more restrictive access level like protected, all public members of the base class are inherited as

protected in the derived class. Whereas if we specify the most restricting of all access levels: private, all the base
class members are inherited as private.

For example, if daughter was a class derived from mother that we defined as:

class daughter: protected mother;

This would set protected as the maximum access level for the members of daughter that it inherited from

mother. That is, all members that were public in mother would become protected in daughter. Of course, this
would not restrict daughter to declare its own public members. That maximum access level is only set for the

members inherited from mother.

If we do not explicitly specify any access level for the inheritance, the compiler assumes private for classes
declared with class keyword and public for those declared with struct.

What is inherited from the base class?

In principle, a derived class inherits every member of a base class except:

• its constructor and its destructor

• its operator=() members

• its friends

Although the constructors and destructors of the base class are not inherited themselves, its default constructor
(i.e., its constructor with no parameters) and its destructor are always called when a new object of a derived class
is created or destroyed.

If the base class has no default constructor or you want that an overloaded constructor is called when a new
derived object is created, you can specify it in each constructor definition of the derived class:

derived_constructor_name (parameters) : base_constructor_name (parameters) {...}

For example:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

105

 © cplusplus.com 2008. All rights reserved

// constructors and derived classes
#include <iostream>
using namespace std;

class mother {
 public:
 mother ()
 { cout << "mother: no parameters\n"; }
 mother (int a)
 { cout << "mother: int parameter\n"; }
};

class daughter : public mother {
 public:
 daughter (int a)
 { cout << "daughter: int parameter\n\n"; }
};

class son : public mother {
 public:
 son (int a) : mother (a)
 { cout << "son: int parameter\n\n"; }
};

int main () {
 daughter cynthia (0);
 son daniel(0);

 return 0;
}

mother: no parameters
daughter: int parameter

mother: int parameter
son: int parameter

Notice the difference between which mother's constructor is called when a new daughter object is created and
which when it is a son object. The difference is because the constructor declaration of daughter and son:

daughter (int a) // nothing specified: call default
son (int a) : mother (a) // constructor specified: call this

Multiple inheritance

In C++ it is perfectly possible that a class inherits members from more than one class. This is done by simply
separating the different base classes with commas in the derived class declaration. For example, if we had a

specific class to print on screen (COutput) and we wanted our classes CRectangle and CTriangle to also inherit its
members in addition to those of CPolygon we could write:

class CRectangle: public CPolygon, public COutput;
class CTriangle: public CPolygon, public COutput;

here is the complete example:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

106

 © cplusplus.com 2008. All rights reserved

// multiple inheritance
#include <iostream>
using namespace std;

class CPolygon {
 protected:
 int width, height;
 public:
 void set_values (int a, int b)
 { width=a; height=b;}
 };

class COutput {
 public:
 void output (int i);
 };

void COutput::output (int i) {
 cout << i << endl;
 }

class CRectangle: public CPolygon, public COutput {
 public:
 int area ()
 { return (width * height); }
 };

class CTriangle: public CPolygon, public COutput {
 public:
 int area ()
 { return (width * height / 2); }
 };

int main () {
 CRectangle rect;
 CTriangle trgl;
 rect.set_values (4,5);
 trgl.set_values (4,5);
 rect.output (rect.area());
 trgl.output (trgl.area());
 return 0;
}

20
10

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

107

 © cplusplus.com 2008. All rights reserved

Polymorphism
Before getting into this section, it is recommended that you have a proper understanding of pointers and class
inheritance. If any of the following statements seem strange to you, you should review the indicated sections:

Statement: Explained in:

int a::b(c) {}; Classes

a->b Data Structures

class a: public b; Friendship and inheritance

Pointers to base class

One of the key features of derived classes is that a pointer to a derived class is type-compatible with a pointer to
its base class. Polymorphism is the art of taking advantage of this simple but powerful and versatile feature, that
brings Object Oriented Methodologies to its full potential.

We are going to start by rewriting our program about the rectangle and the triangle of the previous section taking
into consideration this pointer compatibility property:

// pointers to base class
#include <iostream>
using namespace std;

class CPolygon {
 protected:
 int width, height;
 public:
 void set_values (int a, int b)
 { width=a; height=b; }
 };

class CRectangle: public CPolygon {
 public:
 int area ()
 { return (width * height); }
 };

class CTriangle: public CPolygon {
 public:
 int area ()
 { return (width * height / 2); }
 };

int main () {
 CRectangle rect;
 CTriangle trgl;
 CPolygon * ppoly1 = ▭
 CPolygon * ppoly2 = &trgl;
 ppoly1->set_values (4,5);
 ppoly2->set_values (4,5);
 cout << rect.area() << endl;
 cout << trgl.area() << endl;
 return 0;
}

20
10

In function main, we create two pointers that point to objects of class CPolygon (ppoly1 and ppoly2). Then we
assign references to rect and trgl to these pointers, and because both are objects of classes derived from

CPolygon, both are valid assignment operations.

The only limitation in using *ppoly1 and *ppoly2 instead of rect and trgl is that both *ppoly1 and *ppoly2 are
of type CPolygon* and therefore we can only use these pointers to refer to the members that CRectangle and

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

108

 © cplusplus.com 2008. All rights reserved

CTriangle inherit from CPolygon. For that reason when we call the area() members at the end of the program we

have had to use directly the objects rect and trgl instead of the pointers *ppoly1 and *ppoly2.

In order to use area() with the pointers to class CPolygon, this member should also have been declared in the

class CPolygon, and not only in its derived classes, but the problem is that CRectangle and CTriangle implement

different versions of area, therefore we cannot implement it in the base class. This is when virtual members

become handy:

Virtual members

A member of a class that can be redefined in its derived classes is known as a virtual member. In order to declare

a member of a class as virtual, we must precede its declaration with the keyword virtual:

// virtual members
#include <iostream>
using namespace std;

class CPolygon {
 protected:
 int width, height;
 public:
 void set_values (int a, int b)
 { width=a; height=b; }
 virtual int area ()
 { return (0); }
 };

class CRectangle: public CPolygon {
 public:
 int area ()
 { return (width * height); }
 };

class CTriangle: public CPolygon {
 public:
 int area ()
 { return (width * height / 2); }
 };

int main () {
 CRectangle rect;
 CTriangle trgl;
 CPolygon poly;
 CPolygon * ppoly1 = ▭
 CPolygon * ppoly2 = &trgl;
 CPolygon * ppoly3 = &poly;
 ppoly1->set_values (4,5);
 ppoly2->set_values (4,5);
 ppoly3->set_values (4,5);
 cout << ppoly1->area() << endl;
 cout << ppoly2->area() << endl;
 cout << ppoly3->area() << endl;
 return 0;
}

20
10
0

Now the three classes (CPolygon, CRectangle and CTriangle) have all the same members: width, height,
set_values() and area().

The member function area() has been declared as virtual in the base class because it is later redefined in each
derived class. You can verify if you want that if you remove this virtual keyword from the declaration of area()
within CPolygon, and then you run the program the result will be 0 for the three polygons instead of 20, 10 and 0.
That is because instead of calling the corresponding area() function for each object (CRectangle::area(),

CTriangle::area() and CPolygon::area(), respectively), CPolygon::area() will be called in all cases since the
calls are via a pointer whose type is CPolygon*.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

109

 © cplusplus.com 2008. All rights reserved

Therefore, what the virtual keyword does is to allow a member of a derived class with the same name as one in

the base class to be appropriately called from a pointer, and more precisely when the type of the pointer is a
pointer to the base class but is pointing to an object of the derived class, as in the above example.

A class that declares or inherits a virtual function is called a polymorphic class.

Note that despite of its virtuality, we have also been able to declare an object of type CPolygon and to call its own
area() function, which always returns 0.

Abstract base classes

Abstract base classes are something very similar to our CPolygon class of our previous example. The only

difference is that in our previous example we have defined a valid area() function with a minimal functionality for

objects that were of class CPolygon (like the object poly), whereas in an abstract base classes we could leave that
area() member function without implementation at all. This is done by appending =0 (equal to zero) to the
function declaration.

An abstract base CPolygon class could look like this:

// abstract class CPolygon
class CPolygon {
 protected:
 int width, height;
 public:
 void set_values (int a, int b)
 { width=a; height=b; }
 virtual int area () =0;
};

Notice how we appended =0 to virtual int area () instead of specifying an implementation for the function.

This type of function is called a pure virtual function, and all classes that contain at least one pure virtual function
are abstract base classes.

The main difference between an abstract base class and a regular polymorphic class is that because in abstract
base classes at least one of its members lacks implementation we cannot create instances (objects) of it.

But a class that cannot instantiate objects is not totally useless. We can create pointers to it and take advantage of
all its polymorphic abilities. Therefore a declaration like:

CPolygon poly;

would not be valid for the abstract base class we have just declared, because tries to instantiate an object.
Nevertheless, the following pointers:

CPolygon * ppoly1;
CPolygon * ppoly2;

would be perfectly valid.

This is so for as long as CPolygon includes a pure virtual function and therefore it's an abstract base class.
However, pointers to this abstract base class can be used to point to objects of derived classes.

Here you have the complete example:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

110

 © cplusplus.com 2008. All rights reserved

// abstract base class
#include <iostream>
using namespace std;

class CPolygon {
 protected:
 int width, height;
 public:
 void set_values (int a, int b)
 { width=a; height=b; }
 virtual int area (void) =0;
 };

class CRectangle: public CPolygon {
 public:
 int area (void)
 { return (width * height); }
 };

class CTriangle: public CPolygon {
 public:
 int area (void)
 { return (width * height / 2); }
 };

int main () {
 CRectangle rect;
 CTriangle trgl;
 CPolygon * ppoly1 = ▭
 CPolygon * ppoly2 = &trgl;
 ppoly1->set_values (4,5);
 ppoly2->set_values (4,5);
 cout << ppoly1->area() << endl;
 cout << ppoly2->area() << endl;
 return 0;
}

20
10

If you review the program you will notice that we refer to objects of different but related classes using a unique

type of pointer (CPolygon*). This can be tremendously useful. For example, now we can create a function member

of the abstract base class CPolygon that is able to print on screen the result of the area() function even though
CPolygon itself has no implementation for this function:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

111

 © cplusplus.com 2008. All rights reserved

// pure virtual members can be called
// from the abstract base class
#include <iostream>
using namespace std;

class CPolygon {
 protected:
 int width, height;
 public:
 void set_values (int a, int b)
 { width=a; height=b; }
 virtual int area (void) =0;
 void printarea (void)
 { cout << this->area() << endl; }
 };

class CRectangle: public CPolygon {
 public:
 int area (void)
 { return (width * height); }
 };

class CTriangle: public CPolygon {
 public:
 int area (void)
 { return (width * height / 2); }
 };

int main () {
 CRectangle rect;
 CTriangle trgl;
 CPolygon * ppoly1 = ▭
 CPolygon * ppoly2 = &trgl;
 ppoly1->set_values (4,5);
 ppoly2->set_values (4,5);
 ppoly1->printarea();
 ppoly2->printarea();
 return 0;
}

20
10

Virtual members and abstract classes grant C++ the polymorphic characteristics that make object-oriented

programming such a useful instrument in big projects. Of course, we have seen very simple uses of these features,
but these features can be applied to arrays of objects or dynamically allocated objects.

Let's end with the same example again, but this time with objects that are dynamically allocated:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

112

 © cplusplus.com 2008. All rights reserved

// dynamic allocation and polymorphism
#include <iostream>
using namespace std;

class CPolygon {
 protected:
 int width, height;
 public:
 void set_values (int a, int b)
 { width=a; height=b; }
 virtual int area (void) =0;
 void printarea (void)
 { cout << this->area() << endl; }
 };

class CRectangle: public CPolygon {
 public:
 int area (void)
 { return (width * height); }
 };

class CTriangle: public CPolygon {
 public:
 int area (void)
 { return (width * height / 2); }
 };

int main () {
 CPolygon * ppoly1 = new CRectangle;
 CPolygon * ppoly2 = new CTriangle;
 ppoly1->set_values (4,5);
 ppoly2->set_values (4,5);
 ppoly1->printarea();
 ppoly2->printarea();
 delete ppoly1;
 delete ppoly2;
 return 0;
}

20
10

Notice that the ppoly pointers:

CPolygon * ppoly1 = new CRectangle;
CPolygon * ppoly2 = new CTriangle;

are declared being of type pointer to CPolygon but the objects dynamically allocated have been declared having

the derived class type directly.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

113

 © cplusplus.com 2008. All rights reserved

Advanced concepts

Templates

Function templates

Function templates are special functions that can operate with generic types. This allows us to create a function
template whose functionality can be adapted to more than one type or class without repeating the entire code for
each type.

In C++ this can be achieved using template parameters. A template parameter is a special kind of parameter that
can be used to pass a type as argument: just like regular function parameters can be used to pass values to a
function, template parameters allow to pass also types to a function. These function templates can use these
parameters as if they were any other regular type.

The format for declaring function templates with type parameters is:

template <class identifier> function_declaration;
template <typename identifier> function_declaration;

The only difference between both prototypes is the use of either the keyword class or the keyword typename. Its
use is indistinct, since both expressions have exactly the same meaning and behave exactly the same way.

For example, to create a template function that returns the greater one of two objects we could use:

template <class myType>
myType GetMax (myType a, myType b) {
 return (a>b?a:b);
}

Here we have created a template function with myType as its template parameter. This template parameter

represents a type that has not yet been specified, but that can be used in the template function as if it were a

regular type. As you can see, the function template GetMax returns the greater of two parameters of this still-

undefined type.

To use this function template we use the following format for the function call:

function_name <type> (parameters);

For example, to call GetMax to compare two integer values of type int we can write:

int x,y;
GetMax <int> (x,y);

When the compiler encounters this call to a template function, it uses the template to automatically generate a

function replacing each appearance of myType by the type passed as the actual template parameter (int in this
case) and then calls it. This process is automatically performed by the compiler and is invisible to the programmer.

Here is the entire example:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

114

 © cplusplus.com 2008. All rights reserved

// function template
#include <iostream>
using namespace std;

template <class T>
T GetMax (T a, T b) {
 T result;
 result = (a>b)? a : b;
 return (result);
}

int main () {
 int i=5, j=6, k;
 long l=10, m=5, n;
 k=GetMax<int>(i,j);
 n=GetMax<long>(l,m);
 cout << k << endl;
 cout << n << endl;
 return 0;
}

6
10

In this case, we have used T as the template parameter name instead of myType because it is shorter and in fact is
a very common template parameter name. But you can use any identifier you like.

In the example above we used the function template GetMax() twice. The first time with arguments of type int
and the second one with arguments of type long. The compiler has instantiated and then called each time the

appropriate version of the function.

As you can see, the type T is used within the GetMax() template function even to declare new objects of that type:

T result;

Therefore, result will be an object of the same type as the parameters a and b when the function template is

instantiated with a specific type.

In this specific case where the generic type T is used as a parameter for GetMax the compiler can find out

automatically which data type has to instantiate without having to explicitly specify it within angle brackets (like we
have done before specifying <int> and <long>). So we could have written instead:

int i,j;
GetMax (i,j);

Since both i and j are of type int, and the compiler can automatically find out that the template parameter can

only be int. This implicit method produces exactly the same result:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

115

 © cplusplus.com 2008. All rights reserved

// function template II
#include <iostream>
using namespace std;

template <class T>
T GetMax (T a, T b) {
 return (a>b?a:b);
}

int main () {
 int i=5, j=6, k;
 long l=10, m=5, n;
 k=GetMax(i,j);
 n=GetMax(l,m);
 cout << k << endl;
 cout << n << endl;
 return 0;
}

6
10

Notice how in this case, we called our function template GetMax() without explicitly specifying the type between
angle-brackets <>. The compiler automatically determines what type is needed on each call.

Because our template function includes only one template parameter (class T) and the function template itself

accepts two parameters, both of this T type, we cannot call our function template with two objects of different

types as arguments:

int i;
long l;
k = GetMax (i,l);

This would not be correct, since our GetMax function template expects two arguments of the same type, and in this

call to it we use objects of two different types.

We can also define function templates that accept more than one type parameter, simply by specifying more
template parameters between the angle brackets. For example:

template <class T, class U>
T GetMin (T a, U b) {
 return (a<b?a:b);
}

In this case, our function template GetMin() accepts two parameters of different types and returns an object of the

same type as the first parameter (T) that is passed. For example, after that declaration we could call GetMin()
with:

int i,j;
long l;
i = GetMin<int,long> (j,l);

or simply:

i = GetMin (j,l);

even though j and l have different types, since the compiler can determine the appropriate instantiation anyway.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

116

 © cplusplus.com 2008. All rights reserved

Class templates

We also have the possibility to write class templates, so that a class can have members that use template
parameters as types. For example:

template <class T>
class mypair {
 T values [2];
 public:
 mypair (T first, T second)
 {
 values[0]=first; values[1]=second;
 }
};

The class that we have just defined serves to store two elements of any valid type. For example, if we wanted to

declare an object of this class to store two integer values of type int with the values 115 and 36 we would write:

mypair<int> myobject (115, 36);

this same class would also be used to create an object to store any other type:

mypair<double> myfloats (3.0, 2.18);

The only member function in the previous class template has been defined inline within the class declaration itself.
In case that we define a function member outside the declaration of the class template, we must always precede
that definition with the template <...> prefix:

// class templates
#include <iostream>
using namespace std;

template <class T>
class mypair {
 T a, b;
 public:
 mypair (T first, T second)
 {a=first; b=second;}
 T getmax ();
};

template <class T>
T mypair<T>::getmax ()
{
 T retval;
 retval = a>b? a : b;
 return retval;
}

int main () {
 mypair <int> myobject (100, 75);
 cout << myobject.getmax();
 return 0;
}

100

Notice the syntax of the definition of member function getmax:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

117

 © cplusplus.com 2008. All rights reserved

template <class T>
T mypair<T>::getmax ()

Confused by so many T's? There are three T's in this declaration: The first one is the template parameter. The

second T refers to the type returned by the function. And the third T (the one between angle brackets) is also a
requirement: It specifies that this function's template parameter is also the class template parameter.

Template specialization

If we want to define a different implementation for a template when a specific type is passed as template
parameter, we can declare a specialization of that template.

For example, let's suppose that we have a very simple class called mycontainer that can store one element of any

type and that it has just one member function called increase, which increases its value. But we find that when it
stores an element of type char it would be more convenient to have a completely different implementation with a

function member uppercase, so we decide to declare a class template specialization for that type:

// template specialization
#include <iostream>
using namespace std;

// class template:
template <class T>
class mycontainer {
 T element;
 public:
 mycontainer (T arg) {element=arg;}
 T increase () {return ++element;}
};

// class template specialization:
template <>
class mycontainer <char> {
 char element;
 public:
 mycontainer (char arg) {element=arg;}
 char uppercase ()
 {
 if ((element>='a')&&(element<='z'))
 element+='A'-'a';
 return element;
 }
};

int main () {
 mycontainer<int> myint (7);
 mycontainer<char> mychar ('j');
 cout << myint.increase() << endl;
 cout << mychar.uppercase() << endl;
 return 0;
}

8
J

This is the syntax used in the class template specialization:

template <> class mycontainer <char> { ... };

First of all, notice that we precede the class template name with an emptytemplate<> parameter list. This is to

explicitly declare it as a template specialization.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

118

 © cplusplus.com 2008. All rights reserved

But more important than this prefix, is the <char> specialization parameter after the class template name. This

specialization parameter itself identifies the type for which we are going to declare a template class specialization
(char). Notice the differences between the generic class template and the specialization:

template <class T> class mycontainer { ... };
template <> class mycontainer <char> { ... };

The first line is the generic template, and the second one is the specialization.

When we declare specializations for a template class, we must also define all its members, even those exactly
equal to the generic template class, because there is no "inheritance" of members from the generic template to the
specialization.

Non-type parameters for templates

Besides the template arguments that are preceded by the class or typename keywords , which represent types,
templates can also have regular typed parameters, similar to those found in functions. As an example, have a look
at this class template that is used to contain sequences of elements:

// sequence template
#include <iostream>
using namespace std;

template <class T, int N>
class mysequence {
 T memblock [N];
 public:
 void setmember (int x, T value);
 T getmember (int x);
};

template <class T, int N>
void mysequence<T,N>::setmember (int x, T value)
{
 memblock[x]=value;
}

template <class T, int N>
T mysequence<T,N>::getmember (int x) {
 return memblock[x];
}

int main () {
 mysequence <int,5> myints;
 mysequence <double,5> myfloats;
 myints.setmember (0,100);
 myfloats.setmember (3,3.1416);
 cout << myints.getmember(0) << '\n';
 cout << myfloats.getmember(3) << '\n';
 return 0;
}

100
3.1416

It is also possible to set default values or types for class template parameters. For example, if the previous class
template definition had been:

template <class T=char, int N=10> class mysequence {..};

We could create objects using the default template parameters by declaring:

mysequence<> myseq;

Which would be equivalent to:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

119

 © cplusplus.com 2008. All rights reserved

mysequence<char,10> myseq;

Templates and multiple-file projects

From the point of view of the compiler, templates are not normal functions or classes. They are compiled on
demand, meaning that the code of a template function is not compiled until an instantiation with specific template
arguments is required. At that moment, when an instantiation is required, the compiler generates a function
specifically for those arguments from the template.

When projects grow it is usual to split the code of a program in different source code files. In these cases, the
interface and implementation are generally separated. Taking a library of functions as example, the interface
generally consists of declarations of the prototypes of all the functions that can be called. These are generally
declared in a "header file" with a .h extension, and the implementation (the definition of these functions) is in an
independent file with c++ code.

Because templates are compiled when required, this forces a restriction for multi-file projects: the implementation
(definition) of a template class or function must be in the same file as its declaration. That means that we cannot
separate the interface in a separate header file, and that we must include both interface and implementation in any
file that uses the templates.

Since no code is generated until a template is instantiated when required, compilers are prepared to allow the
inclusion more than once of the same template file with both declarations and definitions in a project without
generating linkage errors.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

120

 © cplusplus.com 2008. All rights reserved

Namespaces
Namespaces allow to group entities like classes, objects and functions under a name. This way the global scope can
be divided in "sub-scopes", each one with its own name.

The format of namespaces is:

namespace identifier
{
entities
}

Where identifier is any valid identifier and entities is the set of classes, objects and functions that are included
within the namespace. For example:

namespace myNamespace
{
 int a, b;
}

In this case, the variables a and b are normal variables declared within a namespace called myNamespace. In order
to access these variables from outside the myNamespace namespace we have to use the scope operator ::. For
example, to access the previous variables from outside myNamespace we can write:

myNamespace::a
myNamespace::b

The functionality of namespaces is especially useful in the case that there is a possibility that a global object or
function uses the same identifier as another one, causing redefinition errors. For example:

// namespaces
#include <iostream>
using namespace std;

namespace first
{
 int var = 5;
}

namespace second
{
 double var = 3.1416;
}

int main () {
 cout << first::var << endl;
 cout << second::var << endl;
 return 0;
}

5
3.1416

In this case, there are two global variables with the same name: var. One is defined within the namespace first
and the other one in second. No redefinition errors happen thanks to namespaces.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

121

 © cplusplus.com 2008. All rights reserved

using

The keyword using is used to introduce a name from a namespace into the current declarative region. For

example:

// using
#include <iostream>
using namespace std;

namespace first
{
 int x = 5;
 int y = 10;
}

namespace second
{
 double x = 3.1416;
 double y = 2.7183;
}

int main () {
 using first::x;
 using second::y;
 cout << x << endl;
 cout << y << endl;
 cout << first::y << endl;
 cout << second::x << endl;
 return 0;
}

5
2.7183
10
3.1416

Notice how in this code, x (without any name qualifier) refers to first::x whereas y refers to second::y, exactly

as our using declarations have specified. We still have access to first::y and second::x using their fully qualified
names.

The keyword using can also be used as a directive to introduce an entire namespace:

// using
#include <iostream>
using namespace std;

namespace first
{
 int x = 5;
 int y = 10;
}

namespace second
{
 double x = 3.1416;
 double y = 2.7183;
}

int main () {
 using namespace first;
 cout << x << endl;
 cout << y << endl;
 cout << second::x << endl;
 cout << second::y << endl;
 return 0;
}

5
10
3.1416
2.7183

In this case, since we have declared that we were using namespace first, all direct uses of x and y without name

qualifiers were referring to their declarations in namespace first.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

122

 © cplusplus.com 2008. All rights reserved

using and using namespace have validity only in the same block in which they are stated or in the entire code if

they are used directly in the global scope. For example, if we had the intention to first use the objects of one
namespace and then those of another one, we could do something like:

// using namespace example
#include <iostream>
using namespace std;

namespace first
{
 int x = 5;
}

namespace second
{
 double x = 3.1416;
}

int main () {
 {
 using namespace first;
 cout << x << endl;
 }
 {
 using namespace second;
 cout << x << endl;
 }
 return 0;
}

5
3.1416

Namespace alias

We can declare alternate names for existing namespaces according to the following format:

namespace new_name = current_name;

Namespace std

All the files in the C++ standard library declare all of its entities within the std namespace. That is why we have

generally included the using namespace std; statement in all programs that used any entity defined in iostream.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

123

 © cplusplus.com 2008. All rights reserved

Exceptions

Exceptions provide a way to react to exceptional circumstances (like runtime errors) in our program by transferring
control to special functions called handlers.

To catch exceptions we must place a portion of code under exception inspection. This is done by enclosing that
portion of code in a try block. When an exceptional circumstance arises within that block, an exception is thrown
that transfers the control to the exception handler. If no exception is thrown, the code continues normally and all
handlers are ignored.

A exception is thrown by using the throw keyword from inside the try block. Exception handlers are declared with
the keyword catch, which must be placed immediately after the try block:

// exceptions
#include <iostream>
using namespace std;

int main () {
 try
 {
 throw 20;
 }
 catch (int e)
 {
 cout << "An exception occurred. "
 cout << "Exception Nr. " << e << endl;
 }
 return 0;
}

An exception occurred. Exception Nr. 20

The code under exception handling is enclosed in a try block. In this example this code simply throws an

exception:

throw 20;

A throw expression accepts one parameter (in this case the integer value 20), which is passed as an argument to

the exception handler.

The exception handler is declared with the catch keyword. As you can see, it follows immediately the closing brace

of the try block. The catch format is similar to a regular function that always has at least one parameter. The type

of this parameter is very important, since the type of the argument passed by the throw expression is checked
against it, and only in the case they match, the exception is caught.

We can chain multiple handlers (catch expressions), each one with a different parameter type. Only the handler
that matches its type with the argument specified in the throw statement is executed.

If we use an ellipsis (...) as the parameter of catch, that handler will catch any exception no matter what the

type of the throw exception is. This can be used as a default handler that catches all exceptions not caught by
other handlers if it is specified at last:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

124

 © cplusplus.com 2008. All rights reserved

try {
 // code here
}
catch (int param) { cout << "int exception"; }
catch (char param) { cout << "char exception"; }
catch (...) { cout << "default exception"; }

In this case the last handler would catch any exception thrown with any parameter that is neither an int nor a
char.

After an exception has been handled the program execution resumes after the try-catch block, not after the
throw statement!.

It is also possible to nest try-catch blocks within more external try blocks. In these cases, we have the possibility
that an internal catch block forwards the exception to its external level. This is done with the expression throw;
with no arguments. For example:

try {
 try {
 // code here
 }
 catch (int n) {
 throw;
 }
}
catch (...) {
 cout << "Exception occurred";
}

Exception specifications

When declaring a function we can limit the exception type it might directly or indirectly throw by appending a
throw suffix to the function declaration:

float myfunction (char param) throw (int);

This declares a function called myfunction which takes one agument of type char and returns an element of type

float. The only exception that this function might throw is an exception of type int. If it throws an exception with
a different type, either directly or indirectly, it cannot be caught by a regular int-type handler.

If this throw specifier is left empty with no type, this means the function is not allowed to throw exceptions.

Functions with no throw specifier (regular functions) are allowed to throw exceptions with any type:

int myfunction (int param) throw(); // no exceptions allowed
int myfunction (int param); // all exceptions allowed

Standard exceptions

The C++ Standard library provides a base class specifically designed to declare objects to be thrown as exceptions.

It is called exception and is defined in the <exception> header file under the namespace std. This class has the
usual default and copy constructors, operators and destructors, plus an additional virtual member function called

what that returns a null-terminated character sequence (char *) and that can be overwritten in derived classes to
contain some sort of description of the exception.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

125

 © cplusplus.com 2008. All rights reserved

// standard exceptions
#include <iostream>
#include <exception>
using namespace std;

class myexception: public exception
{
 virtual const char* what() const throw()
 {
 return "My exception happened";
 }
} myex;

int main () {
 try
 {
 throw myex;
 }
 catch (exception& e)
 {
 cout << e.what() << endl;
 }
 return 0;
}

My exception happened.

We have placed a handler that catches exception objects by reference (notice the ampersand & after the type),
therefore this catches also classes derived from exception, like our myex object of class myexception.

All exceptions thrown by components of the C++ Standard library throw exceptions derived from this
std::exception class. These are:

exception description

bad_alloc thrown by new on allocation failure

bad_cast thrown by dynamic_cast when fails with a referenced type

bad_exception thrown when an exception type doesn't match any catch

bad_typeid thrown by typeid

ios_base::failure thrown by functions in the iostream library

For example, if we use the operator new and the memory cannot be allocated, an exception of type bad_alloc is
thrown:

try
{
 int * myarray= new int[1000];
}
catch (bad_alloc&)
{
 cout << "Error allocating memory." << endl;
}

It is recommended to include all dynamic memory allocations within a try block that catches this type of exception

to perform a clean action instead of an abnormal program termination, which is what happens when this type of

exception is thrown and not caught. If you want to force a bad_alloc exception to see it in action, you can try to
allocate a huge array; On my system, trying to allocate 1 billion ints threw a bad_alloc exception.

Because bad_alloc is derived from the standard base class exception, we can handle that same exception by

catching references to the exception class:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

126

 © cplusplus.com 2008. All rights reserved

// bad_alloc standard exception
#include <iostream>
#include <exception>
using namespace std;

int main () {
 try
 {
 int* myarray= new int[1000];
 }
 catch (exception& e)
 {
 cout << "Standard exception: " << e.what()
<< endl;
 }
 return 0;
}

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

127

 © cplusplus.com 2008. All rights reserved

Type Casting
Converting an expression of a given type into another type is known as type-casting. We have already seen some
ways to type cast:

Implicit conversion

Implicit conversions do not require any operator. They are automatically performed when a value is copied to a
compatible type. For example:

short a=2000;
int b;
b=a;

Here, the value of a has been promoted from short to int and we have not had to specify any type-casting
operator. This is known as a standard conversion. Standard conversions affect fundamental data types, and allow

conversions such as the conversions between numerical types (short to int, int to float, double to int...), to or
from bool, and some pointer conversions. Some of these conversions may imply a loss of precision, which the

compiler can signal with a warning. This can be avoided with an explicit conversion.

Implicit conversions also include constructor or operator conversions, which affect classes that include specific
constructors or operator functions to perform conversions. For example:

class A {};
class B { public: B (A a) {} };

A a;
B b=a;

Here, a implicit conversion happened between objects of class A and class B, because B has a constructor that
takes an object of class A as parameter. Therefore implicit conversions from A to B are allowed.

Explicit conversion

C++ is a strong-typed language. Many conversions, specially those that imply a different interpretation of the
value, require an explicit conversion. We have already seen two notations for explicit type conversion: functional
and c-like casting:

short a=2000;
int b;
b = (int) a; // c-like cast notation
b = int (a); // functional notation

The functionality of these explicit conversion operators is enough for most needs with fundamental data types.
However, these operators can be applied indiscriminately on classes and pointers to classes, which can lead to code
that while being syntactically correct can cause runtime errors. For example, the following code is syntactically
correct:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

128

 © cplusplus.com 2008. All rights reserved

// class type-casting
#include <iostream>
using namespace std;

class CDummy {
 float i,j;
};

class CAddition {
 int x,y;
 public:
 CAddition (int a, int b) { x=a; y=b; }
 int result() { return x+y;}
};

int main () {
 CDummy d;
 CAddition * padd;
 padd = (CAddition*) &d;
 cout << padd->result();
 return 0;
}

The program declares a pointer to CAddition, but then it assigns to it a reference to an object of another
incompatible type using explicit type-casting:

padd = (CAddition*) &d;

Traditional explicit type-casting allows to convert any pointer into any other pointer type, independently of the

types they point to. The subsequent call to member result will produce either a run-time error or a unexpected

result.

In order to control these types of conversions between classes, we have four specific casting operators:

dynamic_cast, reinterpret_cast, static_cast and const_cast. Their format is to follow the new type enclosed

between angle-brackets (<>) and immediately after, the expression to be converted between parentheses.

dynamic_cast <new_type> (expression)
reinterpret_cast <new_type> (expression)
static_cast <new_type> (expression)
const_cast <new_type> (expression)

The traditional type-casting equivalents to these expressions would be:

(new_type) expression
new_type (expression)

but each one with its own special characteristics:

dynamic_cast

dynamic_cast can be used only with pointers and references to objects. Its purpose is to ensure that the result of
the type conversion is a valid complete object of the requested class.

Therefore, dynamic_cast is always successful when we cast a class to one of its base classes:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

129

 © cplusplus.com 2008. All rights reserved

class CBase { };
class CDerived: public CBase { };

CBase b; CBase* pb;
CDerived d; CDerived* pd;

pb = dynamic_cast<CBase*>(&d); // ok: derived-to-base
pd = dynamic_cast<CDerived*>(&b); // wrong: base-to-derived

The second conversion in this piece of code would produce a compilation error since base-to-derived conversions

are not allowed with dynamic_cast unless the base class is polymorphic.

When a class is polymorphic, dynamic_cast performs a special checking during runtime to ensure that the

expression yields a valid complete object of the requested class:

// dynamic_cast
#include <iostream>
#include <exception>
using namespace std;

class CBase { virtual void dummy() {} };
class CDerived: public CBase { int a; };

int main () {
 try {
 CBase * pba = new CDerived;
 CBase * pbb = new CBase;
 CDerived * pd;

 pd = dynamic_cast<CDerived*>(pba);
 if (pd==0) cout << "Null pointer on first type-cast" << endl;

 pd = dynamic_cast<CDerived*>(pbb);
 if (pd==0) cout << "Null pointer on second type-cast" << endl;

 } catch (exception& e) {cout << "Exception: " << e.what();}
 return 0;
}

Null pointer on second type-
cast

Compatibility note: dynamic_cast requires the Run-Time Type Information (RTTI) to keep track of dynamic

types. Some compilers support this feature as an option which is disabled by default. This must be enabled for

runtime type checking using dynamic_cast to work properly.

The code tries to perform two dynamic casts from pointer objects of type CBase* (pba and pbb) to a pointer object
of type CDerived*, but only the first one is successful. Notice their respective initializations:

CBase * pba = new CDerived;
CBase * pbb = new CBase;

Even though both are pointers of type CBase*, pba points to an object of type CDerived, while pbb points to an

object of type CBase. Thus, when their respective type-castings are performed using dynamic_cast, pba is pointing
to a full object of class CDerived, whereas pbb is pointing to an object of class CBase, which is an incomplete

object of class CDerived.

When dynamic_cast cannot cast a pointer because it is not a complete object of the required class -as in the

second conversion in the previous example- it returns a null pointer to indicate the failure. If dynamic_cast is used
to convert to a reference type and the conversion is not possible, an exception of type bad_cast is thrown instead.

dynamic_cast can also cast null pointers even between pointers to unrelated classes, and can also cast pointers of
any type to void pointers (void*).

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

130

 © cplusplus.com 2008. All rights reserved

static_cast

static_cast can perform conversions between pointers to related classes, not only from the derived class to its

base, but also from a base class to its derived. This ensures that at least the classes are compatible if the proper
object is converted, but no safety check is performed during runtime to check if the object being converted is in
fact a full object of the destination type. Therefore, it is up to the programmer to ensure that the conversion is

safe. On the other side, the overhead of the type-safety checks of dynamic_cast is avoided.

class CBase {};
class CDerived: public CBase {};
CBase * a = new CBase;
CDerived * b = static_cast<CDerived*>(a);

This would be valid, although b would point to an incomplete object of the class and could lead to runtime errors if

dereferenced.

static_cast can also be used to perform any other non-pointer conversion that could also be performed implicitly,

like for example standard conversion between fundamental types:

double d=3.14159265;
int i = static_cast<int>(d);

Or any conversion between classes with explicit constructors or operator functions as described in "implicit
conversions" above.

reinterpret_cast

reinterpret_cast converts any pointer type to any other pointer type, even of unrelated classes. The operation
result is a simple binary copy of the value from one pointer to the other. All pointer conversions are allowed:

neither the content pointed nor the pointer type itself is checked.

It can also cast pointers to or from integer types. The format in which this integer value represents a pointer is
platform-specific. The only guarantee is that a pointer cast to an integer type large enough to fully contain it, is
granted to be able to be cast back to a valid pointer.

The conversions that can be performed by reinterpret_cast but not by static_cast have no specific uses in
C++ are low-level operations, whose interpretation results in code which is generally system-specific, and thus
non-portable. For example:

class A {};
class B {};
A * a = new A;
B * b = reinterpret_cast<B*>(a);

This is valid C++ code, although it does not make much sense, since now we have a pointer that points to an
object of an incompatible class, and thus dereferencing it is unsafe.

const_cast

This type of casting manipulates the constness of an object, either to be set or to be removed. For example, in
order to pass a const argument to a function that expects a non-constant parameter:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

131

 © cplusplus.com 2008. All rights reserved

// const_cast
#include <iostream>
using namespace std;

void print (char * str)
{
 cout << str << endl;
}

int main () {
 const char * c = "sample text";
 print (const_cast<char *> (c));
 return 0;
}

sample text

typeid

typeid allows to check the type of an expression:

typeid (expression)

This operator returns a reference to a constant object of type type_info that is defined in the standard header file
<typeinfo>. This returned value can be compared with another one using operators == and != or can serve to
obtain a null-terminated character sequence representing the data type or class name by using its name() member.

// typeid
#include <iostream>
#include <typeinfo>
using namespace std;

int main () {
 int * a,b;
 a=0; b=0;
 if (typeid(a) != typeid(b))
 {
 cout << "a and b are of different types:\n";
 cout << "a is: " << typeid(a).name() << '\n';
 cout << "b is: " << typeid(b).name() << '\n';
 }
 return 0;
}

a and b are of different types:
a is: int *
b is: int

When typeid is applied to classes typeid uses the RTTI to keep track of the type of dynamic objects. When typeid

is applied to an expression whose type is a polymorphic class, the result is the type of the most derived complete
object:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

132

 © cplusplus.com 2008. All rights reserved

// typeid, polymorphic class
#include <iostream>
#include <typeinfo>
#include <exception>
using namespace std;

class CBase { virtual void f(){} };
class CDerived : public CBase {};

int main () {
 try {
 CBase* a = new CBase;
 CBase* b = new CDerived;
 cout << "a is: " << typeid(a).name() << '\n';
 cout << "b is: " << typeid(b).name() << '\n';
 cout << "*a is: " << typeid(*a).name() << '\n';
 cout << "*b is: " << typeid(*b).name() << '\n';
 } catch (exception& e) { cout << "Exception: " << e.what() << endl;
}
 return 0;
}

a is: class CBase *
b is: class CBase *
*a is: class CBase
*b is: class CDerived

Notice how the type that typeid considers for pointers is the pointer type itself (both a and b are of type class

CBase *). However, when typeid is applied to objects (like *a and *b) typeid yields their dynamic type (i.e. the

type of their most derived complete object).

If the type typeid evaluates is a pointer preceded by the dereference operator (*), and this pointer has a null
value, typeid throws a bad_typeid exception.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

133

 © cplusplus.com 2008. All rights reserved

Preprocessor directives
Preprocessor directives are lines included in the code of our programs that are not program statements but

directives for the preprocessor. These lines are always preceded by a hash sign (#). The preprocessor is executed
before the actual compilation of code begins, therefore the preprocessor digests all these directives before any
code is generated by the statements.

These preprocessor directives extend only across a single line of code. As soon as a newline character is found, the

preprocessor directive is considered to end. No semicolon (;) is expected at the end of a preprocessor directive.
The only way a preprocessor directive can extend through more than one line is by preceding the newline character
at the end of the line by a backslash (\).

macro definitions (#define, #undef)

To define preprocessor macros we can use #define. Its format is:

#define identifier replacement

When the preprocessor encounters this directive, it replaces any occurrence of identifier in the rest of the code
by replacement. This replacement can be an expression, a statement, a block or simply anything. The

preprocessor does not understand C++, it simply replaces any occurrence of identifier by replacement.

#define TABLE_SIZE 100
int table1[TABLE_SIZE];
int table2[TABLE_SIZE];

After the preprocessor has replaced TABLE_SIZE, the code becomes equivalent to:

int table1[100];
int table2[100];

This use of #define as constant definer is already known by us from previous tutorials, but #define can work also
with parameters to define function macros:

#define getmax(a,b) a>b?a:b

This would replace any occurrence of getmax followed by two arguments by the replacement expression, but also

replacing each argument by its identifier, exactly as you would expect if it was a function:

// function macro
#include <iostream>
using namespace std;

#define getmax(a,b) ((a)>(b)?(a):(b))

int main()
{
 int x=5, y;
 y= getmax(x,2);
 cout << y << endl;
 cout << getmax(7,x) << endl;
 return 0;
}

5
7

Defined macros are not affected by block structure. A macro lasts until it is undefined with the #undef preprocessor
directive:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

134

 © cplusplus.com 2008. All rights reserved

#define TABLE_SIZE 100
int table1[TABLE_SIZE];
#undef TABLE_SIZE
#define TABLE_SIZE 200
int table2[TABLE_SIZE];

This would generate the same code as:

int table1[100];
int table2[200];

Function macro definitions accept two special operators (# and ##) in the replacement sequence:

If the operator # is used before a parameter is used in the replacement sequence, that parameter is replaced by a

string literal (as if it were enclosed between double quotes)

#define str(x) #x
cout << str(test);

This would be translated into:

cout << "test";

The operator ## concatenates two arguments leaving no blank spaces between them:

#define glue(a,b) a ## b
glue(c,out) << "test";

This would also be translated into:

cout << "test";

Because preprocessor replacements happen before any C++ syntax check, macro definitions can be a tricky

feature, but be careful: code that relies heavily on complicated macros may result obscure to other programmers,
since the syntax they expect is on many occasions different from the regular expressions programmers expect in
C++.

Conditional inclusions (#ifdef, #ifndef, #if, #endif, #else and
#elif)

These directives allow to include or discard part of the code of a program if a certain condition is met.

#ifdef allows a section of a program to be compiled only if the macro that is specified as the parameter has been

defined, no matter which its value is. For example:

#ifdef TABLE_SIZE
int table[TABLE_SIZE];
#endif

In this case, the line of code int table[TABLE_SIZE]; is only compiled if TABLE_SIZE was previously defined with
#define, independently of its value. If it was not defined, that line will not be included in the program compilation.

#ifndef serves for the exact opposite: the code between #ifndef and #endif directives is only compiled if the

specified identifier has not been previously defined. For example:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

135

 © cplusplus.com 2008. All rights reserved

#ifndef TABLE_SIZE
#define TABLE_SIZE 100
#endif
int table[TABLE_SIZE];

In this case, if when arriving at this piece of code, the TABLE_SIZE macro has not been defined yet, it would be

defined to a value of 100. If it already existed it would keep its previous value since the #define directive would
not be executed.

The #if, #else and #elif (i.e., "else if") directives serve to specify some condition to be met in order for the

portion of code they surround to be compiled. The condition that follows #if or #elif can only evaluate constant
expressions, including macro expressions. For example:

#if TABLE_SIZE>200
#undef TABLE_SIZE
#define TABLE_SIZE 200

#elif TABLE_SIZE<50
#undef TABLE_SIZE
#define TABLE_SIZE 50

#else
#undef TABLE_SIZE
#define TABLE_SIZE 100
#endif

int table[TABLE_SIZE];

Notice how the whole structure of #if, #elif and #else chained directives ends with #endif.

The behavior of #ifdef and #ifndef can also be achieved by using the special operators defined and !defined
respectively in any #if or #elif directive:

#if !defined TABLE_SIZE
#define TABLE_SIZE 100
#elif defined ARRAY_SIZE
#define TABLE_SIZE ARRAY_SIZE
int table[TABLE_SIZE];

Line control (#line)

When we compile a program and some error happen during the compiling process, the compiler shows an error
message with references to the name of the file where the error happened and a line number, so it is easier to find
the code generating the error.

The #line directive allows us to control both things, the line numbers within the code files as well as the file name

that we want that appears when an error takes place. Its format is:

#line number "filename"

Where number is the new line number that will be assigned to the next code line. The line numbers of successive

lines will be increased one by one from this point on.

"filename" is an optional parameter that allows to redefine the file name that will be shown. For example:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

136

 © cplusplus.com 2008. All rights reserved

#line 20 "assigning variable"
int a?;

This code will generate an error that will be shown as error in file "assigning variable", line 20.

Error directive (#error)

This directive aborts the compilation process when it is found, generating a compilation the error that can be
specified as its parameter:

#ifndef __cplusplus
#error A C++ compiler is required!
#endif

This example aborts the compilation process if the macro name __cplusplus is not defined (this macro name is

defined by default in all C++ compilers).

Source file inclusion (#include)

This directive has also been used assiduously in other sections of this tutorial. When the preprocessor finds an

#include directive it replaces it by the entire content of the specified file. There are two ways to specify a file to be
included:

#include "file"
#include <file>

The only difference between both expressions is the places (directories) where the compiler is going to look for the

file. In the first case where the file name is specified between double-quotes, the file is searched first in the same
directory that includes the file containing the directive. In case that it is not there, the compiler searches the file in
the default directories where it is configured to look for the standard header files.

If the file name is enclosed between angle-brackets <> the file is searched directly where the compiler is configured

to look for the standard header files. Therefore, standard header files are usually included in angle-brackets, while
other specific header files are included using quotes.

Pragma directive (#pragma)

This directive is used to specify diverse options to the compiler. These options are specific for the platform and the
compiler you use. Consult the manual or the reference of your compiler for more information on the possible

parameters that you can define with #pragma.

If the compiler does not support a specific argument for #pragma, it is ignored - no error is generated.

Predefined macro names

The following macro names are defined at any time:

macro value

__LINE__ Integer value representing the current line in the source code file being compiled.

__FILE__ A string literal containing the presumed name of the source file being compiled.

__DATE__ A string literal in the form "Mmm dd yyyy" containing the date in which the compilation process began.

__TIME__ A string literal in the form "hh:mm:ss" containing the time at which the compilation process began.

__cplusplus
An integer value. All C++ compilers have this constant defined to some value. If the compiler is fully
compliant with the C++ standard its value is equal or greater than 199711L depending on the version
of the standard they comply.

For example:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

137

 © cplusplus.com 2008. All rights reserved

// standard macro names
#include <iostream>
using namespace std;

int main()
{
 cout << "This is the line number " << __LINE__;
 cout << " of file " << __FILE__ << ".\n";
 cout << "Its compilation began " << __DATE__;
 cout << " at " << __TIME__ << ".\n";
 cout << "The compiler gives a __cplusplus value of ";
 cout << __cplusplus;
 return 0;
}

This is the line number 7 of file
/home/jay/stdmacronames.cpp.
Its compilation began Nov 1 2005 at
10:12:29.
The compiler gives a __cplusplus value
of 1

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

138

 © cplusplus.com 2008. All rights reserved

C++ Standard Library

Input/Output with files
C++ provides the following classes to perform output and input of characters to/from files:

• ofstream: Stream class to write on files

• ifstream: Stream class to read from files

• fstream: Stream class to both read and write from/to files.

These classes are derived directly or indirectly from the classes istream, and ostream. We have already used

objects whose types were these classes: cin is an object of class istream and cout is an object of class ostream.
Therfore, we have already been using classes that are related to our file streams. And in fact, we can use our file

streams the same way we are already used to use cin and cout, with the only difference that we have to associate
these streams with physical files. Let's see an example:

// basic file operations
#include <iostream>
#include <fstream>
using namespace std;

int main () {
 ofstream myfile;
 myfile.open ("example.txt");
 myfile << "Writing this to a file.\n";
 myfile.close();
 return 0;
}

[file example.txt]
Writing this to a file

This code creates a file called example.txt and inserts a sentence into it in the same way we are used to do with

cout, but using the file stream myfile instead.

But let's go step by step:

Open a file

The first operation generally performed on an object of one of these classes is to associate it to a real file. This
procedure is known as to open a file. An open file is represented within a program by a stream object (an

instantiation of one of these classes, in the previous example this was myfile) and any input or output operation
performed on this stream object will be applied to the physical file associated to it.

In order to open a file with a stream object we use its member function open():

open (filename, mode);

Where filename is a null-terminated character sequence of type const char * (the same type that string literals

have) representing the name of the file to be opened, and mode is an optional parameter with a combination of the

following flags:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

139

 © cplusplus.com 2008. All rights reserved

ios::in Open for input operations.

ios::out Open for output operations.

ios::binary Open in binary mode.

ios::ate
Set the initial position at the end of the file.

If this flag is not set to any value, the initial position is the beginning of the file.

ios::app
All output operations are performed at the end of the file, appending the content to the current content

of the file. This flag can only be used in streams open for output-only operations.

ios::trunc
If the file opened for output operations already existed before, its previous content is deleted and

replaced by the new one.

All these flags can be combined using the bitwise operator OR (|). For example, if we want to open the file

example.bin in binary mode to add data we could do it by the following call to member function open():

ofstream myfile;
myfile.open ("example.bin", ios::out | ios::app | ios::binary);

Each one of the open() member functions of the classes ofstream, ifstream and fstream has a default mode that

is used if the file is opened without a second argument:

class default mode parameter

ofstream ios::out

ifstream ios::in

fstream ios::in | ios::out

For ifstream and ofstream classes, ios::in and ios::out are automatically and respectively assumed, even if a

mode that does not include them is passed as second argument to the open() member function.

The default value is only applied if the function is called without specifying any value for the mode parameter. If
the function is called with any value in that parameter the default mode is overridden, not combined.

File streams opened in binary mode perform input and output operations independently of any format
considerations. Non-binary files are known as text files, and some translations may occur due to formatting of
some special characters (like newline and carriage return characters).

Since the first task that is performed on a file stream object is generally to open a file, these three classes include

a constructor that automatically calls the open() member function and has the exact same parameters as this

member. Therefore, we could also have declared the previous myfile object and conducted the same opening

operation in our previous example by writing:

ofstream myfile ("example.bin", ios::out | ios::app | ios::binary);

Combining object construction and stream opening in a single statement. Both forms to open a file are valid and
equivalent.

To check if a file stream was successful opening a file, you can do it by calling to member is_open() with no
arguments. This member function returns a bool value of true in the case that indeed the stream object is
associated with an open file, or false otherwise:

if (myfile.is_open()) { /* ok, proceed with output */ }

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

140

 © cplusplus.com 2008. All rights reserved

Closing a file

When we are finished with our input and output operations on a file we shall close it so that its resources become

available again. In order to do that we have to call the stream's member function close(). This member function

takes no parameters, and what it does is to flush the associated buffers and close the file:

myfile.close();

Once this member function is called, the stream object can be used to open another file, and the file is available
again to be opened by other processes.

In case that an object is destructed while still associated with an open file, the destructor automatically calls the
member function close().

Text files

Text file streams are those where we do not include the ios::binary flag in their opening mode. These files are

designed to store text and thus all values that we input or output from/to them can suffer some formatting

transformations, which do not necessarily correspond to their literal binary value.

Data output operations on text files are performed in the same way we operated with cout:

// writing on a text file
#include <iostream>
#include <fstream>
using namespace std;

int main () {
 ofstream myfile ("example.txt");
 if (myfile.is_open())
 {
 myfile << "This is a line.\n";
 myfile << "This is another line.\n";
 myfile.close();
 }
 else cout << "Unable to open file";
 return 0;
}

[file example.txt]
This is a line.
This is another line.

Data input from a file can also be performed in the same way that we did with cin:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

141

 © cplusplus.com 2008. All rights reserved

// reading a text file
#include <iostream>
#include <fstream>
#include <string>
using namespace std;

int main () {
 string line;
 ifstream myfile ("example.txt");
 if (myfile.is_open())
 {
 while (! myfile.eof())
 {
 getline (myfile,line);
 cout << line << endl;
 }
 myfile.close();
 }

 else cout << "Unable to open file";

 return 0;
}

This is a line.
This is another line.

This last example reads a text file and prints out its content on the screen. Notice how we have used a new

member function, called eof() that returns true in the case that the end of the file has been reached. We have

created a while loop that finishes when indeed myfile.eof() becomes true (i.e., the end of the file has been

reached).

Checking state flags

In addition to eof(), which checks if the end of file has been reached, other member functions exist to check the

state of a stream (all of them return a bool value):

bad()

Returns true if a reading or writing operation fails. For example in the case that we try to write to a file

that is not open for writing or if the device where we try to write has no space left.

fail()

Returns true in the same cases as bad(), but also in the case that a format error happens, like when an

alphabetical character is extracted when we are trying to read an integer number.

eof()

Returns true if a file open for reading has reached the end.

good()

It is the most generic state flag: it returns false in the same cases in which calling any of the previous

functions would return true.

In order to reset the state flags checked by any of these member functions we have just seen we can use the
member function clear(), which takes no parameters.

get and put stream pointers

All i/o streams objects have, at least, one internal stream pointer:

ifstream, like istream, has a pointer known as the get pointer that points to the element to be read in the next

input operation.

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

142

 © cplusplus.com 2008. All rights reserved

ofstream, like ostream, has a pointer known as the put pointer that points to the location where the next element

has to be written.

Finally, fstream, inherits both, the get and the put pointers, from iostream (which is itself derived from both

istream and ostream).

These internal stream pointers that point to the reading or writing locations within a stream can be manipulated
using the following member functions:

tellg() and tellp()
These two member functions have no parameters and return a value of the member type pos_type, which is an

integer data type representing the current position of the get stream pointer (in the case of tellg) or the put

stream pointer (in the case of tellp).

seekg() and seekp()
These functions allow us to change the position of the get and put stream pointers. Both functions are overloaded

with two different prototypes. The first prototype is:

seekg (position);
seekp (position);

Using this prototype the stream pointer is changed to the absolute position position (counting from the beginning

of the file). The type for this parameter is the same as the one returned by functions tellg and tellp: the
member type pos_type, which is an integer value.

The other prototype for these functions is:

seekg (offset, direction);
seekp (offset, direction);

Using this prototype, the position of the get or put pointer is set to an offset value relative to some specific point

determined by the parameter direction. offset is of the member type off_type, which is also an integer type.
And direction is of type seekdir, which is an enumerated type (enum) that determines the point from where

offset is counted from, and that can take any of the following values:

ios::beg offset counted from the beginning of the stream

ios::cur offset counted from the current position of the stream pointer

ios::end offset counted from the end of the stream

The following example uses the member functions we have just seen to obtain the size of a file:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

143

 © cplusplus.com 2008. All rights reserved

// obtaining file size
#include <iostream>
#include <fstream>
using namespace std;

int main () {
 long begin,end;
 ifstream myfile ("example.txt");
 begin = myfile.tellg();
 myfile.seekg (0, ios::end);
 end = myfile.tellg();
 myfile.close();
 cout << "size is: " << (end-begin) << " bytes.\n";
 return 0;
}

size is: 40 bytes.

Binary files

In binary files, to input and output data with the extraction and insertion operators (<< and >>) and functions like

getline is not efficient, since we do not need to format any data, and data may not use the separation codes used

by text files to separate elements (like space, newline, etc...).

File streams include two member functions specifically designed to input and output binary data sequentially:

write and read. The first one (write) is a member function of ostream inherited by ofstream. And read is a
member function of istream that is inherited by ifstream. Objects of class fstream have both members. Their

prototypes are:

write (memory_block, size);
read (memory_block, size);

Where memory_block is of type "pointer to char" (char*), and represents the address of an array of bytes where
the read data elements are stored or from where the data elements to be written are taken. The size parameter is

an integer value that specifies the number of characters to be read or written from/to the memory block.

// reading a complete binary file
#include <iostream>
#include <fstream>
using namespace std;

ifstream::pos_type size;
char * memblock;

int main () {
 ifstream file ("example.bin",
ios::in|ios::binary|ios::ate);
 if (file.is_open())
 {
 size = file.tellg();
 memblock = new char [size];
 file.seekg (0, ios::beg);
 file.read (memblock, size);
 file.close();

 cout << "the complete file content is in memory";

 delete[] memblock;
 }
 else cout << "Unable to open file";
 return 0;
}

the complete file content is in memory

In this example the entire file is read and stored in a memory block. Let's examine how this is done:

TThhee CC++++ LLaanngguuaaggee TTuuttoorriiaall

144

 © cplusplus.com 2008. All rights reserved

First, the file is open with the ios::ate flag, which means that the get pointer will be positioned at the end of the

file. This way, when we call to member tellg(), we will directly obtain the size of the file. Notice the type we have
used to declare variable size:

ifstream::pos_type size;

ifstream::pos_type is a specific type used for buffer and file positioning and is the type returned by

file.tellg(). This type is defined as an integer type, therefore we can conduct on it the same operations we

conduct on any other integer value, and can safely be converted to another integer type large enough to contain
the size of the file. For a file with a size under 2GB we could use int:

int size;
size = (int) file.tellg();

Once we have obtained the size of the file, we request the allocation of a memory block large enough to hold the
entire file:

memblock = new char[size];

Right after that, we proceed to set the get pointer at the beginning of the file (remember that we opened the file
with this pointer at the end), then read the entire file, and finally close it:

file.seekg (0, ios::beg);
file.read (memblock, size);
file.close();

At this point we could operate with the data obtained from the file. Our program simply announces that the content
of the file is in memory and then terminates.

Buffers and Synchronization

When we operate with file streams, these are associated to an internal buffer of type streambuf. This buffer is a
memory block that acts as an intermediary between the stream and the physical file. For example, with an

ofstream, each time the member function put (which writes a single character) is called, the character is not
written directly to the physical file with which the stream is associated. Instead of that, the character is inserted in
that stream's intermediate buffer.

When the buffer is flushed, all the data contained in it is written to the physical medium (if it is an output stream)
or simply freed (if it is an input stream). This process is called synchronization and takes place under any of the
following circumstances:

• When the file is closed: before closing a file all buffers that have not yet been flushed are synchronized
and all pending data is written or read to the physical medium.

• When the buffer is full: Buffers have a certain size. When the buffer is full it is automatically
synchronized.

• Explicitly, with manipulators: When certain manipulators are used on streams, an explicit

synchronization takes place. These manipulators are: flush and endl.

• Explicitly, with member function sync(): Calling stream's member function sync(), which takes no

parameters, causes an immediate synchronization. This function returns an int value equal to -1 if the
stream has no associated buffer or in case of failure. Otherwise (if the stream buffer was successfully
synchronized) it returns 0.

