

C++ Coding Standards

The C++ In-Depth Series

Bjarne Stroustrup, Editor

"I have made this letter longer than usual, because I lack the time to make it short."
—BLAISE PASCAL

he advent of the ISO/ANSI C++ standard marked the beginning of a new era for C++
programmers. The standard offers many new facilities and opportunities, but how can a

real-world programmer find the time to discover the key nuggets of wisdom within this mass
of information? The C++ In-Depth Series minimizes learning time and confusion by giving
programmers concise, focused guides to specific topics.

Each book in this series presents a single topic, at a technical level appropriate to that topic.
The Series' practical approach is designed to lift professionals to their next level of
programming skills. Written by experts in the field, these short, in-depth monographs can be
read and referenced without the distraction of unrelated material. The books are
cross-referenced within the Series, and also reference The C++ Programming Language by
Bjarne Stroustrup.

As you develop your skills in C++, it becomes increasingly important to separate essential
information from hype and glitz, and to find the in-depth content you need in order to grow.
The C++ In-Depth Series provides the tools, concepts, techniques, and new approaches to
C++ that will give you a critical edge.

Titles in the Series

Accelerated C++: Practical Programming by Example, Andrew Koenig and Barbara E. Moo

Applied C++: Practical Techniques for Building Better Software, Philip Romanik and Amy Muntz

The Boost Graph Library: User Guide and Reference Manual, Jeremy G. Siek, Lie-Quan Lee, and Andrew
Lumsdaine

C++ Coding Standards: 101 Rules, Guidelines, and Best Practices, Herb Sutter and Andrei Alexandrescu

C++ In-Depth Box Set, Bjarne Stroustrup, Andrei Alexandrescu, Andrew Koenig, Barbara E. Moo,
Stanley B. Lippman, and Herb Sutter

C++ Network Programming, Volume 1: Mastering Complexity with ACE and Patterns, Douglas C. Schmidt
and Stephen D. Huston

C++ Network Programming, Volume 2: Systematic Reuse with ACE and Frameworks, Douglas C. Schmidt
and Stephen D. Huston

C++ Template Metaprogramming: Concepts, Tools, and Techniques from Boost and Beyond, David Abrahams
and Aleksey Gurtovoy

Essential C++, Stanley B. Lippman

Exceptional C++: 47 Engineering Puzzles, Programming Problems, and Solutions, Herb Sutter

Exceptional C++ Style: 40 New Engineering Puzzles, Programming Problems, and Solutions, Herb Sutter

Modern C++ Design: Generic Programming and Design Patterns Applied, Andrei Alexandrescu

More Exceptional C++: 40 New Engineering Puzzles, Programming Problems, and Solutions, Herb Sutter

For more information, check out the series web site at www.awprofessional.com/series/indepth/

T

http://www.awprofessional.com/series/indepth/

C++ Coding Standards

101 Rules, Guidelines, and Best Practices

Herb Sutter

Andrei Alexandrescu

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for
incidental or consequential damages in connection with or arising out of the use of the information or pro-
grams contained herein.
Publisher: John Wait Editor in Chief: Don
O'Hagan Acquisitions Editor: Peter Gordon
Editorial Assistant: Kim Boedigheimer
Marketing Manager: Chanda Leary-Coutu
Cover Designer: Chuti Prasertsith
Managing Editor: John Fuller Project Editor:
Lara Wysong Copy Editor: Kelli Brooks
Manufacturing Buyer: Carol Melville

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and /or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact:

U. S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the U. S., please contact:

International Sales
international@pearsoned.com

Visit us on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data:

Sutter, Herb.
C++ coding standards : 101 rules, guidelines, and best practices / Herb Sutter, Andrei Alexandrescu.

p. cm.
Includes bibliographical references and index. ISBN 0-321-11358-6
(pbk.: alk. paper) C++ (Computer program language) I. Alexandrescu,
Andrei. II. Title.
QA76.73.C153S85 2004
005.13'3—dc22

2004022605

Copyright © 2005 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
One Lake Street
Upper Saddle River, NJ 07458

ISBN 0-32-111358-6
Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts.
First printing, October 2004

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsoned.com
http://www.awprofessional.com

For the millions of current C++ programmers

Contents

Preface xi

Organizational and Policy Issues 1
0. Don't sweat the small stuff. (Or: Know what not to standardize.) 2
1. Compile cleanly at high warning levels. 4
2. Use an automated build system. 7
3. Use a version control system. 8
4. Invest in code reviews. 9

Design Style 11
5. Give one entity one cohesive responsibility. 12
6. Correctness, simplicity, and clarity come first. 13
7. Know when and how to code for scalability. 14
8. Don't optimize prematurely. 16
9. Don't pessimize prematurely. 18
10. Minimize global and shared data. 19
11. Hide information. 20
12. Know when and how to code for concurrency. 21
13. Ensure resources are owned by objects. Use explicit RAII and smart pointers. 24

Coding Style 27
14. Prefer compile- and link-time errors to run-time errors. 28
15. Use const proactively. 30
16. Avoid macros. 32

VII

vii i Contents

17. Avoid magic numbers. 34
18. Declare variables as locally as possible. 35
19. Always initialize variables. 36
20. Avoid long functions. Avoid deep nesting. 38
21. Avoid initialization dependencies across compilation units. 39
22. Minimize definitional dependencies. Avoid cyclic dependencies. 40
23. Make header files self-sufficient. 42
24. Always write internal #include guards. Never write external #include guards. 43

Functions and Operators 45
25. Take parameters appropriately by value, (smart) pointer, or reference. 46
26. Preserve natural semantics for overloaded operators. 47
27. Prefer the canonical forms of arithmetic and assignment operators. 48
28. Prefer the canonical form of + + and --. Prefer calling the prefix forms. 50
29. Consider overloading to avoid implicit type conversions. 51
30. Avoid overloading &&, ||, or , (comma). 52
31. Don't write code that depends on the order of evaluation of function

arguments. 54

Class Design and Inheritance 55
32. Be clear what kind of class you're writing. 56
33. Prefer minimal classes to monolithic classes. 57
34. Prefer composition to inheritance. 58
35. Avoid inheriting from classes that were not designed to be base classes. 60
36. Prefer providing abstract interfaces. 62
37. Public inheritance is substitutability. Inherit, not to reuse, but to be reused. 64
38. Practice safe overriding. 66
39. Consider making virtual functions nonpublic, and public functions nonvirtual. 68
40. Avoid providing implicit conversions. 70
41. Make data members private, except in behaviorless aggregates (C-style

structs). 72
42. Don't give away your internals. 74
43. Pimpl judiciously. 76
44. Prefer writing nonmember nonfriend functions. 79
45. Always provide new and delete together. 80
46. If you provide any class-specific new, provide all of the standard forms (plain,

in-place, and nothrow). 82

Contents ix

Construction, Destruction, and Copying 85
47. Define and initialize member variables in the same order. 86
48. Prefer initialization to assignment in constructors. 87
49. Avoid calling virtual functions in constructors and destructors. 88
50. Make base class destructors public and virtual, or protected and nonvirtual. 90
51. Destructors, deallocation, and swap never fail. 92
52. Copy and destroy consistently. 94
53. Explicitly enable or disable copying. 95
54. Avoid slicing. Consider Clone instead of copying in base classes. 96
55. Prefer the canonical form of assignment. 99
56. Whenever it makes sense, provide a no-fail swap (and provide it correctly). 100

Namespaces and Modules 103
57. Keep a type and its nonmember function interface in the same namespace. 104
58. Keep types and functions in separate namespaces unless they're specifically

intended to work together. 106
59. Don't write namespace usings in a header file or before an #include. 108
60. Avoid allocating and deallocating memory in different modules. I ll
61. Don't define entities with linkage in a header file. 112
62. Don't allow exceptions to propagate across module boundaries. 114
63. Use sufficiently portable types in a module's interface. 116

Templates and Genericity 119
64. Blend static and dynamic polymorphism judiciously. 120
65. Customize intentionally and explicitly. 122
66. Don't specialize function templates. 126
67. Don't write unintentionally nongeneric code. 128

Error Handling and Exceptions 129
68. Assert liberally to document internal assumptions and invariants. 130
69. Establish a rational error handling policy, and follow it strictly. 132
70. Distinguish between errors and non-errors. 134
71. Design and write error-safe code. 137
72. Prefer to use exceptions to report errors. 140
73. Throw by value, catch by reference. 144
74. Report, handle, and translate errors appropriately. 145
75. Avoid exception specifications. 146

Contents

STL: Containers 149
76. Use vector by default. Otherwise, choose an appropriate container. 150
77. Use vector and string instead of arrays. 152
78. Use vector (and string::c_str) to exchange data with non-C++ APIs. 153
79. Store only values and smart pointers in containers. 154
80. Prefer push_back to other ways of expanding a sequence. 155
81. Prefer range operations to single-element operations. 156
82. Use the accepted idioms to really shrink capacity and really erase elements. 157

STL: Algorithms 159
83. Use a checked STL implementation. 160
84. Prefer algorithm calls to handwritten loops. 162
85. Use the right STL search algorithm. 165
86. Use the right STL sort algorithm. 166
87. Make predicates pure functions. 168
88. Prefer function objects over functions as algorithm and comparer arguments.
 170
89. Write function objects correctly. 172

Type Safety 173
90. Avoid type switching; prefer polymorphism. 174
91. Rely on types, not on representations. 176
92. Avoid using reinterpret_cast. 177
93. Avoid using static_cast on pointers. 178
94. Avoid casting away const. 179
95. Don't use C-style casts. 180
96. Don't memcpy or memcmp non-PODs. 182
97. Don't use unions to reinterpret representation. 183
98. Don't use varargs (ellipsis). 184
99. Don't use invalid objects. Don't use unsafe functions. 185
100.Don't treat arrays polymorphically. 186

Bibliography 187

Summary of Summaries 195

Index 209

Preface

Get into a rut early: Do the same process the same way. Accumulate idioms.
Standardize. The only differenced) between Shakespeare and you was the

size of his idiom list—not the size of his vocabulary.

— Alan Perlis [emphasis ours]

The best thing about standards is that there are so many to choose from.

— Variously attributed

We want to provide this book as a basis for your team's coding standards for two
principal reasons:

• A coding standard should reflect the community's best tried-and-true experience: It
should contain proven idioms based on experience and solid understanding of
the language. In particular, a coding standard should be based firmly on the ex
tensive and rich software development literature, bringing together rules,
guidelines, and best practices that would otherwise be left scattered throughout
many sources.

• Nature abhors a vacuum: If you don't consciously set out reasonable rules, usually
someone else will try to push their own set of pet rules instead. A coding stan
dard made that way usually has all of the least desirable properties of a coding
standard; for example, many such standards try to enforce a minimalistic C-
style use of C++.

Many bad coding standards have been set by people who don't understand the lan-
guage well, don't understand software development well, or try to legislate too
much. A bad coding standard quickly loses credibility and at best even its valid
guidelines are liable to be ignored by disenchanted programmers who dislike or
disagree with its poorer guidelines. That's "at best"—at worst, a bad standard might
actually be enforced.

xi

XII Preface

How to Use This Book
Think. Do follow good guidelines conscientiously; but don't follow them blindly. In
this book's Items, note the Exceptions clarifying the less common situations where
the guidance may not apply. No set of guidelines, however good (and we think
these ones are), should try to be a substitute for thinking.

Each development team is responsible for setting its own standards, and for setting
them responsibly. That includes your team. If you are a team lead, involve your
team members in setting the team's standards; people are more likely to follow
standards they view as their own than they are to follow a bunch of rules they feel are
being thrust upon them.

This book is designed to be used as a basis for, and to be included by reference in,
your team's coding standards. It is not intended to be the Last Word in coding stan-
dards, because your team will have additional guidelines appropriate to your par-
ticular group or task, and you should feel free to add those to these Items. But we
hope that this book will save you some of the work of (re)developing your own, by
documenting and referencing widely-accepted and authoritative practices that apply
nearly universally (with Exceptions as noted), and so help increase the quality and
consistency of the coding standards you use.

Have your team read these guidelines with their rationales (i.e., the whole book, and
selected Items' References to other books and papers as needed), and decide if there
are any that your team simply can't live with (e.g., because of some situation unique to
your project). Then commit to the rest. Once adopted, the team's coding standards
should not be violated except after consulting with the whole team.

Finally, periodically review your guidelines as a team to include practical experience
and feedback from real use.

Coding Standards and You
Good coding standards can offer many interrelated advantages:

• Improved code quality: Encouraging developers to do the right things in a consis
tent way directly works to improve software quality and maintainability.

• Improved development speed: Developers don't need to always make decisions
starting from first principles.

• Better teamwork: They help reduce needless debates on inconsequential issues
and make it easier for teammates to read and maintain each other's code.

• Uniformity in the right dimension: This frees developers to be creative in directions
that matter.

Preface XII I

Under stress and time pressure, people do what they've been trained to do. They fall
back on habit. That's why ER units in hospitals employ experienced, trained per-
sonnel; even knowledgeable beginners would panic.

As software developers, we routinely face enormous pressure to deliver tomorrow's
software yesterday. Under schedule pressure, we do what we are trained to do and
are used to doing. Sloppy programmers who in normal times don't know good prac-
tices of software engineering (or aren't used to applying them) will write even sloppier
and buggier code when pressure is on. Conversely, programmers who form good
habits and practice them regularly will keep themselves organized and deliver quality
code, fast.

The coding standards introduced by this book are a collection of guidelines for writing
high-quality C++ code. They are the distilled conclusions of a rich collective ex-
perience of the C++ community. Much of this body of knowledge has only been
available in bits and pieces spread throughout books, or as word-of-mouth wisdom.
This book's intent is to collect that knowledge into a collection of rules that is terse,
justified, and easy to understand and follow.

Of course, one can write bad code even with the best coding standards. The same is
true of any language, process, or methodology. A good set of coding standards fosters
good habits and discipline that transcend mere rules. That foundation, once acquired,
opens the door to higher levels. There's no shortcut; you have to develop vocabulary
and grammar before writing poetry. We just hope to make that easier.

We address this book to C++ programmers of all levels:

If you are an apprentice programmer, we hope you will find the rules and their ra-
tionale helpful in understanding what styles and idioms C++ supports most natu-
rally. We provide a concise rationale and discussion for each rule and guideline to
encourage you to rely on understanding, not just rote memorization.

For the intermediate or advanced programmer, we have worked hard to provide a
detailed list of precise references for each rule. This way, you can do further research
into the rule's roots in C++'s type system, grammar, and object model.

At any rate, it is very likely that you work in a team on a complex project. Here is
where coding standards really pay off—you can use them to bring the team to a
common level and provide a basis for code reviews.

About This Book
We have set out the following design goals for this book:

• Short is better than long: Huge coding standards tend to be ignored; short ones get
read and used. Long Items tend to be skimmed; short ones get read and used.

XIV Preface

• Each Item must be noncontroversial: This book exists to document widely agreed-
upon standards, not to invent them. If a guideline is not appropriate in all cases,
it will be presented that way (e.g., "Consider X..." instead of "Do X...") and we
will note commonly accepted exceptions.

• Each Item must be authoritative: The guidelines in this book are backed up by ref
erences to existing published works. This book is intended to also provide an
index into the C++ literature.

• Each Item must need sax/ing: We chose not to define new guidelines for things that
you'll do anyway, that are already enforced or detected by the compiler, or that
are already covered under other Items.

Example: "Don't return a pointer/reference to an automatic variable" is a
good guideline, but we chose not to include it in this book because all of the
compilers we tried already emit a warning for this, and so the issue is al-
ready covered under the broader Item 1, "Compile cleanly at high warning
levels."

Example: "Use an editor (or compiler, or debugger)" is a good guideline, but
of course you'll use those tools anyway without being told; instead, we
spend two of our first four Items on "Use an automated build system" and
"Use a version control system."

Example: "Don't abuse goto" is a great Item, but in our experience pro-
grammers universally know this, and it doesn't need saying any more.

Each Item is laid out as follows:

• Item title: The simplest meaningful sound bite we could come up with as a mne
monic for the rule.

• Summary: The most essential points, briefly stated.
• Discussion: An extended explanation of the guideline. This often includes brief

rationale, but remember that the bulk of the rationale is intentionally left in the
References.

• Examples (if applicable): Examples that demonstrate a rule or make it memorable.
• Exceptions (if applicable): Any (and usually rare) cases when a rule doesn't apply.

But beware the trap of being too quick to think: "Oh, I'm special; this doesn't
apply in my situation"—that rationalization is common, and commonly wrong.

• References: See these parts of the C++ literature for the full details and analysis.

In each section, we chose to nominate a "most valuable Item." Often, it's the first
Item in a section, because we tried to put important Items up front in each part; but

Preface xv

other times an important Item couldn't be put up front, for flow or readability reasons,
and we felt the need to call it out for special attention in this way.

Acknowledgments
Many thanks to series editor Bjarne Stroustrup, to editors Peter Gordon and Debbie
Lafferty, and to Tyrrell Albaugh, Kim Boedigheimer, John Fuller, Bernard Gaffney,
Curt Johnson, Chanda Leary-Coutu, Charles Leddy, Heather Mullane, Chuti
Prasertsith, Lara Wysong, and the rest of the Addison-Wesley team for their assis-
tance and persistence during this project. They are a real pleasure to work with.

Inspiration for some of the "sound bites" came from many sources, including the
playful style of [Cline99], the classic import this of [Peters99], and the legendary and
eminently quotable Alan Perlis.

We especially want to thank the people whose technical feedback has helped to
make many parts of this book better than they would otherwise have been. Series
editor Bjarne Stroustrup's incisive comments from concept all the way through to
the final draft were heavily influential and led to many improvements. We want to
give special thanks to Dave Abrahams, Marshall Cline, Kevlin Henney, Howard
Hinnant, Jim Hyslop, Nicolai Josuttis, Jon Kalb, Max Khesin, Stan Lippman, Scott
Meyers, and Daveed Vandevoorde for their active participation in review cycles and
detailed comments on several drafts of this material. Other valuable comments and
feedback were contributed by Chuck Allison, Samir Bajaj, Marc Barbour, Damian
Dechev, Steve Dewhurst, Peter Dimov, Alan Griffiths, Michi Henning, James Kanze,
Matt Marcus, Petru Marginean, Robert C. "Uncle Bob" Martin, Jeff Peil, Peter
Pirkel-bauer, Vladimir Prus, Dan Saks, Luke Wagner, Matthew Wilson, and Leor
Zolman.

As usual, the remaining errors, omissions, and shameless puns are ours, not theirs.

Herb Sutter
Andrei Alexandrescu

Seattle, September 2004

Organizational and
Policy Issues

If builders built buildings the way programmers wrote programs, then
the first woodpecker that came along would destroy civilization.

—Gerald Weinberg

In the grand tradition of C and C++, we count the zero-based way. The prime directive,
Item 0, covers what we feel is the most basic advice about coding standards.

The rest of this introductory section goes on to target a small number of carefully se-
lected basic issues that are mostly not directly about the code itself, but on essential
tools and techniques for writing solid code.

Our vote for the most valuable Item in this section goes to Item 0: Don't sweat the
small stuff. (Or: Know what not to standardize.)

C++ Coding Standards

0. Don't sweat the small stuff.

(Or: Know what not to standardize.)

Summary
Say only what needs saying: Don't enforce personal tastes or obsolete practices.

Discussion
Issues that are really just personal taste and don't affect correctness or readability
don't belong in a coding standard. Any professional programmer can easily read and
write code that is formatted a little differently than they're used to.
Do use consistent formatting within each source file or even each project, because it's
jarring to jump around among several styles in the same piece of code. But don't try to
enforce consistent formatting across multiple projects or across a company.
Here are several common issues where the important thing is not to set a rule but just
to be consistent with the style already in use within the file you're maintaining:

• Don't specify how much to indent, but do indent to show structure: Use any number
of spaces you like to indent, but be consistent within at least each file.

• Don't enforce a specific line length, but do keep line lengths readable: Use any length
of line you like, but don't be excessive. Studies show that up to ten-word text
widths are optimal for eye tracking.

• Don't overlegislate naming, but do use a consistent naming convention: There are only
two must-dos: a) never use "underhanded names," ones that begin with an un
derscore or that contain a double underscore; and b) always use
ONLY_UPPERCASE_NAMES for macros and never think about writing a macro
that is a common word or abbreviation (including common template parame
ters, such as T and U; writing #define T anything is extremely disruptive). Oth
erwise, do use consistent and meaningful names and follow a file's or module's
convention. (If you can't decide on your own naming convention, try this one:
Name classes, functions, and enums LikeThis; name variables likeThis; name
private member variables likeThis_; and name macros LIKE_THIS.)

• Don't prescribe commenting styles (except where tools extract certain styles into docu
mentation), but do write useful comments: Write code instead of comments where
possible (e.g., see Item 16). Don't write comments that repeat the code; they get
out of sync. Do write illuminating comments that explain approach and rationale.

Finally, don't try to enforce antiquated rules (see Examples 3 and 4) even if they once
appeared in older coding standards.

Examples
Example 1: Brace placement. There is no readability difference among:

Organizational and Policy Issues 3

void using_k_and_r_style() {

void putting_each_brace_on_its_own_line()

void or_putting_each_brace_onjts_own_line_indented()

Any professional programmer can easily read and write any of these styles without
hardship. But do be consistent: Don't just place braces randomly or in a way that ob-
scures scope nesting, and try to follow the style already in use in each file. In this
book, our brace placement choices are motivated by maximizing readability within
our editorial constraints.
Example 2: Spaces vs. tabs. Some teams legitimately choose to ban tabs (e.g.,
[BoostLRG]), on the grounds that tabs vary from editor to editor and, when mis-used,
turn indenting into outdenting and nondenting. Other equally respectable teams
legitimately allow tabs, adopting disciplines to avoid their potential draw-backs. Just
be consistent: If you do allow tabs, ensure it is never at the cost of code clarity and
readability as team members maintain each other's code (see Item 6). If you don't
allow tabs, allow editors to convert spaces to tabs when reading in a source file so
that users can work with tabs while in the editor, but ensure they con-vert the tabs
back to spaces when writing the file back out.
Example 3: Hungarian notation. Notations that incorporate type information in
vari-able names have mixed utility in type-unsafe languages (notably C), are possible
but have no benefits (only drawbacks) in object-oriented languages, and are
impossible in generic programming. Therefore, no C++ coding standard should
require Hun-garian notation, though a C++ coding standard might legitimately
choose to ban it.
Example 4: Single entry, single exit ("SESE"). Historically, some coding standards have
required that each function have exactly one exit, meaning one return statement.
Such a requirement is obsolete in languages that support exceptions and destructors,
where functions typically have numerous implicit exits. Instead, follow standards
like Item 5 that directly promote simpler and shorter functions that are inherently
easier to understand and to make error-safe.

References
[BoostLRG] • [Brooks95] §12 • [Constantine95] §29 • [Keffer95] p. 1 • [Kernighan99] §1.1,
§1.3, §1.6-7 • [Lakos96] §1.4.1, §2.7 • [McConnell93] §9, §19 • [Stroustrup94] §4.2-3 •
[StroustrupOO] §4.9.3, §6.4, §7.8, §C.l • [SutterOO] §6, §20 • [SuttHyslOl]

C++ Coding Standards

1. Compile cleanly at high warning levels.

Summary
Take warnings to heart: Use your compiler's highest warning level. Require clean
(warning-free) builds. Understand all warnings. Eliminate warnings by changing
your code, not by reducing the warning level.

Discussion
Your compiler is your friend. If it issues a warning for a certain construct, often
there's a potential problem in your code.

Successful builds should be silent (warning-free). If they aren't, you'll quickly get
into the habit of skimming the output, and you will miss real problems. (See Item 2.)

To get rid of a warning: a) understand it; and then b) rephrase your code to eliminate
the warning and make it clearer to both humans and compilers that the code does
what you intended.

Do this even when the program seemed to run correctly in the first place. Do this
even when you are positive that the warning is benign. Even benign warnings can
obscure later warnings pointing to real dangers.

Examples
Example 1: A third-party header file. A library header file that you cannot change could
contain a construct that causes (probably benign) warnings. Then wrap the file with
your own version that #includes the original header and selectively turns off the
noisy warnings for that scope only, and then #include your wrapper throughout the
rest of your project. Example (note that the warning control syntax will vary from
compiler to compiler):

//File: myproj/myjambda.h -- wraps Boost's lambda.hpp
// Always include this file; don't use lambda.hpp directly.
// NOTE: Our build now automatically checks "grep lambda.hpp <srcfile>".
// Boost.Lambda produces noisy compiler warnings that we know are innocuous.
// When they fix it we'll remove the pragmas below, but this header will still exist.
/ /
#pragma warning(push) //disable for this header only
#pragma warning(disable:4512)
#pragma warning(disable:4180)
#include <boost/lambda/lambda.hpp> #pragma

warning(pop) //restore original warning level

Organizational and Policy Issues

Example 2: "Unused function parameter." Check to make sure you really didn't mean to
use the function parameter (e.g., it might be a placeholder for future expansion, or a
required part of a standardized signature that your code has no use for). If it's not
needed, simply delete the name of a function parameter:

//... inside a user-defined allocator that has no use for the hint...

// warning: "unused parameter 'localityHint'"
pointer allocate(sizejype numObjects, const void *localityHint = 0)
{ return static_cast<pointer>(mallocShared(numObjects * sizeof(T))); }

// new version: eliminates warning
pointer allocate(sizejype numObjects, const void * /* localityHint */ = 0) {

return static_cast<pointer>(mallocShared(numObjects * sizeof(T))); }

Example 3: "Variable defined but never used." Check to make sure you really didn't mean
to reference the variable. (An RAII stack-based object often causes this warning
spuriously; see Item 13.) If it's not needed, often you can silence the compiler by
inserting an evaluation of the variable itself as an expression (this evaluation won't
impact run-time speed):

// warning: "variable lock' is defined but never used"
void Fun() { Lock lock;

}

// new version: probably eliminates warning
void Fun() {

Lock lock;
lock;

}

Example 4: "Variable may be used without being initialized." Initialize the variable (see Item
19).

Example 5: "Missing return." Sometimes the compiler asks for a return statement
even though your control flow can never reach the end of the function (e.g., infinite
loop, throw statements, other returns). This can be a good thing, because sometimes
you only think that control can't run off the end. For example, switch statements that

C++ Coding Standards

do not have a default are not resilient to change and should have a default case that
does assert(false) (see also Items 68 and 90):

//warning: missing "return"
int Fun(Color c) {
switch(c) {
case Red: return 2;
case Green: return 0;
case Blue:
case Black: return 1;
}

}

// new version: eliminates warning int
Fun(Color c) {
switch(c) {
case Red: return 2;
case Green: return 0;
case Blue:
case Black: return 1;
default: assert({"should never get here!");

return -1;
}

 }

 // /"string" evaluates to false

Example 6: "Signed/unsigned mismatch." It is usually not necessary to compare or assign
integers with different signedness. Change the types of the variables being compared
so that the types agree. In the worst case, insert an explicit cast. (The compiler inserts
that cast for you anyway, and warns you about doing it, so you're better off putting it
out in the open.)

Exceptions
Sometimes, a compiler may emit a tedious or even spurious warning (i.e., one that is
mere noise) but offer no way to turn it off, and it might be infeasible or unproductive
busywork to rephrase the code to silence the warning. In these rare cases, as a team
decision, avoid tediously working around a warning that is merely tedious: Disable
that specific warning only, disable it as locally as possible, and write a clear comment
documenting why it was necessary.

References
[Meyers97] §48 • [Stroustrup94] §2.6.2

Organizational and Policy Issues

2. Use an automated build system.

Summary
Push the (singular) button: Use a fully automatic ("one-action") build system that
builds the whole project without user intervention.

Discussion
A one-action build process is essential. It must produce a dependable and repeatable
translation of your source files into a deliverable package. There is a broad range of
automated build tools available, and no excuse not to use one. Pick one. Use it.

We've seen organizations that neglect the "one-action" requirement. Some consider
that a few mouse clicks here and there, running some utilities to register
COM/CORBA servers, and copying some files by hand constitute a reasonable build
process. But you don't have time and energy to waste on something a machine can do
faster and better. You need a one-action build that is automated and dependable.

Successful builds should be silent, warning-free (see Item 1). The ideal build pro-
duces no noise and only one log message: "Build succeeded."

Have two build modes: Incremental and full. An incremental build rebuilds only
what has changed since the last incremental or full build. Corollary: The second of
two successive incremental builds should not write any output files; if it does, you
probably have a dependency cycle (see Item 22), or your build system performs un-
necessary operations (e.g., writes spurious temporary files just to discard them).

A project can have different forms of full build. Consider parameterizing your build by
a number of essential features; likely candidates are target architecture, debug vs.
release, and breadth (essential files vs. all files vs. full installer). One build setting
can create the product's essential executables and libraries, another might also create
ancillary files, and a full-fledged build might create an installer that comprises all
your files, third-party redistributables, and installation code.

As projects grow over time, so does the cost of not having an automated build. If
you don't use one from the start, you will waste time and resources. Worse still, by the
time the need for an automated build becomes overwhelming, you will be under more
pressure than at the start of the project.

Large projects might have a "build master" whose job is to care for the build system.

References
[Brooks95] §13, §19 • [DewhnrstO3] §1 • [GnuMake] • [StroustrupOO] §9.1

C++ Coding Standards

3. Use a version control system.

Summary
The palest of ink is better than the best memory (Chinese proverb): Use a version
control system (VCS). Never keep files checked out for long periods. Check in fre-
quently after your updated unit tests pass. Ensure that checked-in code does not
break the build.

Discussion
Nearly all nontrivial projects need more than one developer and/or take more than a
week of work. On such projects, you will need to compare historical versions of the
same file to determine when (and/or by whom) changes were introduced. You will
need to control and manage source changes.

When there are multiple developers, those developers will make changes in parallel,
possibly to different parts of the same file at the same time. You need tools to automate
checkout/versioning of file and, in some cases, merging of concurrent edits. A VCS
automates and controls checkouts, versioning, and merging. A VCS will do it faster
and more correctly than you could do it by hand. And you don't have time to fiddle
with administrivia—you have software to write.

Even a single developer has "oops!" and "huh?" moments, and needs to figure out
when and why a bug or change was introduced. So will you. A VCS automatically
tracks the history of each file and lets you "turn the clock back." The question isn't
whether you will want to consult the history, but when.

Don't break the build. The code in the VCS must always build successfully.

The broad range of VCS offerings leaves no excuse not to use one. The least expensive
and most popular is cvs (see References). It is a flexible tool, featuring TCP/IP access,
optional enhanced security (by using the secure shell ssh protocol as a back-end),
excellent administration through scripting, and even a graphical interface. Many
other VCS products either treat cvs as a standard to emulate, or build new
functionality on top of it.

Exceptions
A project with one programmer that takes about a week from start to finish probably
can live without a VCS.

References
[BetterSCM] • [Brooks95] §11, §13 • [CVS]

Organizational and Policy Issues

4. Invest in code reviews.

Summary
Re-view code: More eyes will help make more quality. Show your code, and read
others'. You'll all learn and benefit.

Discussion
A good code review process benefits your team in many ways. It can:

• Increase code quality through beneficial peer pressure.
• Find bugs, non-portable code (if applicable), and potential scaling problems.
• Foster better design and implementation through cross-breeding of ideas.
• Bring newer teammates and beginners up to speed.
• Develop common values and a sense of community inside the team.
• Increase meritocracy, confidence, motivation, and professional pride.

Many shops neither reward quality code and quality teams nor invest time and
money encouraging them. We hope we won't have to eat our words a couple of
years from now, but we feel that the tide is slowly changing, due in part to an in-
creased need for safe and secure software. Code reviews help foster exactly that, in
addition to being an excellent (and free!) method of in-house training.
Even if your employer doesn't yet support a code reviewing process, do increase
management awareness (hint: to start, show them this book) and do your best to
make time and conduct reviews anyway. It is time well spent.
Make code reviews a routine part of your software development cycle. If you agree
with your teammates on a reward system based on incentives (and perhaps disin-
centives), so much the better.
Without getting too formalistic, it's best to get code reviews in writing—a simple e-mail
can suffice. This makes it easier to track your own progress and avoid duplication.
When reviewing someone else's code, you might like to keep a checklist nearby for
reference. We humbly suggest that one good list might be the table of contents of the
book you are now reading. Enjoy!
In summary: We know we're preaching to the choir, but it had to be said. Your ego
may hate a code review, but the little genius programmer inside of you loves it be-
cause it gets results and leads to better code and stronger applications.

References
[Constantine95] §10, §22, §33 • [McConnell93] §24 • [MozillaCRFAQ]

Design Style

Fools ignore complexity. Pragmatists suffer it. Some can avoid it. Geniuses remove it.
—Alan Perlis

But I also knew, and forgot, Hoare's dictum that
premature optimization is the root of all evil in programming.

—Donald Knuth,
The Errors ofTeX [Knuth89]

It's difficult to fully separate Design Style and Coding Style. We have tried to leave to
the next section those Items that generally crop up when actually writing code.

This section focuses on principles and practices that apply more broadly than just to a
particular class or function. A classic case in point is the balance among simplicity and
clarity (Item 6), avoiding premature optimization (Item 8), and avoiding premature
pessimization (Item 9). Those three Items apply, not just at the function-coding level,
but to the larger areas of class and module design tradeoffs and to far-reaching
application architecture decisions. (They also apply to all programmers. If you think
otherwise, please reread the above Knuth quote and note its citation.)
Following that, many of the other Items in this and the following section deal with
aspects of dependency management—a cornerstone of software engineering and a
recurring theme throughout the book. Stop and think of some random good software
engineering technique—any good technique. Whichever one you picked, in one
way or another it will be about reducing dependencies. Inheritance? Make code
written to use the base class less dependent on the actual derived class. Minimize
global variables? Reduce long-distance dependencies through widely visible data.
Abstraction? Eliminate dependencies between code that manipulates concepts and
code that implements them. Information hiding? Make client code less dependent
on an entity's implementation details. An appropriate concern for dependency man-
agement is reflected in avoiding shared state (Item 10), applying information hiding
(Item 11), and much more.
Our vote for the most valuable Item in this section goes to Item 6: Correctness, sim-
plicity, and clarity come first. That they really, really must.

11

12 C++ Coding Standards

5. Give one entity one cohesive responsibility.

Summary
Focus on one thing at a time: Prefer to give each entity (variable, class, function,
namespace, module, library) one well-defined responsibility. As an entity grows, its
scope of responsibility naturally increases, but its responsibility should not diverge.

Discussion
A good business idea, they say, can be explained in one sentence. Similarly, each
program entity should have one clear purpose.
An entity with several disparate purposes is generally disproportionately harder to
use, because it carries more than the sum of the intellectual overhead, complexity,
and bugs of its parts. Such an entity is larger (often without good reason) and harder to
use and reuse. Also, such an entity often offers crippled interfaces for any of its
specific purposes because the partial overlap among various areas of functionality
blurs the vision needed for crisply implementing each.
Entities with disparate responsibilities are typically hard to design and implement.
"Multiple responsibilities" frequently implies "multiple personalities"—a combina-
torial number of possible behaviors and states. Prefer brief single-purpose functions
(see also Item 39), small single-purpose classes, and cohesive modules with clean
boundaries.

Prefer to build higher-level abstractions from smaller lower-level abstractions. Avoid
collecting several low-level abstractions into a larger low-level conglomerate. Im-
plementing a complex behavior out of several simple ones is easier than the reverse.

Examples
Example 1: realloc. In Standard C, realloc is an infamous example of bad design. It
has to do too many things: allocate memory if passed NULL, free it if passed a zero
size, reallocate it in place if it can, or move memory around if it cannot. It is not easily
extensible. It is widely viewed as a shortsighted design failure.
Example 2: basic_string. In Standard C++, std::basic_string is an equally infamous ex-
ample of monolithic class design. Too many "nice-to-have" features were added to a
bloated class that tries to be a container but isn't quite, is undecided on iteration vs.
indexing, and gratuitously duplicates many standard algorithms while leaving little
space for extensibility. (See Item 44's Example.)

References
[HenneyO2a] • [HenneyO2b] • [McConnell93] §10.5 • [StroustrupOO] §3.8, §4.9.4,
§23.4.3.1 • [SutterOO] §10, §12, §19, §23 • [SutterO2] §1 • [SutterO4] §37-40

Design Style 13

6. Correctness, simplicity, and clarity come first.

Summary
KISS (Keep It Simple Software): Correct is better than fast. Simple is better than
complex. Clear is better than cute. Safe is better than insecure (see Items 83 and 99).

Discussion
It's hard to overstate the value of simple designs and clear code. Your code's maintainer
will thank you for making it understandable—and often that will be your future self, try-
ing to remember what you were thinking six months ago. Hence such classic wisdom as:

Programs must be written for people to read, and only incidentally for machines to
execute. —Harold Abelson and Gerald Jay Sussman
Write programs for people first, computers second. —Steve McConnell
The cheapest, fastest and most reliable components of a computer system are those
that aren't there. —Gordon Bell
Those missing components are also the most accurate (they never make mistakes),
the most secure (they can't be broken into), and the easiest to design, document,
test and maintain. The importance of a simple design can't be overemphasized.
—Jon Bentley

Many of the Items in this book naturally lead to designs and code that are easy to
change, and clarity is the most desirable quality of easy-to-maintain, easy-to-refactor
programs. What you can't comprehend, you can't change with confidence.
Probably the most common tension in this area is between code clarity and code opti-
mization (see Items 7, 8, and 9). When—not if—you face the temptation to optimize
prematurely for performance and thereby pessimize clarity, recall Item 8's point: It is
far, far easier to make a correct program fast than it is to make a fast program correct.
Avoid the language's "dusty corners." Use the simplest techniques that are effective.

Examples
Example 1: Avoid gratuitous/clever operator overloading. One needlessly weird GUI library
had users write w + c; to add a child control c to a widget w. (See Item 26.)
Example 2: Prefer using named variables, not temporaries, as constructor parameters. This
avoids possible declaration ambiguities. It also often makes the purpose of your
code clearer and thus is easier to maintain. It's also often safer (see Items 13 and 31).

References
[Abelson96] • [BentleyOO] §4 • [Cargill92] pp. 91-93 • [Cline99] §3.05-06 • [Constantine95]
§29 • [Keffer95] p. 17 • [Lakos96] §9.1, §10.2.4 • [McConnell93] • [MeyersOl] §47 •
[StroustrupOO] §1.7, §2.1, §6.2.3, §23.4.2, §23.4.3.2 • [SutterOO] §40-41, §46 • [SutterO4] §29

14 C++ Coding Standards

7. Know when and how to code for scalability.

Summary
Beware of explosive data growth: Without optimizing prematurely, keep an eye on
asymptotic complexity. Algorithms that work on user data should take a predictable,
and preferably no worse than linear, time with the amount of data processed. When
optimization is provably necessary and important, and especially if it's because data
volumes are growing, focus on improving big-Oh complexity rather than on
micro-optimizations like saving that one extra addition.

Discussion
This Item illustrates one significant balance point between Items 8 and 9, "don't op-
timize prematurely" and "don't pessimize prematurely." That makes this a tough
Item to write, lest it be misconstrued as "premature optimization." It is not that.

Here's the background and motivation: Memory and disk capacity continue to grow
exponentially; for example, from 1988 to 2004 disk capacity grew by about 112% per
year (nearly 1,900-fold growth per decade), whereas even Moore's Law is just 59%
per year (100-fold per decade). One clear consequence is that whatever your code
does today it may be asked to do tomorrow against more data—much more data. A
bad (worse than linear) asymptotic behavior of an algorithm will sooner or later
bring the most powerful system to its knees: Just throw enough data at it.

Defending against that likely future means we want to avoid "designing in" what
will become performance pits in the face of larger files, larger databases, more
pixels, more windows, more processes, more bits sent over the wire. One of the big
success factors in future-proofing of the C++ standard library has been its perform-
ance complexity guarantees for the STL container operations and algorithms.

Here's the balance: It would clearly be wrong to optimize prematurely by using a
less clear algorithm in anticipation of large data volumes that may never materialize.
But it would equally clearly be wrong to pessimize prematurely by turning a blind
eye to algorithmic complexity, a.k.a. "big-Oh" complexity, namely the cost of the
computation as a function of the number of elements of data being worked on.

There are two parts to this advice. First, even before knowing whether data volumes
will be large enough to be an issue for a particular computation, by default avoid using
algorithms that work on user data (which could grow) but that don't scale well with
data unless there is a clear clarity and readability benefit to using a less scalable
algorithm (see Item 6). All too often we get surprised: We write ten pieces of code
thinking they'll never have to operate on huge data sets, and then we'll turn out to be
perfectly right nine of the ten times. The tenth time, we'll fall into a performance

Design Style 15

pit—we know it has happened to us, and we know it has happened or will happen to
you. Sure, we go fix it and ship the fix to the customer, but it would be better to avoid
such embarrassment and rework. So, all things being equal (including clarity and
readability), do the following up front:

• Use flexible, dynamically-allocated data and instead of fixed-size arrays: Arrays "larger
than the largest I'll ever need" are a terrible correctness and security fallacy. (See
Item 77.) Arrays are acceptable when sizes really are fixed at compile time.

• Know your algorithm's actual complexity: Beware subtle traps like linear-seeming
algorithms that actually call other linear operations, making the algorithm actu
ally quadratic. (See Item 81 for an example.)

• Prefer to use linear algorithms or faster wherever possible: Constant-time complexity,
such as push_back and hash table lookup, is perfect (see Items 76 and 80). O(log
N) logarithmic complexity, such as set/map operations and lower_bound and
upper_bound with random-access iterators, is good (see Items 76, 85, and 86).
O(N) linear complexity, such as vector::insert and for each, is acceptable (see
Items 76, 81, and 84).

• Try to avoid worse-than-linear algorithms where reasonable: For example, by default
spend some effort on finding a replacement if you're facing a O(N log N) or
O(N2) algorithm, so that your code won't fall into a disproportionately deep per
formance pit in the event that data volumes grow significantly. For example,
this is a major reason why Item 81 advises to prefer range member functions
(which are generally linear) over repeated calls of their single-element counter
parts (which easily becomes quadratic as one linear operation invokes another
linear operation; see Example 1 of Item 81).

• Never use an exponential algorithm unless your back is against the wall and you really
have no other option: Search hard for an alternative before settling for an exponen
tial algorithm, where even a modest increase in data volume means falling off a
performance cliff.

Second, after measurements show that optimization is necessary and important, and
especially if it's because data volumes are growing, focus on improving big-Oh
complexity rather than on micro-optimizations like saving that one extra addition.

In sum: Prefer to use linear (or better) algorithms wherever possible. Avoid polyno-
mial algorithms where reasonable. Avoid exponential algorithms with all your
might.

References
[Bentley00] §6, §8, Appendix 4 * [Cormen01] • [Kernighan99] §7 • [Knuth97a] • [Knuth97b] •
[Knuth98] • [McConnell93] §5.1-4, §10.6 • [Murray93] §9.11 • lSedgewick98] •
[Stroustrup00] §17.1.2

16 C++ Coding Standards

8. Don't optimize prematurely.

Summary
Spur not a willing horse (Latin proverb): Premature optimization is as addictive as it is
unproductive. The first rule of optimization is: Don't do it. The second rule of op-
timization (for experts only) is: Don't do it yet. Measure twice, optimize once.

Discussion
As [Stroustrup00] §6's introduction quotes so deliriously:

Premature optimization is the root of all evil. —Donald Knuth [quoting Hoare] On
the other hand, we cannot ignore efficiency. —Jon Bentley

Hoare and Knuth are, of course and as always, completely correct (see Item 6 and
this Item). So is Bentley (see Item 9).

We define premature optimization as making designs or code more complex, and so
less readable, in the name of performance when the effort is not justified by a proven
performance need (such as actual measurement and comparison against goals) and
thus by definition adds no proven value to your program. All too often, unneeded and
unmeasured optimization efforts don't even make the program any faster.
Always remember:

It is far, far easier to make a correct program fast
than it is to make a fast program correct.

So, by default, don't focus on making code fast; focus first on making code as clear
and readable as possible (see Item 6). Clear code is easier to write correctly, easier to
understand, easier to refactor—and easier to optimize. Complications, including op-
timizations, can always be introduced later—and only if necessary.
There are two major reasons why premature optimizations frequently don't even
make the program faster. First, we programmers are notoriously bad at estimating
what code will be faster or smaller, and where the bottlenecks in our code will be.
This includes the authors of this book, and it includes you. Consider: Modern com-
puters feature an extremely complex computational model, often with several pipe-
lined processing units working in parallel, a deep cache hierarchy, speculative exe-
cution, branch prediction... and that's just the CPU chip. On top of the hardware,
compilers take their best guess at transforming your source code into machine code
that exploits the hardware at its best. And on top of all that complication, it's... well, it's
your guess. So if you go with nothing but guesswork, there is little chance your
ill-targeted micro-optimizations will significantly improve things. So, optimization
must be preceded by measurement; and measurement must be preceded by optimi-

Design Style 17

zation goals. Until the need is proven, your focus should be on priority #1—writing
code for humans. (When someone asks you to optimize, do demand proof.)
Second, in modern programs, increasingly many operations aren't CPU-bound
anyway. They may be memory-bound, network-bound, disk-bound, waiting on a
web service, or waiting on a database. At best, tuning application code in such op-
erations only make the operations wait faster. It also means that the programmer
wasted valuable time improving what didn't need improving instead of adding
value by improving what did.
Of course, the day will come when you do need to optimize some code. When you
do so, look first for an algorithmic optimization (see Item 7) and try to encapsulate
and modularize the optimization (e.g., in a function or class; see Items 5 and 11), and
clearly state in a comment the reason of the optimization and a reference to the algo-
rithm used.

A common beginner's mistake is to write new code while obsessing—with pride!—
over optimal execution at the cost of understandability. More often than not, this
yields miles of spaghetti that, even if correct in the beginning, is hard to read and
change. (See Item 6.)

It is not premature optimization to pass by reference (see Item 25), to prefer calling
prefix ++ and -- (see Item 28), and use similar idioms that should just naturally flow
out of our fingertips. These are not premature optimizations; they are simply avoiding
premature pessimizations (see Item 9).

Examples
Example: An inline irony. Here is a simple demonstration of the hidden cost of a pre-
mature micro-optimization: Profilers are excellent at telling you, by function hit
count, what functions you should have marked inline but didn't; profilers are terrible
at telling you what functions you did mark inline but shouldn't have. Too many
programmers "inline by default" in the name of optimization, nearly always trading
higher coupling for at best dubious benefit. (This assumes that writing inline even
matters on your compiler. See [SutterOO], [Sutter02], and [Sutter04].)

Exceptions
When writing libraries, it's harder to predict what operations will end up being used in
performance-sensitive code. But even library authors run performance tests
against a broad range of client code before committing to obfuscating optimizations.

References
[Bentley00] §6 • [Cline99] §13.01-09 • [Kernighan99] §7 • [Lakos96] §9.1.14 • [Meyers97] §33
• [Murray93] §9.9-10, §9.13 • [StroustrupOO] §6 introduction • [Sutter00] §30, §46 • [Sutter02]
§12 • [Sutter04] §25

18 C++ Coding Standards

9. Don't pessimize prematurely.

Summary
Easy on yourself, easy on the code: All other things being equal, notably code com-
plexity and readability, certain efficient design patterns and coding idioms should
just flow naturally from your fingertips and are no harder to write than the
pes-simized alternatives. This is not premature optimization; it is avoiding gratuitous
pessimization.

Discussion
Avoiding premature optimization does not imply gratuitously hurting efficiency. By
premature pessimization we mean writing such gratuitous potential inefficiencies as:

• Defining pass-by-value parameters when pass-by-reference is appropriate. (See
Item 25.)

• Using postfix + + when the prefix version is just as good. (See Item 28.)
• Using assignment inside constructors instead of the initializer list. (See Item 48.)

It is not a premature optimization to reduce spurious temporary copies of objects,
especially in inner loops, when doing so doesn't impact code complexity. Item 18
encourages variables that are declared as locally as possible, but includes the excep-
tion that it can be sometimes beneficial to hoist a variable out of a loop. Most of the
time that won't obfuscate the code's intent at all, and it can actually help clarify
what work is done inside the loop and what calculations are loop-invariant. And of
course, prefer to use algorithms instead of explicit loops. (See Item 84.)

Two important ways of crafting programs that are simultaneously clear and efficient
are to use abstractions (see Items 11 and 36) and libraries (see Item 84). For example,
using the standard library's vector, list, map, find, sort and other facilities, which
have been standardized and implemented by world-class experts, not only makes
your code clearer and easier to understand, but it often makes it faster to boot.

Avoiding premature pessimization becomes particularly important when you are
writing a library. You typically can't know all contexts in which your library will be
used, so you will want to strike a balance that leans more toward efficiency and re-
usability in mind, while at the same time not exaggerating efficiency for the benefit of
a small fraction of potential callers. Drawing the line is your task, but as Item 7 shows,
the bigger fish to focus on is scalability and not a little cycle-squeezing.

References
[Keffer95] pp.12-13 • [Stroustrup00] §6 introduction • [Sutter00] §6

Design Style 19

10. Minimize global and shared data.

Summary
Sharing causes contention: Avoid shared data, especially global data. Shared data in-
creases coupling, which reduces maintainability and often performance.

Discussion
This statement is more general than Item 18's specific treatment.
Avoid data with external linkage at namespace scope or as static class members.
These complicate program logic and cause tighter coupling between different (and,
worse, distant) parts of the program. Shared data weakens unit testing because the
correctness of a piece of code that uses shared data is conditioned on the history of
changes to the data, and further conditions the functioning of acres of yet-unknown
code that subsequently uses the data further.
Names of objects in the global namespace additionally pollute the global namespace.
If you must have global, namespace-scope, or static class objects, be sure to initialize
such objects carefully. The order of initialization of such objects in different compila-
tion units is undefined, and special techniques are needed to handle it correctly (see
References). The order-of-initialization rules are subtle; prefer to avoid them, but if
you do have to use them then know them well and use them with great care.
Objects that are at namespace scope, static members, or shared across threads or
processes will reduce parallelism in multithreaded and multiprocessor environ-
ments and are a frequent source of performance and scalability bottlenecks. (See
Item 7.) Strive for "shared-nothing;" prefer communication (e.g., message queues)
over data sharing.
Prefer low coupling and minimized interactions between classes. (See [Cargill92].)

Exceptions
The program-wide facilities cin, cout, and cerr are special and are implemented spe-
cially. A factory has to maintain a registry of what function to call to create a given
type, and there is typically one registry for the whole program (but preferably it
should be internal to the factory rather than a shared global object; see Item 11).
Code that does share objects across threads should always serialize all access to
those shared objects. (See Item 12 and [Sutter04c].)

References
[Cargill92] pp. 126.136, 169-173 • [DewhurstO3] §3 • [Lakos96] §2.3.1 • [McConnell93]
§5.1-4 • [Stroustrup00] §C.10.1 • [Sutter00] §47 • [SutterO2] §16, Appendix A •
[Sutter04c] • [SuttHysl03]

20 C++ Coding Standards

11. Hide information.

Summary
Don't tell: Don't expose internal information from an entity that provides an abstraction.

Discussion

To minimize dependencies between calling code that manipulates an abstraction
and the abstraction's implementation(s), data that is internal to the implementation
must be hidden. Otherwise, calling code can access—or, worse, manipulate—that in-
formation, and the intended-to-be-internal information has leaked into the abstrac-
tion on which calling code depends. Expose an abstraction (preferably a domain ab-
straction where available, but at least a get/set abstraction) instead of data.
Information hiding improves a project's cost, schedule, and/or risk in two main ways:

• It localizes changes: Information hiding reduces the "ripple effect" scope of
changes, and therefore their cost.

• It strengthens invariants: It limits the code responsible for maintaining (and, if it
is buggy, possibly breaking) program invariants. (See Item 41.)

Don't expose data from any entity that provides an abstraction (see also Item 10).
Data is just one possible incarnation of abstract, conceptual state. If you focus on
concepts and not on their representations you can offer a suggestive interface and
tweak implementation at will—such as caching vs. computing on-the-fly or using
various representations that optimize certain usage patterns (e.g., polar vs. Carte-
sian).

A common example is to never expose data members of class types by making them
public (see Item 41) or by giving out pointers or handles to them (see Item 42), but this
applies equally to larger entities such as libraries, which must likewise not expose
internal information. Modules and libraries likewise prefer to provide interfaces that
define abstractions and traffic in those, and thereby allow communication with
calling code to be safer and less tightly coupled than is possible with data sharing.

Exceptions
Testing code often needs white-box access to the tested class or module.

Value aggregates ("C-style structs") that simply bundle data without providing any
abstraction do not need to hide their data; the data is the interface. (See Item 41.)

References
[Brooks95] §19* [McConnell93] §6.2 • [ParnasO2] • [StroustrupOO] §24.4 • [SuttHyslO4a]

Design Style 21

12. Know when and how to code for
concurrency.

Summary

Thsflreaygd/y. if your application uses multiple threads or processes, know how to
minimize sharing objects where possible (see Item 10) and share the right ones
safely.

Discussion
Threading is a huge domain. This Item exists because that domain is important and
needs to be explicitly acknowledged, but one Item can't do it justice and we will
only summarize a few essentials; see the References for many more details and tech-
niques. Among the most important issues are to avoid deadlocks, livelocks, and ma-
lign race conditions (including corruption due to insufficient locking).

The C++ Standard says not one word about threads. Nevertheless, C++ is routinely
and widely used to write solid multithreaded code. If your application shares data
across threads, do so safely:

• Consult your target platforms' documentation for local synchronization primitives:
Typical ones range from lightweight atomic integer operations to memory barri
ers to in-process and cross-process mutexes.

• Prefer to wrap the platform's primitives in your own abstractions: This is a good idea
especially if you need cross-platform portability. Alternatively, you can use a li
brary (e.g., pthreads [Butenhof97]) that does it for you.

• Ensure that the types you are using are safe to use in a multithreaded program: In par
ticular, each type must at minimum:

• Guarantee that unshared objects are independent: Two threads can freely use dif
ferent objects without any special action on the caller's part.

• Document what the caller needs to do to use the same object of that type in different
threads: Many types will require you to serialize access to such shared ob
jects, but some types do not; the latter typically either design away the lock
ing requirement, or they do the locking internally themselves, in which case,
you still need to be aware of the limits of what the internal locking granular
ity will do.

Note that the above applies regardless of whether the type is some kind of
string type, or an STL container like a vector, or any other type. (We note that
some authors have given advice that implies the standard containers are somehow
special. They are not; a container is just another object.) In particular, if you

22 C++ Coding Standards

want to use standard library components (e.g., string, containers) in a multi-
threaded program, consult your standard library implementation's documenta-
tion to see whether that is supported, as described earlier.

When authoring your own type that is intended to be usable in a multithreaded pro-
gram, you must do the same two things: First, you must guarantee that different
threads can use different objects of that type without locking (note: a type with
modifiable static data typically can't guarantee this). Second, you must document
what users need to do in order to safely use the same object in different threads; the
fundamental design issue is how to distribute the responsibility of correct execution
(race- and deadlock-free) between the class and its client. The main options are:

• External locking: Callers are responsible for locking. In this option, code that uses an
object is responsible for knowing whether the object is shared across threads
and, if so, for serializing all uses of the object. For example, string types typically
use external locking (or immutability; see the third option on the next page).

• Internal locking: Each object serializes all access to itself, typically by locking every pub
lic member function, so that callers may not need to serialize uses of the object. For ex
ample, producer/consumer queues typically use internal locking, because their
whole raison d'etre is to be shared across threads, and their interfaces are de
signed so that the appropriate level of locking is for the duration of individual
member function calls (Push, Pop). More generally, note that this option is ap
propriate only when you know two things:
First, you must know up front that objects of the type will nearly always be
shared across threads, otherwise you'll end up doing needless locking. Note
that most types don't meet this condition; the vast majority of objects even in a
heavily multithreaded program are never shared across threads (and this is
good; see Item 10).
Second, you must know up front that per-member-function locking is at the
right granularity and will be sufficient for most callers. In particular, the type's
interface should be designed in favor of coarse-grained, self-sufficient opera-
tions. If the caller typically needs to lock several operations, rather than an op-
eration, this is inappropriate; individually locked functions can only be assem-
bled into a larger-scale locked unit of work by adding more (external) locking.
For example, consider a container type that returns an iterator that could become
invalid before you could use it, or provides a member algorithm like find that can
return a correct answer that could become the wrong answer before you could
use it, or has users who want to write if(c.emptyO) c.push_back(x);. (See
[SutterO2] for additional examples.) In such cases, the caller needs to perform
external locking anyway in order to get a lock whose lifetime spans multiple
individual member function calls, and so internal locking of each member
function is needlessly wasteful.

Design Style 23

So, internal locking is tied to the type's public interface: Internal locking be-
comes appropriate when the type's individual operations are complete in them-
selves; in other words, the type's level of abstraction is raised and expressed and
encapsulated more precisely (e.g., as a producer-consumer queue rather than a
plain vector). Combining primitive operations together to form coarser common
operations is the approach needed to ensure meaningful but simple function
calls. Where combinations of primitives can be arbitrary and you cannot capture
the reasonable set of usage scenarios in one named operation, there are two al-
ternatives: a) use a callback-based model (i.e., have the caller call a single member
function, but pass in the task they want performed as a command or function
object; see Items 87 to 89); or b) expose locking in the interface in some way.

• Lock-free designs, including immutability (read-only objects): No locking needed. It is
possible to design types so that no locking at all is needed (see References). One
common example is immutable objects, which do not need to be locked because
they never change; for example, for an immutable string type, a string object is
never modified once created, and every string operation results in the creation of
a new string.

Note that calling code should not need to know about your types' implementation
details (see Item 11). If your type uses under-the-covers data-sharing techniques
(e.g., copy-on-write), you do not need to take responsibility for all possible thread
safety issues, but you must take responsibility for restoring "just enough" thread
safety to guarantee that calling code will be correct if it performs its usual duty of
care: The type must be as safe to use as it would be if it didn't use covert implemen-
tation-sharing. (See [SutterO4c].) As noted, all properly written types must allow
manipulation of distinct visible objects in different threads without synchronization.

Particularly if you are authoring a widely-used library, consider making your objects
safe to use in a multithreaded program as described above, but without added over-
head in a single-threaded program. For example, if you are writing a library containing
a type that uses copy-on-write, and must therefore do at least some internal locking,
prefer to arrange for the locking to disappear in single-threaded builds of your library
(#ifdefs and no-op implementations are common strategies).

When acquiring multiple locks, avoid deadlock situations by arranging for all code
that acquires the same locks to acquire them in the same order. (Releasing the locks
can be done in any order.) One solution is to acquire locks in increasing order by
memory address; addresses provide a handy, unique, application-wide ordering.

References
[AlexandrescuO2a] • [AlexandrescuO4] • [Butenhof97] • [HenneyOO] • [HenneyOl] •
[MeyersO4] • [SchmidtOl] • [StroustrupOO] §14.9 • [SutterO2] §16 • [SutterO4c]

24 C++ Coding Standards

13. Ensure resources are owned by objects.
Use explicit RAII and smart pointers.

Summary
Don't saw by hand when you have power tools: C++'s "resource acquisition is initiali-
zation" (RAII) idiom is the power tool for correct resource handling. RAII allows the
compiler to provide strong and automated guarantees that in other languages require
fragile hand-coded idioms. When allocating a raw resource, immediately pass it to an
owning object. Never allocate more than one resource in a single statement.

Discussion
C++'s language-enforced constructor/destructor symmetry mirrors the symmetry
inherent in resource acquire/release function pairs such as fopen/fclose,
lock/unlock, and new/delete. This makes a stack-based (or reference-counted) object
with a resource-acquiring constructor and a resource-releasing destructor an excellent
tool for automating resource management and cleanup.
The automation is easy to implement, elegant, low-cost, and inherently error-safe. If
you choose not to use it, you are choosing the nontrivial and attention-intensive task of
pairing the calls correctly by hand, including in the presence of branched control
flows and exceptions. Such C-style reliance on micromanaging resource deallocation
is unacceptable when C++ provides direct automation via easy-to-use RAII.
Whenever you deal with a resource that needs paired acquire/release function calls,
encapsulate that resource in an object that enforces pairing for you and performs the
resource release in its destructor. For example, instead of calling a pair of
Open-Port/ClosePort nonmember functions directly, consider:

class Port {
public:

Port(const strings destination); // call OpenPort
~ Port(); // call ClosePort
//... ports can't usually be cloned, so disable copying and assignment...

};

void DoSomething() { Port
portl("serverl:80");

} //can't forget to close portl; it's closed automatically at the end of the scope

shared_ptr< Port> port2 =/*... */ //port2 is closed automatically when the
//last shared_ptr referring to it goes away

You can also use libraries that implement the pattern for you (see [AlexandrescuOOc]).

Design Style 25

When implementing RAII, be conscious of copy construction and assignment (see
Item 49); the compiler-generated versions probably won't be correct. If copying
doesn't make sense, explicitly disable both by making them private and not defined
(see Item 53). Otherwise, have the copy constructor duplicate the resource or refer-
ence-count the number of uses, and have the assignment operator do the same and
ensure that it frees its originally held resource if necessary. A classic oversight is to
free the old resource before the new resource is successfully duplicated (see Item 71).
Make sure that all resources are owned by objects. Prefer to hold dynamically allo-
cated resources via smart pointers instead of raw pointers. Also, perform every ex-
plicit resource allocation (e.g., new) in its own statement that immediately gives the
allocated resource to a manager object (e.g., sharedptr); otherwise, you can leak re-
sources because the order of evaluation of a function's parameters is undefined. (See
Item 31.) For example:

void Fun(shared_ptr<Widget> spl, shared_ptr<Widget> sp2);

Fun(shared_ptr<Widget>(new Widget), shared_ptr<Widget>(new Widget));

Such code is unsafe. The C++ Standard gives compilers great leeway to reorder the
two expressions building the function's two arguments. In particular, the compiler
can interleave execution of the two expressions: Memory allocation (by calling op-
erator new) could be done first for both objects, followed by attempts to call the two
Widget constructors. That very nicely sets things up for a leak because if one of the
constructor calls throws an exception, then the other object's memory will never be
released! (See [SutterO2] for details.)
This subtle problem has a simple solution: Follow the advice to never allocate more
than one resource in a single statement, and perform every explicit resource alloca-
tion (e.g., new) in its own code statement that immediately gives the resource to an
owning object (e.g., shared_ptr). For example:

shared_ptr spl(new Widget), sp2(new Widget);
Fun(spl, sp2);

See also Item 31 for other advantages to using this style.

Exceptions
Smart pointers can be overused. Raw pointers are fine in code where the pointed-to
object is visible to only a restricted quantity of code (e.g., purely internal to a class,
such as a Tree class's internal node navigation pointers).

References
[AlexandrescuOOc] • [Cline99] §31.03-05 • [DewhurstO3] §24, §67 • [Meyers96] §9-10 •
[MilewskiOl] • [StroustrupOO] §14.3-4, §25.7, §E.3, §E.6 • [SutterOO] §16 • [SutterO2]
§20-21 • [Vandevoorde03] §20.1.4

Coding Style

One man's constant is another man's variable.

—Alan Perlis

In this section, we tighten our focus from general design issues to issues that arise
most often during actual coding.

The rules and guidelines in this section target coding practices that aren't specific to a
particular language area (e.g., functions, classes, or namespaces) but that improve the
quality of your code. Many of these idioms are about getting your compiler to help
you, including the powerful tool of declarative const (Item 15) and internal #include
guards (Item 24). Others will help you steer clear of land mines (including some
outright undefined behavior) that your compiler can't always check for you,
including avoiding macros (Item 16) and uninitialized variables (Item 19). All of
them help to make your code more reliable.

Our vote for the most valuable Item in this section goes to Item 14: Prefer
compile-and link-time errors to run-time errors.

27

28 C++ Coding Standards

14. Prefer compile- and link-time errors to
run-time errors.

Summary
Don't put off 'til run time what you can do at build time: Prefer to write code that uses
the compiler to check for invariants during compilation, instead of checking them at
run time. Run-time checks are control- and data-dependent, which means you'll
seldom know whether they are exhaustive. In contrast, compile-time checking is not
control- or data-dependent and typically offers higher degrees of confidence.

Discussion

The C++ language offers many opportunities to "accelerate" error detection by
pushing it to compilation time. Exploiting these static checking capabilities offers
you many advantages, including the following:

• Static checks are data- and flow-independent: Static checking offers guarantees that
are independent of the program inputs or execution flow. In contrast, to make
sure that your run-time checking is strong enough, you need to test it for a rep
resentative sample of all inputs. This is a daunting task for all but the most triv
ial systems.

• Statically expressed models are stronger: Oftentimes, a program that relies less on
run-time checks and more on compile-time checks reflects a better design be
cause the model the program creates is properly expressed using C++'s type
system. This way, you and the compiler are partners having a consistent view of
the program's invariants; run-time checks are often a fallback to do checking
that could be done statically but cannot be expressed precisely in the language.
(See Item 68.)

• Static checks don't incur run-time overhead: With static checks replacing dynamic
checks, the resulting executable will be faster without sacrificing correctness.

One of C++'s most powerful static checking tools is its static type checking. The de-
bate on whether types should be checked statically (C++, Java, ML, Haskell) or dy-
namically (Smalltalk, Ruby, Python, Lisp) is open and lively. There is no clear winner in
the general case, and there are languages and development styles that favor either kind
of checking with reportedly good results. The static checking crowd argues that a large
category of run-time error handling can be thus easily eliminated, resulting in
stronger programs. On the other hand, the dynamic checking camp says that com-

Coding Style 29

pilers can only check a fraction of potential bugs, so if you need to write unit tests
anyway you might as well not bother with static checking at all and get a less re-
strictive programming environment.

One thing is clear: Within the context of the statically typed language C++, which
provides strong static checking and little automatic run-time checking, programmers
should definitely use the type system to their advantage wherever possible (see also
Items 90 through 100). At the same time, run-time checks are sensible for data- and
flow-dependent checking (e.g., array bounds checking or input data validation) (see
Items 70 and 71).

Examples

There are several instances in which you can replace run-time checks with
compile-time checks.

Example 1: Compile-time Boolean conditions. If you are testing for compile-time Boolean
conditions such as sizeof(int) > = 8, use static assertions instead of run-time tests.
(But see also Item 91.)

Example 2: Compile-time polymorphism. Consider replacing run-time polymorphism
(virtual functions) with compile-time polymorphism (templates) when defining ge-
neric functions or types. The latter yields code that is better checked statically. (See
also Item 64.)

Example 3: Enums. Consider defining enums (or, better yet, full-fledged types) when
you need to express symbolic constants or restricted integral values.

Example 4: Downcasting. If you frequently use dynamic_cast (or, worse, an unchecked
static_cast) to perform downcasting, it can be a sign that your base classes offer too
little functionality. Consider redesigning your interfaces so that your program can
express computation in terms of the base class.

Exceptions

Some conditions cannot be checked at compile time and require run-time checks.
For these, prefer to use assertions to detect internal programming errors (see Item 68)
and follow the advice in the rest of the error handling section for other run-time errors
such as data-dependent errors (see Items 69 through 75).

References

[AlexandrescuOl] §3 • [Boost] • [Meyers97] §46 • [StroustrnpOO] §2.4.2 • [SutterO2] §4 •
[SutterO4] §2, §19

30 C++ Coding Standards

15. Use const proactively.

Summary

const is your friend: Immutable values are easier to understand, track, and reason
about, so prefer constants over variables wherever it is sensible and make const
your default choice when you define a value: It's safe, it's checked at compile time
(see Item 14), and it's integrated with C++'s type system. Don't cast away const ex-
cept to call a const-incorrect function (see Item 94).

Discussion

Constants simplify code because you only have to look at where the constant is de-
fined to know its value everywhere. Consider this code:

void Fun(vector<int>& v)
{ //...

const size_t len = v.size();

//... 30 more lines ... }

When seeing len's definition above, you gain instant confidence about len's seman-
tics throughout its scope (assuming the code doesn't cast away const, which it
should not do; see below): It's a snapshot of v's length at a specific point. Just by
looking up one line of code, you know len's semantics over its whole scope. Without
the const, len might be later modified, either directly or through an alias. Best of all, the
compiler will help you ensure that this truth remains true.

Note that const is not deep. For example, consider a class C that has a member of
type X*. In C objects that are const, the X* member is also const—but the X object that
is pointed to is not. (See [Saks99].)

Implement logical constness with mutable members. When a const member function
of a class legitimately needs to modify a member variable (i.e., when the variable
does not affect the object's observable state, such as cached data), declare that
member variable mutable. Note that if all private members are hidden using the
Pimpl idiom (see Item 43), mutable is not needed on either the cached information or
the unchanging pointer to it.

Yes, const is "viral"—add it in one place, and it wants to propagate throughout your
code as you call other functions whose signatures aren't yet const-correct. This is a

Coding Style 31

feature, not a bug, and this quality greatly increases const's power even though it
was unjustly demeaned in the days when const wasn't well understood and appre-
ciated. Retrofitting an existing code base to make it const-correct takes effort, but it is
worthwhile and likely to uncover latent bugs.

Const-correctness is worthwhile, proven, effective, and highly recommended. Un-
derstanding how and where a program's state changes is vital, and const documents
that directly in code where the compiler can help to enforce it. Writing const appro-
priately helps you gain a better understanding of your design and makes your code
sturdier and safer. If you find it impossible to make a member function const, you
usually gain a better understanding of the ways in which that member function
might modify an object's state. You might also understand which data members
bridge the gap between physical constness and logical constness, as noted in the fol-
lowing Examples.

Never cast away const except to call a const-incorrect function, or in rare cases as a
workaround for lack of mutable on older compilers.

Examples
Example: Avoid const pass-by-value function parameters in function declarations. The fol-
lowing two declarations are exactly equivalent:

void Fun(int x);

void Fun(const int x); //redeclares the same function: top-level const is ignored

In the second declaration, the const is redundant. We recommend declaring func-
tions without such top-level consts, so that readers of your header files won't get
confused. However, the top-level const does make a difference in a function's defini-
tion and can be sensible there to catch unintended changes to the parameter:

void Fun(const int x) { //Fun's actual definition

+ +x; // error: cannot modify a const value

}

References

[Allison98] §10 • [Cline99] §14.02-12 • [DewhurstO3] §6, §31-32, §82 • [Keffer95] pp. 5-6 •
[Koenig97] §4 • [Lakos96] §9.1.6, §9.1.12 • [Meyers97] §21 • [Murray93] §2.7 •
[StroustrupOO] §7.2, §10.2.6, §16.3.1 • [SutterOO] §43

32 C++ Coding Standards

16. Avoid macros.

Summary

TO_PUT_IT_BLUNTLY: Macros are the bluntest instrument of C and C++'s abstraction
facilities, ravenous wolves in functions' clothing, hard to tame, marching to their
own beat all over your scopes. Avoid them.

Discussion
It's hard to find language that's colorful enough to describe macros, but we'll try. To
quote from [SutterO4] §31:

Macros are obnoxious, smelly, sheet-hogging bedfellows for several reasons, most
of which are related to the fact that they are a glorified text-substitution facility
whose effects are applied during preprocessing, before any C++ syntax and semantic
rules can even begin to apply.

Lest there remain any ambiguity on this point, we note also that Bjarne Stroustrup
has written:

I dislike most forms of preprocessors and macros. One ofC++'s aims is to make C's
preprocessor redundant (§4.4, §18) because I consider its actions inherently error
prone. —[Stroustrup94] §3.3.1

Macros are almost never necessary in C++. Use const (§5.4) or enum (§4.8) to
define manifest constants [see Item 15], inline (§7.1.1) to avoid function-calling
overhead [but see Item 8], templates (Chapter 13) to specify families of functions
and types [see Items 64 through 67], and namespaces (§8.2) to avoid name
clashes [see Items 57 through 59]. —[StroustrupOO] §1.6.1

The first rule about macros is: Don't use them unless you have to. Almost every
macro demonstrates a flaw in the programming language, in the program, or in
the programmer. —[StroustrupOO] §7.8

The main problem with C++ macros is that they seem much better at what they do
than they really are. Macros ignore scopes, ignore the type system, ignore all other
language features and rules, and hijack the symbols they #define for the remainder
of a file. Macro invocations look like symbols or function calls, but are neither. Macros
are not "hygienic," meaning that they can expand to significantly and surprisingly
different things depending on the context in which they are used. The text
substitution that macros perform makes writing even remotely proper macros a
black art whose mastery is as unrewarding as it is tedious.

Coding Style 33

People who think that template-related errors are the worst to decipher probably
haven't seen those caused by badly formed or badly used macros. Templates are
part of C++'s type system and thus allow compilers to get better at handling them
(which they do), whereas macros are forever divorced from the language and hence
intractable. Worse, unlike a template, a macro might expand to some transmission
line noise that undesirably compiles by pure chance. Finally, an error in a macro can
only be reported after the macro is expanded and not when it is defined.

Even in the rare cases where you do legitimately write a macro (see Exceptions),
never ever even consider starting to think about writing a macro that is a common
word or abbreviation. Do #undefine macros as soon as possible, always give them
SCREAMING_UPPERCASE_AND_UGLY names, and avoid putting them in headers.

Examples
Example: Passing a template instantiation to a macro. Macros barely understand C's pa-
rentheses and square brackets well enough to balance them. C++, however, defines a
new parenthetical construct, namely the < and > used in templates. Macros can't
pair those correctly, which means that in a macro invocation

MACRO(Focxint, double>)

the macro thinks it is being passed two arguments, namely Focxint and double>,
when in fact the construct is one C++ entity.

Exceptions
Macros remain the only solution for a few important tasks, such as #include guards
(see Item 24), #ifdef and #if defined for conditional compilation, and implementing
assert (see Item 68).

For conditional compilation (e.g., system-dependent parts), avoid littering your code
with #ifdefs. Instead, prefer to organize code such that the use of macros drives al-
ternative implementations of one common interface, and then use the interface
throughout.

You may want to use macros (cautiously) when the alternative is extreme copying
and pasting snippets of code around.

We note that both [C99] and [Boost] include moderate and radical extensions, re-
spectively, to the preprocessor.

References
[Boost] • [C99] • [DewhurstO3] §25-28 • [Lakos96] §2.3.4 «
[StroustrupOO] §1.6.1, §7.8 • [SutterO2] §34-35 • [SutterO4] §31

[Stroustrup94]
[SutterO4a]

53.3.2

34 C++ Coding Standards

17. Avoid magic numbers.

Summary
Programming isn't magic, so don't incant it: Avoid spelling literal constants like 42 or
3.14159 in code. They are not self-explanatory and complicate maintenance by
adding a hard-to-detect form of duplication. Use symbolic names and expressions
instead, such as width * aspectRatio.

Discussion
Names add information and introduce a single point of maintenance; raw numbers
duplicated throughout a program are anonymous and a maintenance hassle. Con-
stants should be enumerators or const values, scoped and named appropriately.
One 42 may not be the same as another 42. Worse, "in-head" computations made by
the programmer (e.g., "this 84 comes from doubling the 42 used five lines ago")
make it tedious and error-prone to later replace 42 with another constant.
Prefer replacing hardcoded strings with symbolic constants. Keeping strings sepa-
rate from the code (e.g., in a dedicated .cpp or resource file) lets non-programmers
review and update them, reduces duplication, and helps internationalization.

Examples
Example 1: Important domain-specific constants at namespace level,

const sizej PAGE_SIZE = 8192,
WORDS_PER_PAGE = PAGE_SIZE/sizeof(int),
INFO_BITS_PER_PAGE = 32 * CHAR_BIT;

Example 2: Class-specific constants. You can define static integral constants in the class
definition; constants of other types need a separate definition or a short function.

//File widget.h
class Widget {
static const int defaultWidth = 400; // value provided in declaration
static const double defaultPercent; // value provided in definition
static const char* Name() {return "Widget";}

};

//File widget.cpp
const double Widget::defaultPercent = 66.67; // value provided in definition
const int Widget::defaultWidth; //definition required

References
[DewhurstO3] §2 • [Kernighan99] §1.5 • [StroustrupOO] §4.8, §5.4

Coding Style 35

18. Declare variables as locally as possible.

Summary
Avoid scope bloat, as with requirements so too with variables): Variables introduce
state, and you should have to deal with as little state as possible, with lifetimes as
short as possible. This is a specific case of Item 10 that deserves its own treatment.

Discussion
Variables whose lifetimes are longer than necessary have several drawbacks:

• They make the program harder to understand and maintain: For example, should
code update the module-wide path string if it only changes the current drive?

• They pollute their context with their name: As a direct consequence of this, name-
space-level variables, which are the most visible of all, are also the worst (see
Item 10).

• They can't always be sensibly initialized: Never declare a variable before you can
initialize it sensibly. Uninitialized variables are a pervasive source of bugs in all
C and C++ programs, and they require our proactive attention because they
can't always be detected by compilers (see Item 19).

In particular, older versions of C before [C99] required variables to be defined only at
the beginning of a scope; this style is obsolete in C++. A serious problem with this
restriction is that at the beginning of the scope you often don't yet have enough in-
formation to initialize variables with pertinent information. This leaves you with
two choices—either initialize with some default blank value (e.g., zero), which is
usually wasteful and can lead to errors if the variable ends up being used before it has
a useful state, or leave them uninitialized, which is dangerous. An uninitialized
variable of user-defined types will self-initialize to some blank value.

The cure is simple: Define each variable as locally as you can, which is usually ex-
actly the point where you also have enough data to initialize it and immediately be-
fore its first use.

Exceptions
It can sometimes be beneficial to hoist a variable out of a loop. (See Item 9.)

Because constants don't add state, this Item does not apply to them. (See Item 17.)

References
[DewhurstO3] §3, §48, §66
[StroustrupOO] §4.9.4, §6.3

[Dewhurst03] §95 [McConnell93] §5.1-4, §10.1

36 C++ Coding Standards

19. Always initialize variables.

Summary
Start with a clean slate: Uninitialized variables are a common source of bugs in C
and C++ programs. Avoid such bugs by being disciplined about cleaning memory
before you use it; initialize variables upon definition.

Discussion
In the low-level efficiency tradition of C and C++ alike, the compiler is often not re-
quired to initialize variables unless you do it explicitly (e.g., local variables, forgotten
members omitted from constructor initializer lists). Do it explicitly.

There are few reasons to ever leave a variable uninitialized. None is serious enough to
justify the hazard of undefined behavior.

If you've used a procedural language (e.g., Pascal, C, Fortran, or Cobol) you might
be used to defining variables in separation from the code that uses them, and then
assigning them values later when they're about to be used. This approach is obsolete
and not recommended (see Item 18).

A common misconception about uninitialized variables is that they will crash the
program, so that those few uninitialized variables lying around here and there will be
quickly revealed by simple testing. On the contrary, programs with uninitialized
variables can run flawlessly for years if the bits in the memory happen to match the
program's needs. Later, a call from a different context, a recompilation, or some
change in another part of the program will cause failures ranging from inexplicable
behavior to intermittent crashes.

Examples
Example 1: Using a default initial value or ?: to reduce mixing dataflow with control flow.

//Not recommended: Doesn't initialize variable
int speedupFactor;
if(condition)
speedupFactor = 2;

else
speedupFactor = -1;

//Better: Initializes variable
int speedupFactor = -1;
if(condition) speedupFactor
= 2;

Coding Style 37

// Better: Initializes variable
int speedupFactor = condition ? 2 : -1;

The better alternatives nicely leave no gap between definition and initialization.

Example 2: Replacing a complicated computational flow with a function. Sometimes a value
is computed in a way that is best encapsulated in a function (see Item 11):

//Not recommended: Doesn't initialize variable
int speedupFactor;

if(condition) {
//... code...
speedupFactor = someValue; }

else {
//... code...
speedupFactor = someOtherValue; }

// Better: Initializes variable
int speedupFactor = ComputeSpeedupFactor();

Example 3: Initializing arrays. For large aggregate types such as arrays, proper initiali-
zation does not always mean having to really touch all the data. For example, say
you use an API that forces you to use fixed arrays of char of size MAX_PATH (but see
Items 77 and 78). If you are sure the arrays are always treated as null-terminated C
strings, this immediate assignment is good enough:

//Acceptable: Create an empty path
char path[MAX_PATH]; path[0] = \0';

The following safer initialization fills all the characters in the array with zero:

//Better: Create a zero-filled path
char path[MAX_PATH] = {'\0' };

Both variants above are recommended, but in general you should prefer safety to
unneeded efficiency.

Exceptions
Input buffers and volatile data that is directly written by hardware or other proc-
esses does not need to be initialized by the program.

References
[DewhurstO3] §48 • [StroustrupOO] §4.9.5, §6.3

38 C++ Coding Standards

20. Avoid long functions. Avoid deep nesting.

Summary
Short is better than long, flat is better than deep: Excessively long functions and
nested code blocks are often caused by failing to give one function one cohesive re-
sponsibility (see Item 5), and both are usually solved by better refactoring.

Discussion
Every function should be a coherent unit of work bearing a suggestive name (see
Item 5 and the Discussion in Item 70). When a function instead tries to merge such
small conceptual elements inside a long function body, it ends up doing too much.
Excessive straight-line function length and excessive block nesting depth (e.g., if,
for, while, and try blocks) are twin culprits that make functions more difficult to un-
derstand and maintain, and often needlessly so.
Each level of nesting adds intellectual overhead when reading code because you
need to maintain a mental stack (e.g., enter conditional, enter loop, enter try, enter
conditional, ...). Have you ever found a closing brace in someone's code and won-
dered which of the many fors, whiles, or ifs it matched? Prefer better functional de-
composition to help avoid forcing readers to keep as much context in mind at a time.
Exercise common sense and reasonableness: Limit the length and depth of your
functions. All of the following good advice also helps reduce length and nesting:

• Prefer cohesion: Give one function one responsibility (see Item 5).
• Don't repeat yourself: Prefer a named function over repeated similar code snippets.
• Prefer &&: Avoid nested consecutive ifs where an && condition will do.
• Don't try too hard: Prefer automatic cleanup via destructors over try blocks (see

Item 13).
• Prefer algorithms: They're flatter than loops, and often better (see Item 84).
• Don't switch on type tags. Prefer polymorphic functions (see Item 90).

Exceptions
A function might be legitimately long and/or deep when its functionality can't be
reasonably refactored into independent subtasks because every potential refactoring
would require passing many local variables and context (rendering the result less
readable rather than more readable). But if several such potential functions take
similar arguments, they might be candidates for becoming members of a new class.

References
[Piwowarski82] • [Miller56]

Coding Style 39

21. Avoid initialization dependencies across
compilation units.

Summary
Keep (initialization) order: Namespace-level objects in different compilation units
should never depend on each other for initialization, because their initialization order
is undefined. Doing otherwise causes headaches ranging from mysterious crashes
when you make small changes in your project to severe non-portability even to new
releases of the same compiler.

Discussion

When you define two namespace-level objects in different compilation units, which
object's constructor is called first is not defined. Often (but not always) your tools
might happen to initialize them in the order in which the compilation units' object
files are linked, but this assumption is usually not reliable; even when it does hold,
you don't want the correctness of your code to subtly depend on your makefile or
project file. (For more on the evils of order dependencies, see also Item 59.)

Therefore, inside the initialization code of any namespace-level object, you can't as-
sume that any other object defined in a different compilation unit has already been
initialized. These considerations apply to dynamically initialized variables of primi-
tive types, such as a namespace-level bool reg_success = LibRegister("mylib");

Note that, even before they are ever constructed using a constructor,
namespace-level objects are statically initialized with all zeroes (as opposed to, say,
automatic objects that initially contain garbage). Paradoxically, this zero-initialization
can make bugs harder to detect, because instead of crashing your program swiftly the
static zero-initialization gives your yet-uninitialized object an appearance of
legitimacy. You'd think that that string is empty, that pointer is null, and that integer
is zero, when in fact no code of yours has bothered to initialize them yet.

To avoid this problem, avoid namespace-level variables wherever possible; they are
dangerous (see Item 10). When you do need such a variable that might depend upon
another, consider the Singleton design pattern; used carefully, it might avoid implicit
dependencies by ensuring that an object is initialized upon first access. Still, Singleton
is a global variable in sheep's clothing (see again Item 10), and is broken by mutual or
cyclic dependencies (again, zero-initialization only adds to the confusion).

References
[DewhurstO3] §55 • [Gamma95] • [McConnell93] §5.1-4 • [StronstrupOO] §9.4.1, §10.4.9

40 C++ Coding Standards

22. Minimize definitional dependencies.
Avoid cyclic dependencies.

Summary
Don't be over-dependent: Don't #include a definition when a forward declaration
will do.

Don't be co-dependent: Cyclic dependencies occur when two modules depend di-
rectly or indirectly on one another. A module is a cohesive unit of release (see page
103); modules that are interdependent are not really individual modules, but
super-glued together into what's really a larger module, a larger unit of release. Thus,
cyclic dependencies work against modularity and are a bane of large projects. Avoid
them.

Discussion
Prefer forward declarations except where you really need a type's definition. You
need a full definition of a class C in two main cases:

• When you need to know the size of a C object: For example, when allocating a C on
the stack or as a directly-held member of another type.

• When you need to name or call a member of C: For example, when calling a member
function.

In keeping with this book's charter, we'll set aside from the start those cyclic de-
pendencies that cause compile-time errors; you've already fixed them by following
good advice present in the literature and Item 1. Let's focus on cyclic dependencies
that remain in compilable code, see how they trouble your code's quality, and what
steps need be taken to avoid them.

In general, dependencies and their cycles should be thought of at module level. A
module is a cohesive collection of classes and functions released together (see Item 5
and page 103). In its simplest form, a cyclic dependency has two classes that directly
depend upon each other:

class Child; //breaks the dependency cycle

class Parent {//...
Child* myChild_; };

class Child {//... //possibly in a different header
Parent*

myParent_; };

Coding Style 41

Parent and Child depend upon each other. The code compiles, but we've set the
stage for a fundamental problem: The two classes are not independent anymore, but
have become interdependent. That is not necessarily bad, but it should only occur
when both are part of the same module (developed by the same person or team and
tested and released as a whole).

In contrast, consider: What if Child did not need to store a back link to its Parent
ob-ject? Then Child could be released as its own separate, smaller module (and maybe
under a different name) in total independence from Parent—clearly a more flexible
design.

Things get only worse when dependency cycles span multiple modules, which are all
stuck together with dependency glue to form a single monolithic unit of release.
That's why cycles are the fiercest enemy of modularity.

To break cycles, apply the Dependency Inversion Principle documented in
[Mar-tin96a] and [Martin00] (see also Item 36): Don't make high-level modules depend
on low-level modules; instead, make both depend on abstractions. If you can define in-
dependent abstract classes for either Parent or Child, you've broken the cycle. Oth-
erwise, you must commit to making them parts of the same module.

A particular form of dependency that certain designs suffer from is transitive de-
pendency on derived classes, which occurs when a base class depends on all of its
descendants, direct and indirect. Some implementations of the Visitor design pattern
leads to this kind of dependency. Such a dependency is acceptable only for excep-
tionally stable hierarchies. Otherwise, you may want to change your design; for ex-
ample, use the Acyclic Visitor pattern [Martin98].

One symptom of excessive interdependencies is incremental builds that have to
build large parts of the project in response to local changes. (See Item 2.)

Exceptions
Cycles among classes are not necessarily bad—as long as the classes are considered
part of the same module, tested together, and released together. Naive implementa-
tions of such patterns as Command and Visitor result in interfaces that are naturally
interdependent. These interdependencies can be broken, but doing so requires ex-
plicit design.

References
[AlexandrescuOl] §3 • [Boost] • [Gamma95] • [Lakos96] §0.2.1, §4.6-14, §5 • [Martin96a] •
[Martin96b] • [Martin98] §7 • [MartinOO] • [McConnell93] §5 • [Meyers97] §46 •
[StroustrupOO] §24.3.5 • [SutterOO] §26 • [SutterO2] §37 • [SutterO3]

42 C++ Coding Standards

23. Make header files self-sufficient.

Summary
Behave responsibly: Ensure that each header you write is compilable standalone, by
having it include any headers its contents depend upon.

Discussion
If one header file won't work unless the file that includes it also includes another
header, that's gauche and puts unnecessary burden on that header file's users.
Years ago, some experts advised that headers should not include other headers be-
cause of the cost of opening and parsing a guarded header multiple times. Fortu-
nately, this is largely obsolete: Many modern C++ compilers recognize header
guards automatically (see Item 24) and don't even open the same header twice.
Some also offer precompiled headers, which help to ensure that often-used,
seldom-changed headers will not be parsed often.
But don't include headers that you don't need; they just create stray dependencies.
Consider this technique to help enforce header self-sufficiency: In your build, compile
each header in isolation and validate that there are no errors or warnings.

Examples
Some subtler issues arise in connection with templates.
Example 1: Dependent names. Templates are compiled at the point where they are de-
fined, except that any dependent names or types are not compiled until the point
where the template is instantiated. This means that a template<class T> class Widget
with a std::deque<T> member does not incur a compile-time error even when
<deque> is not included, as long as nobody instantiates Widget. Given that Widget
exists in order to be instantiated, its header clearly should #include <deque>.
Example 2: Member function templates, and member functions of templates, are instantiated
only if used. Suppose that Widget doesn't have a member of type std::deque<T>, but
Widget's Transmogrify member function uses a deque. Then Widget's callers can
instantiate and use Widget just fine even if no one includes <deque>, as long as
they don't use Transmogrify. By default, the Widget header should still #include
<deque> because it is necessary for at least some callers of Widget. In rare cases
where an expensive header is being included for few rarely used functions of a tem-
plate, consider refactoring those functions as nonmembers supplied in a separate
header that does include the expensive one. (See Item 44.)

References
[Eakos96] §3.2 • [StroustrupOO] §9.2.3 • [SutterOO] §26-30 • [Vandevoorde03] §9-10

Coding Style 43

24. Always write internal #include guards.
Never write external #include guards.

Summary
Wear head(er) protection: Prevent unintended multiple inclusions by using #include
guards with unique names for all of your header files.

Discussion
Each header file should be guarded by an internal #include guard to avoid redefini-
tions in case it is included multiple times. For example, a header file foo.h should
follow the general form:

#ifndef FOO_H_INCLUDED_
#define FOO_HJNCLUDED_ //...
contents of the file... #endif

Observe the following rules when defining include guards:

• Use a unique guard name: Make sure it is unique at least within your application.
We used a popular convention above; the guard name can include the applica
tion name, and some tools generate guard names containing random numbers.

• Don't try to be clever: Don't put any code or comments before and after the
guarded portion, and stick to the standard form as shown. Today's preproces
sors can detect include guards, but they might have limited intelligence and ex
pect the guard code to appear exactly at the beginning and end of the header.

Avoid using the obsolete external include guards advocated in older books:

#ifndef FOO_HJNCLUDED_ //NOT recommended
#include "foo.h"
#define FOO_HJNCLUDED_
#endif

External include guards are tedious, are obsolete on today's compilers, and are fragile
with tight coupling because the callers and header must agree on the guard name.

Exceptions
In very rare cases, a header file may be intended to be included multiple times.

References
[C++03, §2.1] • [StroustrupOO] §9.3.3

Functions and Operators

If you have a procedure with ten parameters, you probably missed some.

—Alan Perlis

Functions, including overloaded operators, are the fundamental units of work. As
we will see later on in the section on Error Handling and Exceptions (and particularly
in Item 70), this has a direct effect on how we reason about the correctness and safety
of our code.

But first, let's consider some fundamental mechanics for writing functions, including
operators. In particular, we'll focus on their parameters, their semantics, and their
overloading.

Our vote for the most valuable Item in this section goes to Item 26: Preserve natural
semantics for overloaded operators.

45

46 C++ Coding Standards

25. Take parameters appropriately by value,
(smart) pointer, or reference.

Summary
Parameterize well: Distinguish among input, output, and input/output parameters,
and between value and reference parameters. Take them appropriately.

Discussion
Choosing well among values, references, and pointers for parameters is good habit
that maximizes both safety and efficiency.

Although efficiency should not be our primary up-front concern (see Item 8), neither
should we write needlessly inefficient code when all other things, including clarity,
are equal (see Item 9).

Prefer to follow these guidelines for choosing how to take parameters. For
input-only parameters:

• Always const-qualify all pointers or references to input-only parameters.
• Prefer taking inputs of primitive types (e.g., char, float) and value objects that

are cheap to copy (e.g., Point, complex<float>) by value.
• Prefer taking inputs of other user-defined types by reference to const.
• Consider pass-by-value instead of reference if the function requires a copy of its

argument. This is conceptually identical to taking a reference to const plus do
ing a copy, and it can help compiler to better optimize away temporaries.

For output or input/output parameters:

• Prefer passing by (smart) pointer if the argument is optional (so callers can pass
null as a "not available" or "don't care" value) or if the function stores a copy of
the pointer or otherwise manipulates ownership of the argument.

• Prefer passing by reference if the argument is required and the function won't
store a pointer to it or otherwise affect its ownership. This states that the argu
ment is required and makes the caller responsible for providing a valid object.

Don't use C-style varargs (see Item 98).

References
[AlexandrescuO3a] • [Cline99] §2.10-11, 14.02-12, 32.08 • [DeivhurstO3] §57 • [Koenig97]
§4 • [Lakos96] §9.1.11-12 • [McConnell93] §5.7 • [Meyers97] §21-22 • [Stroustrup94]
§11.4.4 • [StwustrupOO] §5.5, §11.6, §16.3.4 • [SutterOO] §6, §46

Functions and Operators 47

26. Preserve natural semantics for
overloaded operators.

Summary
Programmers hate surprises: Overload operators only for good reason, and preserve
natural semantics; if that's difficult, you might be misusing operator overloading.

Discussion
Although anyone would agree (we hope) that one should not implement subtraction
in an operator+ implementation, other cases can be subtle. For example, does your
Tensor class's operator* mean the scalar product or the vector product? Does
opera-tor+ =(Tensor& t, unsigned u) add u to each of t's elements, or will it resize
t? In such ambiguous or counterintuitive cases, prefer using named functions instead
of fostering cryptic code.
For value types (but not all types; see Item 32): "When in doubt, do as the ints do."
[Meyers96] Mimicking the behavior of and relationships among operators on built-in
types ensures that you don't surprise anyone. If your semantics of choice are likely
to raise eyebrows, maybe operator overloading is not a good idea.

Programmers expect operators to come in bundles. If the expression a @ b is well
formed for some operator @ you define (possibly after conversions), ask: Can the
caller also write b @ a without surprises? Can the caller write a @= b? (See Item 27.) If
the operator has an inverse (e.g., + and -, or * and /), are both supported?

Named functions are less likely to have such assumed relationships, and therefore
should be preferred for clearer code if there can be any doubt about semantics.

Exceptions
There are highly specialized libraries (e.g., parser generators and regular expression
engines) that define domain-specific conventions for operators that are very different
from their C++ meanings (e.g., a regular expression engine might use operator* to
express "zero or more"). Prefer instead to find an alternative to unusual operator
overloading (e.g., [C++TR104] regular expressions use strings, so that * can be used
naturally without overloading operators). If after careful thought you choose to use
operators anyway, make sure you define a coherent framework for your conventions
and that you don't step on the toes of any built-in operator.

References
[Cline99] §23.02-06 • [C++TR104] §7 • [DewhurstO3] §85-86 • [Koenig97] §4 • [Lakos96]
§9.1.1 • [Meyers96] §6 • [StroustrupOO] §11.1 • [SutterOOl §41

48 C++ Coding Standards

27. Prefer the canonical forms of arithmetic and
assignment operators.

Summary
If you a+b, also a+ = b: When defining binary arithmetic operators, provide their
as-signment versions as well, and write to minimize duplication and maximize
efficiency.

Discussion
In general, for some binary operator @ (be it +, -, *, and so on), you should define its
assignment version such that a @ = b and a = a @ b have the same meaning (other
than that the first form might be more efficient and only evaluates a once). The ca-
nonical way of achieving this goal is to define @ in terms of @=, as follows:

T& T::operator@ = (const T&) {
//... implementation...
return *this; }

T operator@(const T& Ihs, const T& rhs) {
T temp(Ihs);
return temp @= rhs; }

The two functions work in tandem. The assignment form does the actual work and
returns its left-hand parameter. The non-assignment version creates a temporary
from Ihs, modifies it by invoking the assignment form, and returns it.

Note that here operator® is a nonmember function, so that it will have the desirable
property of accepting the same implicit conversions on its left-hand side and
right-hand side parameters. (See Item 44.) For example, if you define a class String
that has an implicit constructor taking a char, making operator+(const String&,
const String&) a nonmember enables both char + String and String + char to work; a
member version String::operator+(const String&) would only accept the latter. An
efficiency-minded implementation might choose to define several nonmember over-
loads of operator® to avoid proliferation of temporaries resulted through conver-
sions (see Item 29).

Where possible, make operator@ = a nonmember function as well (see Item 44). In
any case, put all nonmember operators in the same namespace as T so that they will
be conveniently available to callers as well as to avoid name lookup surprises (see
Item 57).

Functions and Operators 49

A variation is to have operator@ accept its first parameter by value. This way, you
arrange for the compiler itself to perform the copy for you implicitly, and this can
give the compiler more leeway in applying optimizations:

T& operator@=(T& Ihs, const T& rhs) {
//... implementation...
return Ihs; }

T operator@(T Ihs, const T& rhs) { //Ihs taken by value
return Ihs @= rhs; }

Another variation is to have operator@ return a const value. This technique has the
advantage that it disables nonsensical code such as a + b = c, but it does so at the
cost of disabling some potentially useful constructs such as a = (b + c).replace(pos, n,
d)—expressive code that, in one shot, concatenates strings b and c, replaces some
characters, and assigns the final result to a.

Examples
Example: An implementation of + = for strings. When concatenating strings, it is useful to
know the length in advance so as to allocate memory only once.

String& String::operator+=(const String& rhs)

{ //... implementation...

return *this; }

String operator+(const String& Ihs, const String& rhs) {
String temp; //initially empty
temp.Reserve(lhs.size() + rhs.size()); //allocate enough memory
return (temp += Ihs) += rhs; //append the strings and return

}

Exceptions

In some cases (e.g., operator* = on complex numbers), an operator might mutate its
left-hand side so significantly that it can be more advantageous to implement
opera-tor* = in terms of operator* rather than the reverse.

References
[AlexandrescuO3a] • [Cline99] §23.06 • [Meyers96] §22 • [SutterOO] §20

50 C++ Coding Standards

28. Prefer the canonical form of ++ and --.
Prefer calling the prefix forms.

Summary
If you + +c, also C+ + : The increment and decrement operators are tricky because
each has pre- and postfix forms, with slightly different semantics. Define opera-
tor++ and operator-- such that they mimic the behavior of their built-in counterparts.
Prefer to call the prefix versions if you don't need the original value.

Discussion
An ancient joke about C++ was that the language is called C++ and not ++C because
the language is improved (incremented), but many people still use it as C (the previous
value). Fortunately, the joke is now obsolete, but it's a helpful illustration for
understanding the difference between the two operator forms.

For ++ and --, the postfix forms return the original value, whereas the prefix forms
return the new value. Prefer to implement the postfix form in terms of the prefix
form. The canonical form is:

T& T::operator+ + () { T& T::operator--() { // the prefix form:
//perform increment //perform decrement // - do the work
return *this; return *this; // - always return *this;

} }

T T::operator++(int) { T T::operator—(int) { //the postfix form:
Told(*this); T old(*this); // - remember old value
++*this; --*this; // - call the prefix version
return old; return old; // - return the old value

} }

In calling code, prefer using the prefix form unless you actually need the original
value returned by the postfix version. The prefix form is semantically equivalent,
just as much typing, and often slightly more efficient by creating one less object. This is
not premature optimization; it is avoiding premature pessimization (see Item 9).

Exceptions
Expression template frameworks preserve the semantics via different means.

References
[Cline99] §23.07-08 • [DewhurstO3] §87 • [Meyers96] §6 • [StroustrupOO] §19.3 •
[SutterOO] §6, §20

Functions and Operators 51

29. Consider overloading to avoid implicit type
conversions.

Summary
Do not multiply objects beyond necessity (Occam's Razor): Implicit type conversions
provide syntactic convenience (but see Item 40). But when the work of creating tempo-
rary objects is unnecessary and optimization is appropriate (see Item 8), you can pro-
vide overloaded functions with signatures that match common argument types ex-
actly and won't cause conversions.

Discussion
If you're in the office and run out of paper, what do you do? Of course, you walk to
your trusty photocopier and make several copies of a white sheet of paper.

As silly as it sounds, this is often what implicit conversions do: unnecessarily go
through the trouble of creating temporaries, just to perform some trivial operation
on them and toss them away (see Item 40). A common example is string comparison:

class String {//...
String(const char* text); // enables implicit conversion

};
bool operator= = (const String&, const String&);
//... somewhere in the code...
i f (so me S tr in g = = "He l lo ") { . . . }

Having seen the definitions above, the compiler will compile the comparison as if
you had written s == String("Hello"). This can be quite wasteful, considering that
you don't need to copy the characters just to read them. The solution to this problem is
simple: define overloads that avoid the conversion. For example:

bool operator==(const String& Ihs, const String& rhs); / / #1
bool operator==(const String& Ihs, const char* rhs); // #2
bool operator==(const char* Ihs, const String& rhs); / /#3

That looks like a lot of code duplication, but in reality it is only "signature duplication"
because all three typically use the same back-end function. You're unlikely to commit a
premature optimization heresy (see Item 8) with such simple overloads, and it's de bon
gout to provide them especially when designing a library when it's difficult to predict in
advance what common types will be in performance-sensitive code.

References
[Meyers96] §21 • [StroustrupOO] §11.4, §C6 • [SutterOO] §6

52 C++ Coding Standards

30. Avoid overloading &&, ||, or, (comma).

Summary
Wisdom means knowing when to refrain: The built-in &&, ||, and , (comma) enjoy
special treatment from the compiler. If you overload them, they become ordinary func-
tions with very different semantics (you will violate Items 26 and 31), and this is a sure
way to introduce subtle bugs and fragilities. Don't overload these operators naively.

Discussion
The primary reason not to overload operator&&, operator||, or operator, (comma) is
that you cannot implement the full semantics of the built-in operators in these three
cases, and programmers commonly expect those semantics. In particular, the built-in
versions evaluate left-to-right, and for && and || also use short-circuit evaluation.

The built-in versions of && and || first evaluate their left-hand expression, and if that
fully determines the result (false for &&, true for ||) then the right-hand expression
doesn't need to be evaluated—and is guaranteed not to be. We all get so used to this
handy feature that we routinely allow the correctness of the right-hand side depend on
the success of the left-hand side:

Employee* e = TryToGetEmployeeO;
if(e && e->Manager())

This code's correctness relies on the fact that e->Manager() will not be evaluated if e is
null. This is perfectly usual and fine—unless the && used is an overloaded
opera-tor&&, because then the expression involving && will follow function rules
instead:

• Function calls always evaluate all arguments before execution.
• The order of evaluation of function arguments is unspecified. (See also Item 31.)

So let's look at a modernized version of the snippet above that uses smart pointers:

some_smart_ptr<Employee> e = TryToGetEmployeeO;
if(e && e->Manager())

Now, say this code happens to invoke an overloaded operator&& (provided by the
author either of some_smart_ptr or of Employee). Then the code will still look fine to
the reader, but will potentially (and disastrously) call e->Manager() when e is null.

Some other code won't dump core even in the presence of such eager evaluation, but
becomes incorrect for a different reason if it depends on the order in which the two
expressions are evaluated. The effects, of course, can be just as harmful. Consider:

Functions and Operators 53

if(DisplayPrompt() && GetLine()

If operator&& is a user-defined operator, it is unspecified whether DisplayPrompt or
GetLine is called first. The program could inadvertently end up waiting for input
from the user before displaying the explanatory prompt.

Of course, such code may seem to work with your current compiler and build set-
tings. It's still fragile. Compilers can (and do) choose whatever order they find fit
best for any particular call, taking into account concerns such as generated code size,
available registers, expression complexity, and so on. So the same call might behave
differently depending on the compiler version, the compiler switch settings, and
even on the statements surrounding the call.

The same fragility occurs with the comma operator. Like && and ||, the built-in
comma guarantees that its expressions will be evaluated left-to-right (unlike && and ||,
it always evaluates both). A user-defined comma operator cannot guarantee
left-to-right evaluation, usually with surprising results. For example, if the
following code invokes a user-defined comma operator, it is unspecified which of f
or g receives the value 0 and which receives the value 1.

int i = 0 ;
f(i + +), g(i + +); //see also Item 31

Examples
Example: Initialization library with overloaded operator, for sequence initialization. One
library helpfully tried to make it easier to add multiple values to a container in one
shot by overloading the comma. For example, to append to a vector<string> letters:

set_cont(letters) += "a", "b"; //problematic

That's fine until the day the caller writes:

set_cont(letters) + = getstr(), getstr(); //order unspecified when using overloaded ","

If getstr gets user console input, for example, and the user enters the strings "c" and
"d" in that order, the strings can actually be applied in either order. That's a surprise,
because this is not a problem for the built-in sequencing operator,:

string s = getstr(), getstr(); //order well-specified using built-in ","

Exceptions
An exception is expression template libraries, which by design capture all operators.

References
[Dewhurst03] §14 • [Meyers96] §7, §25 • [Murray93] §2.4.3 • [StroustrupOO] §6.2.2

54 C++ Coding Standards

31. Don't write code that depends on the

order of evaluation of function arguments.

Summary
Keep (evaluation) order: The order in which arguments of a function are evaluated is
unspecified, so don't rely on a specific ordering.

Discussion
In the early days of C, processor registers were a precious resource, and compilers
were hard pressed to allocate them efficiently for complex expressions in high-level
languages. To allow generation of faster code, the creators of C gave the register al-
locator an extra degree of freedom: When calling a function, the order of evaluation
of its arguments was left unspecified. That motivation is arguably less strong with
today's processors, but the fact remains that the order of evaluation is unspecified in
C++ and, as it turns out, varies widely across compilers. (See also Item 30.)
This can cause big trouble to the unwary. Consider this code:

void Transmogrify(int, int);

int count = 5;
Transmogrify(++count, ++count); //order of evaluation unknown

All we can say for certain is that count will be 7 as soon as Transmogrify's body is
entered—but we can't say which of its arguments is 6 and which is 7. This uncer-
tainty applies to much less obvious cases, such as functions that modify their argu-
ment (or some global state) as a side effect:

int Bump(int& x) {return ++x;}
Transmogrify(Bump(count), Bump(count)); //still unknown

Per Item 10, avoid global and shared variables in the first place. But even if you
avoid them, others' code might not. For example, some standard functions do have
side effects (e.g., strtok, and the various overloads of operator<< that take an
ostream).
The cure is simple—use named objects to enforce order of evaluation. (See Item 13.)

int bumped = ++count;
Transmogrify(bumped, ++count); // ok

References
[AlexandrescuOOc] • [Cline99] §31.03-05 • [DewhurstO3] §14-15 • [Meyers96] §9-10 •
[StroustrupOO] §6.2.2, §14.4.1 • [SutterOO] §16 • [SutterO2] §20-21

Class Design and Inheritance

The most important single aspect of software development is to
be clear about what you are trying to build.

—Bjarne Stroustrup

What kinds of classes does your team prefer to design and build? Why?

Interestingly, most of the Items in this section are motivated primarily or exclusively by
dependency management. For example, inheritance is the second-strongest rela-
tionship you can express in C++, second only to friend; it should come as no surprise,
then, that it's important to use such a powerful tool judiciously, correctly, and well.

In this section, we focus on the key issues in class design, from minimalism to ab-
straction, from composition to inheritance, from virtual to nonvirtual, from public to
private, from new to delete: How to get them right, how not to get them wrong,
how to avoid the subtle pitfalls, and especially how to manage dependencies.

In the section after this one, we'll narrow our focus specifically to the Big Four special
member functions: Default construction, copy construction, copy assignment, and
destruction.

Our vote for the most valuable Item in this section goes to Item 33: Prefer minimal
classes to monolithic classes.

55

56 C++ Coding Standards

32. Be clear what kind of class you're writing.

Summary
Know thyself: There are different kinds of classes. Know which kind you are writing.

Discussion
Different kinds of classes serve different purposes, and so follow different rules.
Value classes (e.g., std::pair, std::vector) are modeled after built-in types. A value class:

• Has a public destructor, copy constructor, and assignment with value semantics.
• Has no virtual functions (including the destructor).
• Is intended to be used as a concrete class, not as a base class (see Item 35).
• Is usually instantiated on the stack or as a directly held member of another class.

Base classes are the building blocks of class hierarchies. A base class:
• Has a destructor that is public and virtual or else protected and nonvirtual (see

Item 50), and a nonpublic copy constructor and assignment operator (see Item 53).
• Establishes interfaces through virtual functions.
• Is usually instantiated dynamically on the heap and used via a (smart) pointer.

Loosely, traits classes are templates that carry information about types. A traits class:
• Contains only typedefs and static functions. It has no modifiable state or virtuals.
• Is not usually instantiated (construction can normally be disabled).

Policy classes (normally templates) are fragments of pluggable behavior. A policy class:
• May or may not have state or virtual functions.
• Is not usually instantiated standalone, but only as a base or member.

Exception classes exhibit an unusual mix of value and reference semantics: They are
thrown by value but should be caught by reference (see Item 73). An exception class:

• Has a public destructor and no-fail constructors (especially a no-fail copy con
structor; throwing from an exception's copy constructor will abort your program).

• Has virtual functions, and often implements cloning (see Item 54) and visitation.
• Preferably derives virtually from std::exception.

Ancillary classes typically support specific idioms (e.g., RAII; see Item 13). They
should be easy to use correctly and hard to use incorrectly (e.g., see Item 53).

References
[AbrahamsOlb] • [AlexandrescuOOa] • [AlexandrescuOOb] • [AlexandrescuOl] §3 •
[Meyers96] §13 • [StroustrupOO] §8.3.2, §10.3, §14.4.6, §25.1 • [Vandevoorde03] §15

Class Design and Inheritance 57

33. Prefer minimal classes to monolithic classes.

Summary
Divide and conquer: Small classes are easier to write, get right, test, and use. They
are also more likely to be usable in a variety of situations. Prefer such small classes
that embody simple concepts instead of kitchen-sink classes that try to implement
many and/or complex concepts (see Items 5 and 6).

Discussion
Designing fancy large classes is a typical mistake when starting object-oriented design.
The prospect of having a class that offers complete and complex functionality in one
shot can be quite alluring. However, designing smaller, minimal classes that can be
easily combined is an approach that is more successful in practice for systems of any
size, for many reasons:

• A minimal class embodies one concept at the right level of granularity. A mono
lithic class is likely to embody several separate concepts, and using one implies
dragging the intellectual overhead of all others. (See Items 5 and 11.)

• A minimal class is easier to comprehend, and more likely to be used and reused.
• A minimal class is easier to deploy. A monolithic class must often be deployed

as a bulky indivisible unit. For example, a monolithic Matrix class might at
tempt to implement and deploy exotic functionality such as computing the ei
genvalues of a matrix—even when the majority of clients just want simple linear
algebra. A better packaging would implement various functional areas as non-
member functions operating on a minimal Matrix type. Then the functional ar
eas can be tested and deployed in separation to the callers who need them. (See
Item 44.)

• Monolithic classes dilute encapsulation. When a class has many member func
tions that don't need to be members but are—and therefore have gratuitous visi
bility to the class's private implementation—then the class's private data mem
bers become nearly as bad as public variables.

• Monolithic classes usually result from an attempt to predict and deliver a "com
plete" solution to a problem; in practice, they virtually never succeed. There's
always something more that people want—and something less, for that matter.

• Monolithic classes are harder to make correct and error-safe because they often
tackle multiple responsibilities. (See Items 5 and 44.)

References
[Cargill92] pp. 85-86, 152, 174-177 • [Lakos96] §0.2.1-2, §1.8, §8.1-2 • [Meyers97] §18 •
[StroustrupOO] §16.2.2, §23.4.3.2, §24.4.3 • [SutterO4] §37-40

58 C++ Coding Standards

34. Prefer composition to inheritance.

Summary
Avoid inheritance taxes: Inheritance is the second-tightest coupling relationship in
C++, second only to friendship. Tight coupling is undesirable and should be
avoided where possible. Therefore, prefer composition to inheritance unless you
know that the latter truly benefits your design.

Discussion
Inheritance is often overused, even by experienced developers. A sound rule of
software engineering is to minimize coupling: If a relationship can be expressed in
more than one way, use the weakest relationship that's practical.

Given that inheritance is nearly the strongest relationship we can express in C++,
second only to friendship, it's only really appropriate when there is no equivalent
weaker alternative. If you can express a class relationship using composition alone,
you should prefer that.

In this context, "composition" means simply embedding a member variable of a
type within another type. This way, you can hold and use the object in ways that allow
you control over the strength of the coupling.

Composition has important advantages over inheritance:

• Greater flexibility without affecting calling code: A private data member is under
your control. You can switch from holding it by value to holding by (smart)
pointer or Pimpl (see Item 43) without breaking client code; you would only
need to change the implementations of the class's own member functions that
use it. If you decide you need different functionality, you can easily change the
type of the member or the manner of holding it while keeping the class's public
interface consistent. In contrast, if you begin with a public inheritance relation
ship, it is likely that clients have already come to depend on the inheritance; you
have therefore committed your class to it and cannot easily change your base
class decision later on. (See Item 37.)

• Greater compile-time insulation, shorter compile times: Holding an object by pointer
(preferably a smart pointer), rather than as a direct member or base class, can
also allow you to reduce header dependencies because declaring a pointer to an
object doesn't require that object's full class definition. By contrast, inheritance
always requires the full definition of the base class to be visible. A common
technique is to aggregate all private members behind a single opaque pointer,
called a Pimpl (see Item 43).

Class Design and Inheritance 59

• Less toeirdness: Inheriting from a type can cause name lookup to pull in functions
and function templates defined in the same namespace as that type. This is very
subtle and hard to debug. (See also Item 58.)

• Wider applicability: Some classes were not designed to be bases in the first place
(and see Item 35). Most classes, however, can fulfill the role of a member.

• Great robustness and safety: The tighter coupling of inheritance makes it more dif
ficult to write error-safe code. (See [SutterO2] §23.)

• Less complexity and fragility: Inheritance exposes you to additional complications,
such as name hiding and other complications that can arise in the presence of
later changes to the base class.

Of course, these are not arguments against inheritance per se. Inheritance affords a
great deal of power, including substitutability and/or the ability to override virtual
functions (see Items 36 through 39, and Exceptions below). But don't pay for what
you don't need; unless you need inheritance's power, don't endure its drawbacks.

Exceptions
Do use public inheritance to model substitutability. (See Item 37.)

Even if you don't need to provide a substitutability relationship to all callers, you do
need nonpublic inheritance if you need any of the following, in rough order from
most common (the first two points) to exceedingly rare (the rest):

• If you need to override a virtual function.
• If you need access to a protected member.
• If you need to construct the used object before, or destroy it after, a base class.
• If you need to worry about virtual base classes.
• If you know you benefit from the empty base class optimization, including that it

matters in this case and that your target compiler(s) actually perform it in this
case. (See Item 8.)

• If you need controlled polymorphism. That is, if you need a substitutability rela
tionship, but that relationship should be visible only to selected code (via
friendship).

References

[CargM92] pp. 49-65, 101-105 • [Cline99] §5.9-10, 8.11-12, 37.04 • [DewhurstO3] §95 •
[Lakos96] §1.7, §6.3.1 • [McConnell93] §5 • [Meyers97] §40 • [StroustrupOO] §24.2-3 •
[SutterOO] §22-24, §26-30 • [SutterO2] §23

60 C++ Coding Standards

35. Avoid inheriting from classes that were not
designed to be base classes.

Summary
Some people don't want to have kids: Classes meant to be used standalone obey a dif-
ferent blueprint than base classes (see Item 32). Using a standalone class as a base is a
serious design error and should be avoided. To add behavior, prefer to add
nonmem-ber functions instead of member functions (see Item 44). To add state, prefer
composition instead of inheritance (see Item 34). Avoid inheriting from concrete base
classes.

Discussion

Using inheritance when it is not needed betrays a misplaced faith in the power of
object orientation. In C++, you need to do specific things when defining base classes
(see also Items 32, 50, and54), and very different and often contrary things when de-
signing standalone classes. Inheriting from a standalone class opens your code to a
host of problems, very few of which will be ever flagged by your compiler.

Beginners sometimes derive from value classes, such as a string class (the standard
one or another), to "add more functionality." However, defining free (nonmember)
functions is vastly superior to creating super_string for the following reasons:

• Nonmember functions work well within existing code that already manipulates
strings. If instead you supply a super_string, you force changes throughout your
code base to change types and function signatures to super_string.

• Interface functions that take a string now need to: a) stay away from su-
perstring's added functionality (unuseful); b) copy their argument to a su-
per_string (wasteful); or c) cast the string reference to a super_string reference
(awkward and potentially illegal).

• super_string's member functions don't have any more access to string's inter
nals than nonmember functions because string probably doesn't have protected
members (remember, it wasn't meant to be derived from in the first place).

• If super_string hides some of string's functions (and redefining a nonvirtual
function in a derived class is not overriding, it's just hiding), that could cause
widespread confusion in code that manipulates strings that started their life
converted automatically from super_strings.

So, prefer to add functionality via new nonmember functions (see Item 44). To avoid
name lookup problems, make sure you put them in the same namespace as the type

Class Design and Inheritance 61

they are meant to extend (see Item 57). Some people dislike nonmember functions
because the invocation syntax is Fun(str) instead of str.Fun(), but this is just a matter of
syntactic habit and familiarity. (Then there's the sound bite, attributed to the leg-
endary Alan Perlis, that too much syntactic sugar causes cancer of the semicolon.)

What if super_string wants to inherit from string to add more state, such as encoding
or a cached word count? Public inheritance is still not recommended, because string is
not protected against slicing (see Item 54) and so any copying of a superstring to a
string will silently chop off all of the carefully maintained extra state.

Finally, inheriting from a class with a public nonvirtual destructor risks littering
your code with undefined behavior by delete-ing pointers to string that actually
point to super_string objects (see Item 50). This undefined behavior might seem to be
tolerated by your compiler and memory allocator, but it leaves you in the dark swamp
of silent errors, memory leaks, heap corruptions, and porting nightmares.

Examples
Example: Composition instead of public or private inheritance. What if you do need a
localized_string that is "almost like string, but with some more state and functions
and some tweaks to existing string functions," and many functions' implementa-
tions will be unchanged? Then implement it in terms of string safely by using con-
tainment instead of inheritance (which prevents slicing and undefined polymorphic
deletion), and add passthrough functions to make unchanged functions visible:

class localized_string {
public:
//... provide passthroughs to string member function that we want to
//retain unchanged (e.g., define insert that calls impl_.insert) ...

void clear(); // mask/redefine clear()

bool is_in_klingon() const; // add functionality

private:
std::string impl_; //...
add extra state ...

};

Admittedly, it's tedious to have to write passthrough functions for the member func-
tions you want to keep, but such an implementation is vastly better and safer than
using public or nonpublic inheritance.

References
[DewhurstO3] §70, §93 • [Meyers97] §33 • [StroustrupOO] §24.2-3, §25.2

62 C++ Coding Standards

36. Prefer providing abstract interfaces.

Summary
Love abstract art: Abstract interfaces help you focus on getting an abstraction right
without muddling it with implementation or state management details. Prefer to de-
sign hierarchies that implement abstract interfaces that model abstract concepts.

Discussion
Prefer to define and inherit from abstract interfaces. An abstract interface is an ab-
stract class made up entirely of (pure) virtual functions and having no state (member
data) and usually no member function implementations. Note that avoiding state in
abstract interfaces simplifies the entire hierarchy design (see [Meyers96] for
examples).

Prefer to follow the Dependency Inversion Principle (DIP; see [Martin96a] and
[Mar-tinOO]). The DIP states that:

• High-level modules should not depend upon low-level modules. Rather, both
should depend upon abstractions.

• Abstractions should not depend upon details. Rather, details should depend
upon abstractions.

Respecting the DIP implies that hierarchies should be rooted in abstract classes, not
concrete classes. (See Item 35.) The abstract base classes must worry about defining
functionality, not about implementing it. Put another way: Push policy up and im-
plementation down.

The Dependency Inversion Principle has three fundamental design benefits:

• Improved robustness: The less stable parts of a system (implementations) depend
on more stable parts (abstractions). A robust design is one in which changes
have localized effect. In a fragile system, on the other hand, a small change rip
ples in unfortunate ways through unexpected parts of the system. This is exactly
what happens with designs that have concrete base classes.

• Greater flexibility: Designs based on abstract interfaces are generally more flexi
ble. If the abstractions are properly modeled, it is easy to devise new implemen
tations for new requirements. On the contrary, a design that depends on many
concrete details is rigid, in that new requirements lead to core changes.

• Good modularity: A design relying on abstractions has good modularity because
its dependencies are simple: Highly changeable parts depend on stable parts,
not vice versa. At the other extreme, a design that has interfaces mixed with im-

Class Design and Inheritance 63

plementation details is likely to sport intricate webs of dependency that make it
hard to reapply as a unit to plug into another system.

The related Law of Second Chances states: "The most important thing to get right is
the interface. Everything else can be fixed later. Get the interface wrong, and you
may never be allowed to fix it." [SutterO4]
Typically, choose a public virtual destructor to enable polymorphic deletion (per
Item 50), unless you use an object broker such as COM or CORBA that uses an alter-
nate memory management mechanism.
Be wary about using multiple inheritance of classes that are not abstract interfaces.
Designs that use multiple inheritance can be very expressive, but are harder to get
right and easier to get wrong. In particular, state management is particularly hard in
designs using multiple inheritance.
As noted in Item 34, inheriting from a type can also cause name lookup coupling:
subtly pulling in functions from the namespace of that type. (See also Item 58.)

Examples
Example: Backup program. In naive designs, high-level components depend on
low-level details. For example, an ill-designed backup program might have an
archiving component that depends directly on types or routines that read the
directory structure and others that write data on the tape. Adapting such a program
to a new file system and backup hardware would incur significant redesign.
If the logic of the backup system is designed around well-designed abstractions of a
file system and backup device, no redesign is needed—only new implementations of
the abstract interfaces must be added and plugged into the system. As should be
natural, new requirements are met by new code; new requirements should not cause
rework on existing code.

Exceptions
The empty base optimization is one instance when inheritance (preferably nonpub-lic)
is used for purely optimization purposes. (But see Item 8.)
It would appear that policy-based designs have a high-level component depend on
implementation details (the policies). However, that is only a use of static polymor-
phism. The abstract interfaces are there, except that they are implicit, not explicitly
stated via pure virtual functions.

References
[AlexandrescuOl] • [Cargill92] pp. 12-15, 215-218 • [Cline99] §5.18-20, 21.13 • [Lakos96]
§6.4.1 • [Martin96a] • [MartinOO] • [Meyers96] §33 • [StroustrupOO] §12.3-4, §23.4.3.2,
§23.4.3.5, §24.2-3, §25.3, §25.6 • [SutterO4] §17

64 C++ Coding Standards

37. Public inheritance is substitutability.
Inherit, not to reuse, but to be reused.

Summary

Know what: Public inheritance allows a pointer or reference to the base class to ac-
tually refer to an object of some derived class, without destroying code correctness
and without needing to change existing code.

Know why: Don't inherit publicly to reuse code (that exists in the base class); inherit
publicly in order to be reused (by existing code that already uses base objects
poly-morphically).

Discussion

Despite two decades of object-oriented design knowledge, the purpose and practice
of public inheritance are still frequently misunderstood, and many uses of inheri-
tance are flawed.

Public inheritance must always model "is-a" ("works-like-a") according to the
Liskov Substitution Principle (see [Liskov88]): All base contracts must be fulfilled,
and so all overrides of virtual member functions must require no more and promise no
less than their base versions if they are to successfully fulfill the base's contract. Code
using a pointer or reference to a Base must behave correctly even when that pointer
or reference actually points to a Derived.

Misuse of inheritance destroys correctness. Incorrectly implemented inheritance
most typically goes astray by failing to obey the explicit or implicit contract that the
base class establishes. Such contracts can be subtle, and when they cannot be ex-
pressed directly in code the programmer must take extra care. (Some patterns help to
declare more intent in code; see Item 39.)

To distill a frequently cited example: Consider that two classes Square and Rectangle
each have virtual functions for setting their height and width. Then Square cannot
correctly inherit from Rectangle, because code that uses a modifiable Rectangle will
assume that SetWidth does not change the height (whether Rectangle explicitly
documents that contract or not), whereas Square::SetWidth cannot preserve that
contract and its own squareness invariant at the same time. But Rectangle cannot
correctly inherit from Square either, if clients of Square assume for example that a
Square's area is its width squared, or if they rely on some other property that
doesn't hold for Rectangles.

Class Design and Inheritance 65

The "is-a" description of public inheritance is misunderstood when people use it to
draw irrelevant real-world analogies: A square "is-a" rectangle (mathematically) but a
Square is not a Rectangle (behaviorally). Consequently, instead of "is-a," we prefer to
say "works-like-a" (or, if you prefer, "usable-as-a") to make the description less prone
to misunderstanding.

Public inheritance is indeed about reuse, but not the way many programmers seem to
think. As already pointed out, the purpose of public inheritance is to implement
substitutability (see [Liskov88]). The purpose of public inheritance is not for the de-
rived class to reuse base class code to implement itself in terms of the base class's
code. Such an is-implemented-in-terms-of relationship can be entirely proper, but
should be modeled by composition—or, in special cases only, by nonpublic inheri-
tance (see Item 34).

Put another way: When dynamic polymorphism is correct and appropriate, compo-
sition is selfish; inheritance is generous.

A new derived class is a new special case of an existing general abstraction. Existing
(dynamically) polymorphic code that uses a Base& or Base* by calling Base's virtual
functions should be able to seamlessly use objects of MyNewDerivedType that inherits
from Base. The new derived type adds new functionality to the existing code, which
does not need to be changed but can seamlessly increase its functionality when new
derived objects are plugged in.

New requirements should naturally be met by new code; new requirements should
not cause rework on existing code. (See Item 36.)

Before object orientation, it has always been easy for new code to call existing code.
Public inheritance specifically makes it easier for existing code to seamlessly and
safely call new code. (So do templates, which provide static polymorphism that can
blend well with dynamic polymorphism; see Item 64.)

Exceptions

Policy classes and mixins add behavior by public inheritance, but this is not abusing
public inheritance to model is-implemented-in-terms-of.

References

[Cargill92] pp. 19-20 • [Cline99] §5.13, §7.01-8.15 • [DewhurstO3] §92 • [Liskov88] •
[Meyers97] §35 • [StroustrupOO] §12.4.1, §23.4.3.1, §24.3.4 • [SutterOO] §22-24

66 C++ Coding Standards

38. Practice safe overriding.

Summary
Override responsibly: When overriding a virtual function, preserve substitutability;
in particular, observe the function's pre- and post-conditions in the base class. Don't
change default arguments of virtual functions. Prefer explicitly redeclaring overrides
as virtual. Beware of hiding overloads in the base class.

Discussion
Although derived classes usually add more state (i.e., data members), they model
subsets, not supersets, of their base classes. In correct inheritance, a derived class
models a special case of a more general base concept (see Item 37).

This has direct consequences for correct overriding: Respecting the inclusion rela-
tionship implies substitutability—operations that apply to entire sets should apply
to any of their subsets as well. After the base class guarantees the preconditions and
postconditions of an operation, any derived class must respect those guarantees. An
override can ask for less and provide more, but it must never require more or promise
less because that would break the contract that was promised to calling code.

Defining a derived override that can fail (e.g., throws an exception; see Item 70) is
correct only if the base class did not advertise that the operation always succeeds.
For example, say Employee offers a virtual member function GetBuilding intended
to return an encoding of the building where the Employee works. What if we want to
write a RemoteContractor derived class that overrides GetBuilding to sometimes
throw an exception or return a null building encoding? That is valid only if Em-
ployee's documentation specifies that GetBuilding might fail and RemoteContractor
reports the failure in an Employee-documented way.

When overriding, never change default arguments. They are not part of the func-
tion's signature, and client code will unwittingly pass different arguments to the
function, depending on what node of the hierarchy they have access to. Consider:

class Base { virtual void Foo(int x

= 0);
};

class Derived : public Base {

virtual void Foo(int x = 1); //poor form, and surprise-inducing
};

Class Design and Inheritance 67

Derived *pD = new Derived;
pD->Foo(); //invokes pD->Foo(l)

Base *pB = pD;
pB->Foo(); // invokes pB->Foo(0)

It can be surprising to callers that the same object's member function silently takes
different arguments depending on the static type they happen to access it through.
Prefer to add the redundant virtual when overriding a function. It makes the intent
clearer to the reader.

Beware of inadvertently hiding overloads in the base class. For example:

class Base{//...
virtual void Foo(int);
virtual void Foo(int, int);
void Foo(int, int, int); };

class Derived : public Base {//...
virtual void Foo(int); //overrides Base::Foo(int), but hides the others

};

Derived d;
d.Foo(l); //ok
d.Foo(1, 2); //error (oops?)
d.Foo(1, 2, 3); //error (oops?)

If the base class's overloads should be visible, write a using declaration to redeclare
them in the derived class:

class Derived : public Base {//...
virtual void Foo(int); //overrides Base::Foo(int)
using Base::Foo; //bring the other Baser.Foo overloads into scope

};

Examples
Example: Ostrich. If class Bird defines the virtual function Fly and you derive a new
class Ostrich (a notoriously flightless bird) from Bird, how do you implement
Os-trich::Fly? The answer is, "It depends." If Bird::Fly guarantees success (i.e.,
provides the no-fail guarantee; see Item 71) because flying is an essential part of the
Bird model, then Ostrich is not an adequate implementation of that model.

References
[DewhurstO3] §73-74, §78-79 • [SutterOO] §21 • [Keffer95] p. 18

68 C++ Coding Standards

39. Consider making virtual functions

nonpublic, and public functions nonvirtual.

Summary
In base classes with a high cost of change (particularly ones in libraries and frame-
works): Prefer to make public functions nonvirtual. Prefer to make virtual functions
private, or protected if derived classes need to be able to call the base versions. (Note
that this advice does not apply to destructors; see Item 50.)

Discussion
Most of us have learned through bitter experience to make class members private by
default unless we really need to expose them. That's just good encapsulation. This
wisdom is applied most frequently to data members (see Item 41), but it applies
equally to all members, including virtual functions.

Particularly in OO hierarchies that are expensive to change, prefer full abstraction:
Prefer to make public functions nonvirtual, and prefer to make virtual functions pri-
vate (or protected if derived classes need to be able to call the base versions). This is the
Nonvirtual Interface (NVI) pattern. (NVI is similar to other patterns, notably
Template Method [Gamma95], but has a distinct motivation and purpose.)

A public virtual function inherently has two different and competing responsibilities,
aimed at two different and competing audiences:

• It specifies interface: Being public, it is directly part of the interface the class pre
sents to the rest of the world.

• It specifies implementation detail: Being virtual, it provides a hook for derived
classes to replace the base implementation of that function (if any); it is a cus
tomization point.

Because these two responsibilities have different motives and audiences, they can be
(and frequently are) in conflict, and then one function by definition cannot fulfill
both responsibilities perfectly. That a public virtual function inherently has two sig-
nificantly different jobs and two competing audiences is a sign that it's not separating
concerns well—including that it is inherently violating Items 5 and 11—and that we
should consider a different approach.

By separating public functions from virtual functions, we achieve the following sig-
nificant benefits:

• Each interface can take its natural shape: When we separate the public interface
from the customization interface, each can easily take the form it naturally

Class Design and Inheritance 69

wants to take instead of trying to find a compromise that forces them to look
identical. Often, the two interfaces want different numbers of functions and/or
different parameters; for example, outside callers may call a single public Process
function that performs a logical unit of work, whereas customizers may prefer to
override only certain parts of the processing, which is naturally modeled by
independently overridable virtual functions (e.g., DoProcessPhasel,
Do-ProcessPhase2) so that derived classes aren't forced to override everything.
(This latter example specifically is the Template Method pattern arrived at from a
different route.)

• The base class is in control: The base class is now in complete control of its inter
face and policy and can enforce interface preconditions and postconditions (see
Items 14 and 68), insert instrumentation, and do any similar work all in a single
convenient reusable place—the nonvirtual interface function. This "prefactor-
ing" for separation thus promotes good class design.

• The base class is robust in the face of change: We are free to change our minds later
and add pre- and postcondition checking, or separate processing into more
steps, or refactor, or implement a fuller interface/implementation separation us
ing the Pimpl idiom (see Item 43), or make other modifications to the base
class's customizability, without affecting any of the code that uses or inherits
from the class. Note that it is much easier to start with NVI (even if the public
function is just a one-line passthrough to the virtual function) and then later add
checking or instrumentation, because that can then be done without breaking
any code that uses or inherits from the class. It is much harder to start with a
public virtual function and later have to break it apart, which necessarily breaks
either the code that uses the class or the code that inherits from the class, de
pending on whether we choose to keep the original function as the virtual func
tion or as the public function, respectively.

See also Item 54.

Exceptions
NVI does not apply to destructors because of their special order of execution (see
Item 50).

NVI does not directly support covariant return types for callers. If you need
covari-ance that is visible to calling code without using dynamic_cast downcasts (see
also Item 93), it's easier to make the virtual function public.

References
[Allison98] §10 • [DewhurstO3] §72 • [Gamma95] • [Keffer95 pp. 6-7] • [Koenig97] §11 •
[SutterOO] §19, §23 • [SutterO4] §18

70 C++ Coding Standards

40. Avoid providing implicit conversions.

Summary
Not all change is progress: Implicit conversions can often do more damage than
good. Think twice before providing implicit conversions to and from the types you
define, and prefer to rely on explicit conversions (explicit constructors and named
conversion functions).

Discussion
Implicit conversions have two main problems:

• They can fire in the most unexpected places.
• They don't always mesh well with the rest of the language.

Implicitly converting constructors (constructors that can be called with one argu-
ment and are not declared explicit) interact poorly with overloading and foster in-
visible temporary objects that pop up all over. Conversions defined as member func-
tions of the form operator T (where T is a type) are no better—they interact poorly
with implicit constructors and can allow all sorts of nonsensical code to compile. Ex-
amples are embarrassingly numerous (see References). We mention only two (see
Examples).
In C++, a conversion sequence can include at most one user-defined conversion.
However, when built-in conversions are added to the mix, the results can be ex-
tremely confusing. The solution is simple:

• By default, write explicit on single-argument constructors (see also Item 54):
class Widget { //...

explicit Widget(unsigned int widgetizationFactor); explicit
Widget(const char* name, const Widget* other = 0);

• Use named functions that offer conversions instead of conversion operators:

class String { //... const char* as_char pointer() const; // in the grand
c_str tradition

See also the discussion of explicit copy constructors in Item 54.

Examples
Example 1: Overloading. Say you have a Widget::Widget(unsigned int) that can be
invoked implicitly, and a Display function overloaded for Widgets and doubles.
Consider the following overload resolution surprise:

Class Design and Inheritance 71

void Display(double);
void Display(const Widget&);

 //displays a double
//displays a Widget

Display(5); //oops: creates and displays a Widget

Example 2: Errors that work. Say you provide operator const char* for a String class:

class String {

public:
operator const char*(); // deplorable form

};

Suddenly, a lot of silly expressions now compile. Assume s1, s2 are Strings:
int x = s1 - s2; //compiles; undefined behavior
const char* p = s1 - 5; //compiles; undefined behavior
p = s1 + '0'; //compiles; doesn't do what you'd expect
i f(s1 == "0 ") { . . . } //compiles; doesn't do what you'd expect

The standard string wisely avoids an operator const char* for exactly this reason.

Exceptions
When used sparingly and with care, implicit conversions can make calling code
short and intuitive. The standard std::string defines an implicit constructor that
takes a const char*. This works fine because the designers took some precautions:

• There is no automatic conversion to const char*; that conversion is provided
through two named functions, c_str and data.

• All comparison operators defined for std::string (e.g., ==, !=, <) are overloaded
to compare a const char* and a std::string in any order (see Item 29). This avoids
the creation of hidden temporary variables.

Even so, there can still be some weirdness with overloaded functions:

void Display(int);
void Display(std::string);

Display(NULL); //calls Display(int)

This result might be surprising. (Incidentally, if it did call Display(std::string), the
code would have exhibited undefined behavior because it's illegal to construct a
std::string from a null pointer, but its constructor isn't required to check for the null.)

References
[DewhurstO3] §36-37 • [Lakos96] §9.3.1 • [Meyers96] §5 • [Murray93] §2.4 • [SutterOO]
§6, §20, §39

72 C++ Coding Standards

41. Make data members private, except in
behaviorless aggregates (C-style structs).

Summary
They're none of your caller's business: Keep data members private. Only in the case
of simple C-style struct types that aggregate a bunch of values but don't pretend to
encapsulate or provide behavior, make all data members public. Avoid mixes of
public and nonpublic data, which almost always signal a muddled design.

Discussion
Information hiding is key to good software engineering (see Item 11). Prefer making
all data members private; private data is the best means that a class can use to pre-
serve its invariants now, and to keep preserving them in the face of future changes.
Public data is bad if a class models an abstraction and must therefore maintain in-
variants. Having public data means that part of your class's state can vary uncon-
trollably, unpredictably, and asynchronously with the rest of its state. It means that
an abstraction is sharing responsibility for maintaining one or more invariants with
the unbounded set of all code that uses the abstraction, and that is obviously, fun-
damentally, and indefensibly flawed. Reject such designs outright.
Protected data has all the drawbacks of public data, because having protected data
still means that an abstraction is sharing the responsibility of maintaining some in-
variant with an unbounded set of code—in this case, with the unbounded set of current
and future derived classes. Further, any code can read and modify protected data as
easily as public data by deriving a new class and using that to get at the data.
Mixing public and nonpublic data members in the same class is confusing and in-
consistent. Private data demonstrates that you have invariants and some intent to
preserve them; mixing it with public data means a failure to decide clearly whether
the class really is supposed to be an abstraction or not.
Nonprivate data members are almost always inferior to even simple passthrough
get/set functions, which allow for robust versioning.
Consider hiding a class's private members using the Pimpl idiom. (See Item 43.)

Examples
Example 1: Proper encapsulation. Most classes (e.g., Matrix, File, Date, BankAccount,
Security) should have all private data members and expose adequate interfaces. Al-
lowing calling code to manipulate their internals directly would directly work
against the abstraction they provide and the invariants they must sustain.

Class Design and Inheritance 73

A Node aggregate, as commonly used in the implementation of a List class, typically
contains some data and two pointers to Node: next_ and prev_. Node's members
don't need to be hidden from List. But now consider Example 3.
Example 2: TreeNode. Consider a Tree<T> container implemented in terms of
TreeNode<T>, an aggregate used within Tree that holds previous/next/parent
pointers and a T object payload. TreeNode's members can all be public because they
don't need to be hidden from Tree, which directly manipulates them. But Tree
should hide TreeNode altogether (e.g., as a private nested class, or defined only in
Tree's implementation file), because it is an internal detail of Tree that callers
shouldn't depend on or manipulate. Finally, Tree does not hide the contained T ob-
jects, because the payload is the caller's responsibility; containers use the iterator ab-
straction to expose the contained objects while hiding internal structures.
Example 3: Getters and setters. If there is no better domain abstraction available, public
and protected data members (e.g., color) can at least be made private and hidden
behind get and set functions (e.g., GetColor, SetColor); these provide a minimal ab-
straction and robust versioning.
Using functions raises the level of discourse about "color" from that of a concrete
state to that of an abstract state that we are free to implement as we want: We can
change to an internal color encoding other than int, add code to update the display
when changing color, add instrumentation, and make many other changes without
breaking calling code. At worst, callers just recompile (i.e., we preserve source-level
compatibility); at best, they don't have to recompile or relink at all (if the change also
preserves binary compatibility). Neither source nor binary compatibility is possible
for such changes if the starting design has a public color member variable to which
calling code becomes tightly coupled.

Exceptions
Get/set functions are useful, but a class consisting mostly of gets/sets is probably
poorly designed: Decide whether it wants to provide an abstraction or be a struct.
Value aggregates (also called "C-style structs") simply keep a bunch of data together
but do not actually add significant behavior or attempt to model an abstraction and
enforce invariants; they are not meant to be abstractions. Their data members should
all be public because the data members are the interface. For example, std::pair<T,U> is
used by the standard containers to aggregate two otherwise unrelated elements of type
T and U, and pair itself doesn't add behavior or invariants.

References
[DewhursW3] §80 • [Henricson97] pg. 105 • [Koenig97] §4 • [Lakos96] §2.2 • [Meyers97]
§20 • [Murray93] §2.3 • [StroustrupOO] §10.2.8, §15.3.1.1, §24.4.2-3 • [SuttHyslO4a]

74 C++ Coding Standards

42. Don't give away your internals.

Summary
Don't volunteer too much: Avoid returning handles to internal data managed by your
class, so clients won't uncontrollably modify state that your object thinks it owns.

Discussion
Consider:

class Socket { public: //... constructor that opens handle_, destructor that closes
handle^, etc. ...

int GetHandle() const { return handle_;} //avoid this
private:
int handlej //perhaps an OS resource handle

};

Data hiding is a powerful abstraction and modularity device (see Items 11 and 41).
But hiding data and then giving away handles to it is self-defeating, just like locking
your house and leaving the keys in the lock. This is because:

• Clients now have two ways to implement functionality: They can use your class's ab
straction (Socket) or directly manipulate the implementation that your class re
lies on (the socket's C-style handle). In the latter case, the object is unaware of
significant changes to the resource it thinks it owns. Now the class cannot relia
bly enrich or embellish functionality (e.g., proxying, logging, collecting statis
tics) because clients can bypass the embellished, controlled implementation—
and any of the invariants it thinks it's adding, which makes correct error han
dling next to impossible (see Item 70).

• The class cannot change the underlying implementation of its abstraction because cli
ents depend on it: If Socket is later upgraded to support a different protocol with
a different set of low-level primitives, calling code that fetches the underlying
handle_ and manipulates it incorrectly will be silently broken.

• The class cannot enforce its invariants because calling code can alter state unbeknownst
to the class: For example, someone could close the handle being used by a Socket
object without going through a Socket member function, thus rendering the ob
ject invalid.

• Client code can store the handles that your class returns, and attempt to use
them after your class's code has invalidated them.

A common mistake is to forget that const is shallow and doesn't propagate through
pointers (see Item 15). For example, Socket::GetHandle is a const member; as far as

Class Design and Inheritance 75

the compiler is concerned, returning handle_ preserves constness just fine. However,
raw calls to system functions using handle_'s value can certainly modify data that
handle_ refers to indirectly.
The following pointer example is similar, although we'll see that the situation is
slightly better because at least a const return type can reduce accidental misuses:

class String {
char* buffer_;

public:
char* GetBufferO const { return buffer_;} //bad: should return const char*
//... };

Even though GetBuffer is const, this code is technically valid and legal. Clearly, a
client can use this GetBuffer to change a String object in quite major ways without
explicit casting and therefore accidentally; for example, strcpy(s.GetBuffer(), "Very
Long String...") is legal code; in practice, every compiler we tried compiles it without
a warning. Returning const char* instead from this member function would at least
cause a compile-time error for such misuses so they could not occur accidentally;
such calling code would have to write an explicit cast (see Items 92 to 95).

Even returning pointers to const does not eliminate all accidental misuses, because
another problem with giving away object internals has to do with the internals' va-
lidity. In the above String example, calling code might store the pointer returned by
GetBuffer, then perform an operation that causes the String to grow (and move) its
buffer, and finally (and apocalyptically) try to use the saved-and-now-invalidated
dangling pointer to a buffer that no longer exists. Thus, if you do think you have a
good reason to yield such internal state, you must still document in detail how long
the returned value remains valid and what operations will invalidate it (compare
this with the standard library's explicit iterator validity guarantees; see [C++03]).

Exceptions
Sometimes classes must provide access to internal handles for compatibility reasons,
such as interfacing with legacy code or other systems. For example, std::basic_string
offers access to its internal handle via the data and the c_str member functions for
compatibility with functions that expect C-style pointers—but that presumably do
not store those pointers or try to write through them! Such backdoor access functions
are a necessary evil that should be used rarely and cautiously, and the conditions
under which the handle remains valid must be carefully documented.

References
[C++03] §23 • [DewhurstO3] §80 • [Meyers97] #29 • [Saks99] • [StroustrupOO] §7.3 •
[SutterO2] §9

76 C++ Coding Standards

43. Pimpl judiciously.

Summary
Overcome the language's separation anxiety: C++ makes private members inacces-
sible, but not invisible. Where the benefits warrant it, consider making private
members truly invisible using the Pimpl idiom to implement compiler firewalls and
increase information hiding. (See Items 11 and 41.)

Discussion
When it makes sense to create a "compiler firewall" that completely insulates calling
code from a class's private parts, use the Pimpl idiom: Hide them behind an opaque
pointer (a pointer, preferably an appropriate smart pointer, to a class that is declared
but not yet defined). For example:

class Map {

private: struct Impl;
shared_ptr<lmpl> pimpl_;

};

The eponymous Pimpl should be used to store all private members, both member
data and private member functions. This allows you to make arbitrary changes to
your class's private implementation details without any recompilation of calling
code—an independence and liberty that is the hallmark of the idiom. (See Item 41.)

Note: Do declare the Pimpl using two declarations as shown. It would be legal, but
have a different meaning, to combine the two lines and forward-declare the type
and a pointer to it in one statement with struct Impl* pimpl;—but then Impl is in the
enclosing namespace and not a nested type within your class.

There are at least three reasons you might Pimpl, and they all stem from C++'s dis-
tinction between accessibility (whether you can call or use something) and visibility
(whether you can see it and therefore depend on its definition). In particular, all pri-
vate members of a class are inaccessible outside member functions and friends, but
are visible to the entire world—to all code that sees the class's definition.

The first consequence of this is potentially longer build times due to processing un-
necessary type definitions. For private data members held by value, and for private
member functions' parameters taken by value or used in visible function implemen-
tations, types must be defined even if they can never be needed in this compilation
unit. This can lead to longer build times. For example:

Class Design and Inheritance 77

class C{

private:
AComplicatedType act_; };

The header file containing class C's definition must also #include the header con-
taining the definition for AComplicatedType, which in turn transitively includes
every header that AComplicatedType might need, and so on. If the headers are ex-
tensive, compilation times can be noticeably affected.

The second consequence is creating ambiguity and name hiding for code that is try-
ing to call a function. Even though private member functions can never be called
from outside the class and its friends, they do participate in name lookup and over-
load resolution and so can render calls invalid or ambiguous. C++ performs name
lookup and then overload resolution before accessibility checking. That's why visibility
gets priority:

int Twice(int); //I

class Calc {
public:
string Twice(string); / / 2

private:
char* Twice(char*); / / 3

int Test() {
return Twice(21); //A: error, 2 and 3 are unviable (1 would be viable,

} // but it can't be considered because it's hidden)
};

Calc c;
c.Twice("Hello"); // 6: error, 3 is inaccessible (2 would be fine, but it

//can't be considered because 3 is a better match)

On line A, the workaround is to explicitly qualify the call as ::Twice(21) to force
lookup to select the global function. On line B, the workaround is to add an explicit
cast as c.Twice(string("Hello")) to force overload resolution to select the intended
function. Some of these calling issues can be worked around in other ways than the
Pimpl idiom, for example by never writing private overloads for member functions,
but not all of the issues resolves by Pimpl have such alternative workarounds.

The third consequence is its impact on error handling and safety. Consider Tom
Car-gill's Widget example:

78 C++ Coding Standards

class Widget {//... public: Widget&
operator=(const Widget&);

private:
T1 t1_;
T2 t2_;

};

In short, we cannot write operator= to give the strong guarantee or even the mini-
mum required (basic) guarantee if Tl or T2 operations might fail in a way that is not
reversible (see Item 71). The good news is that the following simple transformation
always works to enable at least the basic guarantee for error-safe assignment, and
usually the strong guarantee as long as the needed Tl and T2 operations (notably
construction and destruction) don't have side effects: Hold the member objects by
pointer instead of by value, preferably all behind a single Pimpl pointer.

class Widget {//... public: Widget&
operator=(const Widget&);

private: struct Impl;
shared_ptr<lmpl> pimpl_;

};

Widget& Widget::operator=(const Widget&)
{ shared_ptr<lmpl> temp(new lmpl(/*...*/));

//change temp->t1_ and temp->t2_; if it fails then throw, else commit using:

pimpl_ = temp;
return *this; }

Exceptions

Only add complexity, including Pimpls, when you know you benefit from the extra
level of indirection. (See Items 6 and 8.)

References

[Coplien92] §5.5 • [DewhurstO3] §8 • [Lakos96] §6.4.2 • [Meyers97] §34 • [Murmy93]
§3.3 • [Stroustrup94] §2.10, §24.4.2 • [SutterOO] §23, §26-30 • [SutterO2] §18, §22 »
[SutterO4] §16-17

Class Design and Inheritance 79

44. Prefer writing nonmember nonfriend
functions.

Summary
Avoid membership fees: Where possible, prefer making functions nonmember
non-friends.

Discussion
Nonmember nonfriend functions improve encapsulation by minimizing dependen-
cies: The body of the function cannot come to depend on the nonpublic members of
the class (see Item 11). They also break apart monolithic classes to liberate separable
functionality, further reducing coupling (see Item 33). They improve genericity, be-
cause it's hard to write templates that don't know whether or not an operation is a
member for a given type (see Item 67).
Use this algorithm to determine whether a function should be a member and/or friend:

II If you have no choice then you have no choice; make it a member ifit must be:
If the function is one of the operators =, ->, [], or (), which must be members:

Make it a member.
//If it can be a nonmember nonfriend, or benefits from being a nonmember friend, do it:
Else if: a) the function needs a different type as its left-hand argument (as do op-
erators >> or <<, for example); or b) it needs type conversions on its leftmost
argument; or c) it can be implemented using the class's public interface alone:

Make it a nonmember (and friend if needed in cases a) and b)).
If it needs to behave virtually:

Add a virtual member function to provide the virtual behavior, and im-
plement the nonmember in terms of that.

Else: Make it a member.

Examples
Example: basic_string. The standard basic_string is a needlessly monolithic class with
103 member functions—of which 71 could be written as nonmember nonfriends
without loss of efficiency. Many of them duplicate functionality already available as
algorithms, or are themselves algorithms that would be useful more widely if they
weren't buried inside basic_string. (See Items 5 and 32, and [SutterO4].)

References
[Lakos96] §3.6.1, §9.1.2 • [McConnell93] §5.1-4 • [Murray93] §2.6 • [MeyersOO] •
[StroustrupOO] §10.3.2, §11.3.2, §11.3.5, §11.5.2, §21.2.3.1 • [SutterOO] §20 • [SutterO4] §37-40

80 C++ Coding Standards

45. Always provide new and delete together.

Summary
They're a package deal: Every class-specific overload void* operator new(parms)
must be accompanied by a corresponding overload void operator delete(void*,
parms), where parms is a list of extra parameter types (of which the first is always
std::size_t). The same goes for the array forms new[] and delete[].

Discussion
You rarely need to provide a custom new or delete, but if you need one you usually
need both. If you define a class-specific T::operator new to do some special allocation,
it's very likely you need to define a class-specific T::operator delete as well to do the
corresponding special deallocation.

That much may be somewhat basic, but there is a subtler reason for this Item: The
compiler might be yearning for an overload of T::operator delete even when you
never actually invoke it. That's why you always need to provide operator new and
operator delete (and operator new[] and operator delete[]) in pairs.

Say you define a class with customized allocation: class

T {

static void* operator new(std::size_t);
static void* operator new(std::size_t, CustomAllocator&);

static void operator delete(void*, std::size_t); };

You establish a simple protocol for allocation and deallocation:

• Callers can allocate objects of type T with either the default allocator (using new
T) or the custom allocator (using new(alloc) T where alloc is an object of type
CustomAllocator).

• The only operator delete that callers can ever invoke is the default operator de-
lete(size_t), so of course you implement such that it correctly deallocates mem
ory allocated either way.

So far, so good.

However, the compiler still needs to covertly call another overload of delete, namely
T::operator delete(size_t, CustomAllocator&). This is because the statement

Class Design and Inheritance 81

T* p = new(alloc) T; really

expands into something like

// compiler-generated code for T* p - new(alloc) T; / /
void* _compilerTemp = T::operator new(sizeof(T), alloc); T*p; try{ p = new
(_compilerTemp) T; // construct a T at address _compilerTemp
}
catch (...) { // constructor failed, attention here...
T::operator delete(_compilerTemp, sizeof(T), alloc);
throw; }

So, quite logically, the compiler automatically inserts code to call the corresponding
T::operator delete for the overloaded T::operator new if the allocation succeeds but
the constructor fails. The "corresponding" signature is void operator delete(void*,
whatever-parameters-new-takes).

Here comes the fly-in-the-ointment part. The C++ Standard (in [C++03] §5.3.4(17))
specifies that the code above will be generated if and only if that overload of
opera-tor delete actually exists. Otherwise, the code does not invoke any operator
delete at all in the case of a constructor failure. In other words: If the constructor
fails, memory will leak. Of six popular compilers tested at the time of this writing,
only two issued a warning in such situations.

That's why every overload void* operator new(parms) must be accompanied by its
corresponding overload void operator delete(void*, parms)—because the compiler
wants to call them itself.

Exceptions
The in-place form of operator new

void* T::operator new(size_t, void* p) {return p;}

does not need a corresponding operator delete because there is no real allocation
going on. All compilers we tested issue no spurious warnings concerning the absence
of void T::operator delete(void*, sizej, void*).

References
[C++03] §5.3.4 • [StroustrupOO] §6.2.6.2, §15.6 • [SutterOO] §36

82 C++ Coding Standards

46. If you provide any class-specific new,
provide all of the standard forms (plain,
in-place, and nothrow).

Summary
Don't hide good news: If a class defines any overload of operator new, it should
provide overloads of all three of plain, in-place, and non-throwing operator new. If
you don't, they'll be hidden and unavailable to users of your class.

Discussion
You rarely need to provide a custom new or delete, but if you need them you usually
don't want to hide the built-in signatures.

In C++, after you define a name in a scope (e.g., in a class scope), it will hide the
same name in all enclosing scopes (e.g., in base classes or enclosing namespaces),
and overloading never happens across scopes. And when said name is operator
new, you need to be extra cautious lest you make life hard for your class's clients.
Say you define a class-specific operator new: class

C {

static void* operator new(size_t, MemoryPool&);///hides three normal forms };

Then, if someone tries to write an expression as boring as plain old new C, the com-
piler will reject it on grounds that it can't find plain old operator new. Declaring the
C::operator new overload that takes a MemoryPool hides all other overloads, in-
cluding the familiar built-in global versions that we all know and love, to wit:

void* operator new(std::size_t); //plain new
void* operator new(std::size_t, std::nothrow_t) throw(); //nothrow new
void* operator new(std::size_t, void*); //in-place new

Alternatively, perhaps your class provides a class-specific version of one of these
three operators new. In that case, by declaring one of them your class will by default
also mask the other two:

class C { static void* operator new(size_t, void*); //hides other two normal

forms
};

Class Design and Inheritance 83

Prefer to have class C explicitly bring into scope all three of the standard variants of
operator new. Normally, all should have the same visibility. (The visibility can still
be made private for individual forms, such as if you want to explicitly disable the
plain or non-throwing operator new, but the purpose of this Item is to remind you not
to hide them inadvertently.)

Note that you should always avoid hiding in-place new because STL containers use it
extensively.

The only remaining trick is that exposing the hidden operators new needs to be
done in two different ways in two different circumstances. If your class's base class
also defines operator new, all you need to do to "unhide" operator new is:

class C: public B {//... public:
using B::operator new;
};

Otherwise, if there is no base class version or the base class doesn't define operator
new, you will need to write some short forwarding functions (because you can't
employ using to pull names from the global namespace):

class C {//...
public:
static void* operator new(std::size_t s)
{ return -..operator new(s);

}

static void* operator new(std::size_t s, std::nothrow_t nt) throw() {
return ::operator new(s, nt); }

static void* operator new(std::size_t s, void* p) {
return ::operator new(s,

p); } };

The advice above also applies to the array forms of operator new[] and operator
deletef].

Avoid calling the new (nothrow) version in client code, but provide it to save some
clients from surprises if they happen to use it.

References
[DewhurstO3] §60 • [SutterO4] §22-23

Construction, Destruction,
and Copying

Just because the standard provides a cliff in front of you, you
are not necessarily required to jump off it.

—Norman Diamond

There is enough to be said about the Big Four special member functions that you
will probably be unsurprised to see that they rate having their own section. Herein
we collect knowledge and best practices related to default construction, copy con-
struction, copy assignment, and destruction.

One of the reasons you need to be careful with these functions is that, given half a
chance, the compiler will write them for you. Another reason is that C++ by default
treats classes as value-like types, but not all types are value-like (see Item 32). Know
when to write (or disable) these special member functions explicitly, and follow the
rules and guidelines in this section to help ensure that you get correct, extensible, and
error-safe code.

Our vote for the most valuable Item in this section goes to Item 51: Destructors, deal-
location, and swap never fail.

85

86 C++ Coding Standards

47. Define and initialize member variables
in the same order.

Summary
Agree with your compiler: Member variables are always initialized in the order they
are declared in the class definition; the order in which you write them in the con-
structor initialization list is ignored. Make sure the constructor code doesn't
confus-ingly specify a different order.

Discussion
Consider the code below:

class Employee { string email_, firstName_,
lastName_'

public:
Employee(const char* firstName, const char* lastName) :
firstName_(firstName), lastName_(IastName) ,
emal_(firstName_, + "." + lastName_ + "@acme.com") {}

};

This code harbors a bug that's as pernicious as it is hard to spot. Because email_ is de-
clared before first_ and last_ in the class definition, it will be initialized first and will
attempt to use the other not-yet-initialized fields. Worse, if the constructor's defini-
tion is in a separate file, the long-distance influence that the order of member variable
declarations has over the constructor's correctness will be even harder to spot.

The reason for this language design decision is to ensure there is a unique order to
destroy members; otherwise, the destructor would have to destroy objects in different
orders, depending on the constructor that built the object. The bookkeeping overhead
for that was deemed unacceptable.

The solution is to always write member initializers in the same order in which the
members are declared. That way, any illegal dependency will become obvious. Better
yet, strive to not have one member's initialization depend on other members.

Many compilers (but not all) will issue a warning if you break this rule.

References
[Cline99] §22.03-11 • [DewhurstO3] §52-53 • [Koenig97] §4 • [Lakos96] §10.3.5 •
[Meyers97] §13 • [Murray93] §2.1.3 • [SutterOO] §47

mailto:@acme.com

Construction, Destruction, and Copying 87

48. Prefer initialization to assignment in
constructors.

Summary
Set once, use everywhere: In constructors, using initialization instead of assignment
to set member variables prevents needless run-time work and takes the same
amount of typing.

Discussion
Constructors generate initialization code under the covers. Consider:

class A { string s1_,
s2_;

public:
A() { s1_ = "Hello, "; s2_ = "world";} };

In reality, constructor's code is generated as if you wrote:

A() : s1_(), s2_() {s1 = "Hello, "; s2 = "world";}

That is, the objects not explicitly initialized by you are automatically initialized using
their default constructors, and then assigned to using their assignment operators.
Most often, the assignment operator of a nontrivial object needs to do slightly more
than a constructor because it needs to deal with an already-constructed object.

Say what you mean: Initialize member variables in the initializer list, with code that
better expresses intent and in addition, as a perk, is usually smaller and faster:

A(): s1_("Hello, "), s2_("world") {}

This isn't premature optimization; it's avoiding premature pessimization. (See Item 9.)

Exceptions
Always perform unmanaged resource acquisition, such as a new expression whose
result is not immediately passed to a smart pointer constructor, in the constructor
body and not in initializer lists (see [SutterO2]). Of course, it's better to not have such
unsafe unowned resources in the first place (see Item 13).

References
[DewhurstO3] §51, §59 • [Keffer95] pp.13-14 • [Meyers97] §12 • [Murray93] §2.1.31 •
[SutterOO] §8, §47 • [SutterO2] §18

88 C++ Coding Standards

49. Avoid calling virtual functions in
constructors and destructors.

Summary
Virtual functions only "virtually" always behave virtually: Inside constructors and
destructors, they don't. Worse, any direct or indirect call to an unimplemented pure
virtual function from a constructor or destructor results in undefined behavior. If
your design wants virtual dispatch into a derived class from a base class constructor or
destructor, you need other techniques such as post-constructors.

Discussion
In C++, a complete object is constructed one base class at a time.

Say we have a base class B and a class D derived from B. When constructing a D
ob-ject, while executing B's constructor, the dynamic type of the object under
construc-tion is B. In particular, a call to a virtual function B::Fun will hit B's definition
of Fun, regardless of whether D overrides it or not; and that's a good thing, because
calling a D member function when the D object's members haven't even been
initialized yet would lead to chaos. Only after the construction of B has completed is
D's construc-tor body executed and its identity as a D established. As a rule of thumb,
keep in mind that during B's construction there is no way to tell whether the B is a
stand-alone object or a base part of some other further-derived object; virtually-acting
vir-tual functions would be such a "way."

To add insult to injury, a call from a constructor to a pure virtual function that isn't
defined at all has, well, undefined behavior. Such code is therefore not only confus-ing,
but it is also more fragile in face of maintenance.
On the other hand, some designs ask for "post-construction," that is, a virtual
func-tion that must be invoked right after the full object has been constructed. Some
tech-niques for this are shown in the References. Here's a non-exhaustive list of
options:

• Pass the buck: Just document that user code must call the post-initialization func-
tion right after constructing an object.

• Post-initialize lazily: Do it during the first call of a member function. A Boolean
flag in the base class tells whether or not post-construction has taken place yet.

• Use virtual base class semantics: Language rules dictate that the constructor most-
derived class decides which base constructor will be invoked; you can use that
to your advantage. (See [Taligent94].)

• Use a factory function: This way, you can easily force a mandatory invocation of a
post-constructor function. (See Examples.)

Construction, Destruction, and Copying 89

No post-construction technique is perfect. The worst dodge the whole issue by simply
asking the caller to invoke the post-constructor manually. Even the best require a
different syntax for constructing objects (easy to check at compile time) and/or co-
operation from derived class authors (impossible to check at compile time).

Examples
Example: Using a factory function to insert a post-constructor call. Consider:

class B { //hierarchy root
protected: B()

{/*... */}

virtual void Postlnitialize() {/*... */} // called right after construction

public:
template<class T>
static shared_ptr<T> Create() { //interface for creating objects

shared_ptr<T> p(new T); p-
> Postlnitialize(); return p; } };

class D : public B { /* ... */ }; //some derived class

shared_ptr<D> p = D::Create<D>(); //creating a D object

This rather fragile design sports the following tradeoffs:

• Derived classes such as D must not expose a public constructor. Otherwise, D's
users could create D objects that don't invoke Postlnitialize.

• Allocation is limited to operator new. B can, however, override new (see Items
45 and 46).

• D must define a constructor with the same parameters that B selected. Defining
several overloads of Create can assuage this problem, however; and the over
loads can even be templated on the argument types.

• If the requirements above are met, the design guarantees that Postlnitialize has
been called for any fully constructed B-derived object. Postlnitialize doesn't
need to be virtual; it can, however, invoke virtual functions freely.

References
[AlexandrescuOl] §3 • [Boost] • [DewhurstO3] §75 • lMeyers97] §46 • [StroustrupOO]
§15.4.3 • [Taligent94]

90 C++ Coding Standards

50. Make base class destructors public and
virtual, or protected and nonvirtual.

Summary
To delete, or not to delete; that is the question: If deletion through a pointer to a base
Base should be allowed, then Base's destructor must be public and virtual. Otherwise,
it should be protected and nonvirtual.

Discussion
This simple guideline illustrates a subtle issue and reflects modern uses of inheri-
tance and object-oriented design principles.

For a base class Base, calling code might try to delete derived objects through pointers
to Base. If Base's destructor is public and nonvirtual (the default), it can be acci-
dentally called on a pointer that actually points to a derived object, in which case the
behavior of the attempted deletion is undefined. This state of affairs has led older
coding standards to impose a blanket requirement that all base class destructors
must be virtual. This is overkill (even if it is the common case); instead, the rule
should be to make base class destructors virtual if and only if they are public.

To write a base class is to define an abstraction (see Items 35 through 37). Recall that
for each member function participating in that abstraction, you need to decide:

• Whether it should behave virtually or not.
• Whether it should be publicly available to all callers using a pointer to Base or

else be a hidden internal implementation detail.
As described in Item 39, for a normal member function, the choice is between allowing
it to be called via a Base* nonvirtually (but possibly with virtual behavior if it invokes
virtual functions, such as in the NVI or Template Method patterns), virtually, or not
at all. The NVI pattern is a technique to avoid public virtual functions.

Destruction can be viewed as just another operation, albeit with special semantics
that make nonvirtual calls dangerous or wrong. For a base class destructor, therefore,
the choice is between allowing it to be called via a Base* virtually or not at all;
"nonvirtually" is not an option. Hence, a base class destructor is virtual if it can be
called (i.e., is public), and nonvirtual otherwise.

Note that the NVI pattern cannot be applied to the destructor because constructors
and destructors cannot make deep virtual calls. (See Items 39 and 55.)

Corollary: Always write a destructor for a base class, because the implicitly gener-
ated one is public and nonvirtual.

Construction, Destruction, and Copying 91

Examples
Either clients should be able to delete polymorphically using a pointer to Base, or
they shouldn't. Each alternative implies a specific design:

• Example 1: Base classes with polymorphic deletion. If polymorphic deletion should
be allowed, the destructor must be public (else calling code can't call it) and it
must be virtual (else calling it results in undefined behavior).

• Example 2: Base classes without polymorphic deletion. If polymorphic deletion
shouldn't be allowed, the destructor must be nonpublic (so that calling code
can't call it) and should be nonvirtual (because it needn't be virtual).

Policy classes are frequently used as base classes for convenience, not for polymorphic
behavior. It is recommended to make their destructors protected and nonvirtual.

Exceptions
Some component architectures (e.g., COM and CORBA) don't use a standard deletion
mechanism, and foster different protocols for object disposal. Follow the local
patterns and idioms, and adapt this guideline as appropriate.

Consider also this rare case:

• B is both a base class and a concrete class that can be instantiated by itself (and
so the destructor must be public for B objects to be created and destroyed).

• Yet B also has no virtual functions and is not meant to be used polymorphically
(and so although the destructor is public it does not need to be virtual).

Then, even though the destructor has to be public, there can be great pressure to not
make it virtual because as the first virtual function it would incur all the run-time
type overhead when the added functionality should never be needed.

In this rare case, you could make the destructor public and nonvirtual but clearly
document that further-derived objects must not be used polymorphically as B's.
This is what was done with std::unary_function.

In general, however, avoid concrete base classes (see Item 35). For example,
unaryfunction is a bundle-of-typedefs that was never intended to be instantiated
standalone. It really makes no sense to give it a public destructor; a better design
would be to follow this Item's advice and give it a protected nonvirtual destructor.

References
[Cargill92] pp. 77-79, 207
[Koenig97] Chapters 4, 11 «
[SutterO4] §18

• [Cline99] §21.06, 21.12-13 • [Henricson97] pp. 110-114
[Meyers97] §14 • [StroustrupOO] §12.4.2 • [SutterO2] §27

92 C++ Coding Standards

51. Destructors, deallocation, and swap
never fail.

Summary
Everything they attempt shall succeed: Never allow an error to be reported from a
destructor, a resource deallocation function (e.g., operator delete), or a swap function.
Specifically, types whose destructors may throw an exception are flatly forbidden
from use with the C++ standard library.

Discussion
These are key functions that must not fail because they are necessary for the two key
operations in transactional programming: to back out work if problems are encoun-
tered during processing, and to commit work if no problems occur. If there's no way to
safely back out using no-fail operations, then no-fail rollback is impossible to im-
plement. If there's no way to safely commit state changes using a no-fail operation
(notably, but not limited to, swap), then no-fail commit is impossible to implement.

Consider the following advice and requirements found in the C++ Standard:

If a destructor called during stack unwinding exits with an exception, terminate is
called (15.5.1). So destructors should generally catch exceptions and not let them
propagate out of the destructor. — [C++03] §15.2(3)

No destructor operation defined in the C++ Standard Library [including the de-
structor of any type that is used to instantiate a standard library template]
will throw an exception. —[C++03] §17.4.4.8(3)

Destructors are special, and the compiler invokes them automatically in various con-
texts. If you write a class—let's call it Nefarious—whose destructor might fail (usually
by throwing an exception; see Item 72), you incur the following consequences:

• Nefarious objects are hard to use safely in normal functions: You can't reliably in
stantiate automatic Nefarious objects in a scope if that scope might be exited
through an exception. If that happened, Nefarious's destructor (automatically
invoked) might attempt to throw an exception as well, which would result in
sudden death of your entire program via std::terminate. (See also Item 75.)

• Classes with Nefarious members or bases are also hard to use safely: Nefarious' poor
behavior extends to any class of which Nefarious is a member or a base class.

• You can't reliably create global or static Nefarious objects either: Any exception its
destructor might throw can't be caught.

Construction, Destruction, and Copying 93

• You can't reliably create arrays of Nefarious: In short, the behavior of arrays is un
defined in the presence of destructors that throw because there is no reasonable
rollback behavior that could ever be devised. (Just think: What code can the
compiler generate for constructing an array of ten Nefarious objects where, if
the fourth object's constructor throws, the code has to give up and in its cleanup
mode tries to call the destructors of the already-constructed objects... and one or
more of those destructors throws? There is no satisfactory answer.)

• You can't use Nefarious objects in standard containers: You can't store Nefarious ob
jects in standard containers or use them with any other part of the standard li
brary. The standard library forbids all destructors used with it from throwing.

Deallocation functions, including specifically overloaded operator delete and op-
erator delete[], fall into the same category, because they too are used during cleanup in
general, and during exception handling in particular, to back out of partial work that
needs to be undone.

Besides destructors and deallocation functions, common error-safety techniques rely
also on swap operations never failing—in this case, not because they are used to im-
plement a guaranteed rollback, but because they are used to implement a guaranteed
commit. For example, here is an idiomatic implementation of operator= for a type T
that performs copy construction followed by a call to a no-fail Swap:

T& T::operator=(const T& other) {
T temp(other);
Swap(temp); }

(See also Item 56.)

Fortunately, when releasing a resource, the scope for failure is definitely smaller. If
using exceptions as the error reporting mechanism, make sure such functions handle
all exceptions and other errors that their internal processing might generate. (For ex-
ceptions, simply wrap everything sensitive that your destructor does in a
try/catch(...) block.) This is particularly important because a destructor might be
called in a crisis situation, such as failure to allocate a system resource (e.g., memory,
files, locks, ports, windows, or other system objects).

When using exceptions as your error handling mechanism, prefer documenting this
behavior by declaring these functions with a commented empty exception specifica-
tion of/* throw() */■ (See Item 75.)

References
[C++03] §15.2(3), §17.4.4.8(3) • [Meyers96] §11 • [StroustrupOO] §14.4.7, §E.2-4 •
[SutterOO] §8, §16 • [SutterO2] §18-19

94 C++ Coding Standards

52. Copy and destroy consistently.

Summary
What you create, also clean up: If you define any of the copy constructor, copy as-
signment operator, or destructor, you might need to define one or both of the others.

Discussion
If you need to define any of these three functions, it means you need it to do more
than its default behavior—and the three are asymmetrically interrelated. Here's how:

• If you write/disable either the copy constructor or the copy assignment operator, you
probably need to do the same for the other: If one does "special" work, probably so
should the other because the two functions should have similar effects. (See
Item 53, which expands on this point in isolation.)

• If you explicitly write the copying functions, you probably need to write the destructor:
If the "special" work in the copy constructor is to allocate or duplicate some re
source (e.g., memory, file, socket), you need to deallocate it in the destructor.

• If you explicitly write the destructor, you probably need to explicitly write or disable
copying: If you have to write a nontrivial destructor, it's often because you need
to manually release a resource that the object held. If so, it is likely that those re
sources require careful duplication, and then you need to pay attention to the
way objects are copied and assigned, or disable copying completely.

In many cases, holding properly encapsulated resources using RAII "owning" ob-
jects can eliminate the need to write these operations yourself. (See Item 13.)

Prefer compiler generated special members; only these can be classified as "trivial,"
and at least one major STL vendor heavily optimizes for classes having trivial special
members. This is likely to become common practice.

Exceptions
When any of the special functions are declared only to make them private or virtual,
but without special semantics, it doesn't imply that the others are needed.

In rare cases, classes that have members of strange types (e.g., references,
std::auto_ptrs) are an exception because they have peculiar copy semantics. In a
class holding a reference or an auto_ptr, you likely need to write the copy constructor
and the assignment operator, but the default destructor already does the right thing.
(Note that using a reference or auto_ptr member is almost always wrong.)

References
[Cline99] §30.01-14 • [Koenig97] §4 • [StroustrupOO] §5.5, §10.4 • [SuttHyslO4b]

Construction, Destruction, and Copying 95

53. Explicitly enable or disable copying.

Summary
Copy consciously: Knowingly choose among using the compiler-generated copy
constructor and assignment operator, writing your own versions, or explicitly dis-
abling both if copying should not be allowed.

Discussion
A common mistake (and not only among beginners) is to forget to think about copy
and assignment semantics when defining a class. This happens often with small
helper classes such as those meant for RAII support (see Item 13).

Ensure that your class provides sensible copying, or none at all. The choices are:

• Explicitly disable both: If copying doesn't make sense for your type, disable both
copy construction and copy assignment by declaring them as private unimple-
mented functions:

class T {//...
private: //make Tnon-copyable
T(const T&); //not implemented
T& operator=(const T&); //not implemented

};

• Explicitly write both: If copying and copy assignment is warranted for T objects,
but correct copying behavior differs from what the compiler-generated versions
will do, then write the functions yourself and make them nonprivate.

• Use the compiler-generated versions, preferably with an explicit comment: Otherwise,
if copying makes sense and the default behavior is correct, don't declare them
yourself and just let the compiler-generated versions kick in. Prefer to comment
that the default behavior is correct, so that readers of your code will know that
you didn't miss one of the other two options by accident.

Note that disabling copying and copy assignment means that you cannot put T objects
into standard containers. That's not necessarily a bad thing; very likely, you wouldn't
want to hold such T objects in a container anyway. (You can still put them in
containers by holding them via a smart pointer; see Item 79.)

Bottom line: Be proactive about these two operations because the compiler has the
tendency to generously generate them, and the compiler-generated versions are often
unsafe by default for non-value-like types. (See also Item 32.)

References
[DewhurstO3] §88 • [Meyers97] §11 • [StroustrupOO] §11.2.2

96 C++ Coding Standards

54. Avoid slicing. Consider Clone instead of
copying in base classes.

Summary
Sliced bread is good; sliced objects aren't: Object slicing is automatic, invisible, and
likely to bring wonderful polymorphic designs to a screeching halt. In base classes,
consider disabling the copy constructor and copy assignment operator, and instead
supplying a virtual Clone member function if clients need to make polymorphic
(complete, deep) copies.

Discussion
When you build class hierarchies, usually the intent is to get polymorphic behavior.
You want objects, once created, to preserve their type and identity. This goal con-
flicts with C++'s usual object copy semantics because the copy constructor is not vir-
tual and cannot be made virtual. Consider:

class B {/*... */};
class D: public B {/*... */};

void Transmogrify(B obj); //oops: takes an object by value
void Transubstantiate(B& obj) { //ok: takes a reference

Transmogrify(obj); //oops: slices the object

}

Dd; Transubstantiate(d);

The programmer's intent to manipulate B and B-derived objects polymorphically.
However, by mistake (fatigue? too little caffeine?) the programmer either forgot to
write an & in Transmogrify's signature, or intended to create a copy but did it the
wrong way. The code will compile fine, but when Transmogrify is called the passed-in
D object will, well, transmogrify into a B. This is because a by-value pass involves a
call to B::B(const B&), that is, B's copy constructor, and the const B& passed in will
be the automatically converted reference to d. Wiping away all the dynamic, po-
lymorphic behavior that prompted you to use inheritance in the first place is most
likely what you don't want.

If as the author of B you do want to allow slicing, but you don't want callers to slice
easily or by accident, here's one option we mention for completeness but do not rec-

Construction, Destruction, and Copying 97

ommend in code that needs to be portable: You can make B's copy constructor ex-
plicit. This can help avoid implicit slicing, but it also prevents all pass-by-value (this
can be good for base classes, which shouldn't be instantiable anyway; see Item 35):

// Making the copy constructor explicit (has side effects, needs improvement)
class B {//... public: explicit B(const B& rhs);
};

class D: public B {/*... */};

Calling code can still slice if it really wants to, but has to be, well, explicit about it:

void Transmogrify(B obj); //note: now can't ever be called (!)

void Transmogrify2(const B& obj) { // an idiom to explicitly say "I want to take
B b(obj); // obj by value anyway (and possibly slice it)"

}

B b; //base classes shouldn't be concrete (see
D d; // Item 35), but let's imagine that B is

Transmogrify(b); //now an error (or should be; see note)
Transmogrify(d); //now an error (or should be; see note)
Transmogrify2(d); //ok

Note: As of this writing, some compilers incorrectly accept one or both of these calls
to Transmogrify. This idiom is standard, but it's not (yet) completely portable.

There is a better way that portably achieves the goal of preventing slicing and delivers
more value to boot. Let's say that functions like Transmogrify really do want to take a
full deep copy without knowing the actual derived type of the object it's being given.
The more general idiomatic solution is to make the copy constructor for base classes
protected (so that a function like Transmogrify won't call it accidentally) and rely on
a virtual Clone function instead:

//Adding Clone (first cut, better but still needs improvement)
class B {//... public: virtual B* Clone() const = 0;

protected: B(const
B&);

};

98 C++ Coding Standards

class D : public B{ //... public: virtual D* Clone()
const { return new D(*this);}

protected:
D(const D& rhs): B(rhs) {/*... */} };

Now, trying to slice will (portably) generate a compile-time error, and making Clone a
pure virtual function forces immediately-derived classes to override it. Unfortu-
nately, this solution still has two problems that the compiler cannot detect: A
further-derived class in the hierarchy can still forget to implement Clone, and an
override of Clone could implement it improperly so that the copy is not the same
type as the original. Clone should apply the Nonvirtual Interface pattern (NVI; see
Item 39), which separates Clone's public and virtual natures and lets you plant a
valuable assertion:

class B {//...
public:
B* Clone() const { //nonvirtual
B* p = DoClone();
assert(typeid(*p) == typeid(*this) && "DoClone incorrectly overridden");
return p; //check DoClone's returned type

}

protected: B(const B&); virtual B*
DoClone() const = 0;

};

Clone is now the nonvirtual interface used by all calling code. Derived classes only
need to override DoClone. The assert will flag any copy that doesn't have the same
type as the original, thus signaling that some derived class forgot to override the
DoClone function; asserts are, after all, to report such programming errors (see
Items 68 and 70).

Exceptions
Some designs might require that the copy constructors of base classes are left public
(e.g., when part of your hierarchy is a third-party library). In that case, prefer passing
by (smart) pointer to passing by reference; as Item 25 shows, passing by pointer is
much less vulnerable to slicing and unwanted temporary construction.

References
[DewhurstO3] §30, §76, §94 • [Meyers96] §13 • [Meyers97] §22 • [Stroustrup94] §11.4.4 •
[StroustrupOO] §12.2.3

Construction, Destruction, and Copying 99

55. Prefer the canonical form of assignment.

Summary
Your assignment: When implementing operator=, prefer the canonical form—
nonvirtual and with a specific signature.

Discussion
Prefer to declare copy assignment for a type T with one of the following signatures
(see [StroustrupOO] and [AlexandrescuCBa]):

T& operator=(const T&); //classic
T& operator(T); //potentially optimizer-friendly (see Item 27)

Settle for the second version if you would need to make a copy of the argument inside
your operator anyway, such as the swap-based idiom featured in Item 56.
Avoid making any assignment operator virtual (see [Meyers96] §33 and [SutterO4]
§19). If you think you need virtual behavior for assignment, reread those citations
first. If that doesn't dissuade you and you still think you need virtual assignment,
prefer to provide a named function instead (e.g., virtual void Assign(const T&);).
Don't return const T&. Although this has the benefit of preventing odd code like (a
= b) = c, it has the drawback that you wouldn't be able to put T objects into standard
library containers; the containers require that assignment return a plain T&.
Always make copy assignment error-safe, and prefer to provide the strong guarantee.
(See Item 71.)
Ensure the assignment operator is safe for self-assignment. Avoid writing a copy as-
signment operator that relies on a check for self-assignment in order to work properly;
often, that reveals a lack of error safety. If you write the copy assignment operator
using the swap idiom (see Item 56), it will automatically be both strongly error-safe
and safe for self-assignment; if self-assignment is frequent due to reference aliasing
or other reasons, it's okay to still check for self-assignment anyway as an optimization
check to avoid needless work.

Explicitly invoke all base assignment operators and assign all data members
([Meyers97] §16); note that swapping automatically take cares of all these things. Re-
turn *this ([Meyers97] §15).

References
[AlexandrescuO3a] • [Cargill92] pp41-42, 95 • [Cline99] §24.01-12 • [Koenig97] §4 •
[Meyers96] §33 • [Meyers97] §17 • [Mnrmi/93] §2.2.1 • [StroustrupOO] §10.4.4.1,
§10.4.6.3 • [SutterOO] §13, §38, §41 • [SutterO4] §19

100 C++ Coding Standards

56. Whenever it makes sense, provide a
no-fail swap (and provide it correctly).

Summary
swap is both a lightweight and a workhorse: Consider providing a swap function to
efficiently and infallibly swap the internals of this object with another's. Such a func-
tion can be handy for implementing a number of idioms, from smoothly moving ob-
jects around to implementing assignment easily to providing a guaranteed commit
function that enables strongly error-safe calling code. (See also Item 51.)

Discussion
A swap function typically looks like this, where U is some user-defined type:

class T {//...
public:
void swap(T& rhs)
{ member1_.swap(rhs.member1_);
std::swap(member2_, rhs.member2_); }

private: U
member1_ int
member2_;

};

For primitive types and for standard containers, std::swap will do. Other classes
might implement swapping as a member function under various names.
Consider using swap to implement copy assignment in terms of copy construction.
The following implementation of operator= provides the strong guarantee (see Item
71), although at the price of creating an extra object, which can be inappropriate if
there are more efficient ways to perform error-safe assignment for T objects:

T& T::operator=(const T& other) { //good: Variant #1 (traditional) T
temp(other); swap(temp);
return *this; }

T& T::operator=(T temp) { //good: Variant #2 (see Item 27)
swap(temp); // note: temp passed by value
return *this;

}

Construction, Destruction, and Copying 101

What if U does not implement a no-fail swap function, as is the case with many legacy
classes, and you still need T to support a swap function? All is not lost:

• If U's copy constructor and copy assignment don't fail (as, again, might be the
case with legacy classes), std::swap will work fine on U objects.

• If U's copy constructor might fail, you can store a (smart) pointer to U instead of
a direct member. Pointers are easily swappable. They do incur the additional
overhead of one extra dynamic storage allocation and one extra access indirec
tion, but if you store all such members in a single Pimpl object you'll incur the
overhead only once for all private members. (See Item 43.)

Never use the trick of implementing copy assignment in terms of copy construction
by using an explicit destructor followed by placement new, even though this trick
still crops up regularly in C++ forums. (See also Item 99.) That is, never write:

T& T::operator=(const T& rhs) { //bad: an anti-idiom
if(this != &rhs){
this- > ~T(); // this technique is evil
new (this) T(rhs); // (see [SutterOO] §41)

}
return *this; }

Prefer to provide a nonmember swap function in the same namespace as your type
when objects of your type have a way to exchange their values more efficiently than
via brute-force assignment, such as if they have their own swap or equivalent function
(see Item 57). Additionally, consider specializing std::swap for your own
non-template types:

namespace std {
template< > void swap(MyType& Ihs, MyType& rhs) { //for MyType objects,

lhs.swap(rhs); //use MyTyper.swap
}

}

The standard does not allow you to do this when MyType is itself a template class.
Fortunately, this specialization is just a nice-to-have; the primary technique is to pro-
vide a type-customized swap as a nonmember in the same namespace as the type.

Exceptions
Swapping is valuable for classes with value semantics. It is less often useful for base
classes because you use those classes through pointers anyway. (See Items 32 and 54.)

References
[C++03] §17.4.3.1(1) • [StroustrupOO] §E.3.3 • [SutterOO] §12-13, §41

Namespaces and Modules

Systems have sub-systems and sub-systems have subsystems and so
on ad infinitum—which is why we're always starting over.

—Alan Perlis

The namespace is an important tool for managing names and reducing name colli-
sions. So is a module, which is additionally an important tool for managing releases
and versioning. We define a module as any cohesive unit of release (see Item 5)
maintained by the same person or team; typically, a module is also consistently
compiled with the same compiler and switch settings. Modules exist at many levels of
granularity that range widely in size; a module can be as small as a single object file
that delivers a single class, to a single shared or dynamic library generated from
multiple source files whose contents form a subsystem inside a larger application or
are released independently, to as large as a huge library composed of many smaller
modules (e.g., shared libraries, DLLs, or other libraries) and containing thousands of
types. Even though such entities as shared libraries and dynamic libraries are not
mentioned directly in the C++ Standard, C++ programmers routinely build and use
libraries, and good modularization is a fundamental part of successful dependency
management (see for example Item 11).

It's hard to imagine a program of any significant size that doesn't use both name-
spaces and modules. In this section, we cover basic guidelines on using these two re-
lated management and bundling tools with a view to how they interact well or
badly with the rest of the C++ language and run-time environment. These rules and
guidelines show how to maximize the "well" and avoid the "badly."

Our vote for the most valuable Item in this section goes to Item 58: Keep types and
functions in separate namespaces unless they're specifically intended to work to-
gether.

103

104 C++ Coding Standards

57. Keep a type and its nonmember function
interface in the same namespace.

Summary
Nonmembers are functions too: Nonmember functions that are designed to be part of
the interface of a class X (notably operators and helper functions) must be defined in
the same namespace as the X in order to be called correctly.

Discussion

Both public member functions and nonmember functions form part of the public in-
terface of a class. The Interface Principle states: For a class X, all functions (including
nonmember functions) that both "mention" X and are "supplied with" X in the same
namespace are logically part of X, because they form part of X's interface. (See Item 44
and [SutterOO].)

The C++ language is explicitly designed to enforce the Interface Principle. The reason
why argument-dependent lookup (ADL, also known as Koenig lookup) was added
to the language was to ensure that code that uses an object x of type X can use its
nonmember function interface (e.g., cout << x, which invokes the nonmember
operators<< for X) as easily as it can use member functions (e.g., x.f(), which requires
no special lookup because f is clearly to be looked up in the scope of X). ADL ensures
that nonmember functions that take X objects and that are supplied with X's
definition can participate as first-class members of X's interface, just like X's direct
member functions naturally do.

In particular, the primary motivating example for ADL was the case where X is
std::string (see [SutterOO]).

Consider a class X, defined in namespace N:

class X
{ public:
void f();
};

X operator+(const X&, const X&);

Callers will typically want to write code like this, where xl, x2, and x3 are objects of
type X:

x3 = xl + x2;

Namespaces and Modules 105

If the operator+ is declared in the same namespace as X, there's no problem, and
such code always just works, because the supplied operator+ will be looked up using
ADL.

If the operator+ is not declared in the same namespace as X, the caller's code fails to
work. The caller has two workarounds to make it work. The first is to use explicit
qualification:

x3 = N::operator+(x1, x2);

This is deplorable and shameful because it requires the user to give up natural op-
erator syntax, which is the point of operator overloading in the first place. The only
other option is to write a using statement:

using N::operator+;
// or: using namespace N;

x3 = x1 + x2;

Writing either of the indicated using statements is perfectly acceptable (see Item 59),
but the caller doesn't have to jump through these hoops when the author of X does the
right thing and puts operatorn- for X objects into the same namespace as X.

For the flip side of this issue, see Item 58.

Examples

Example 1: Operators. The streaming operator< < and operator> > for objects of some
class type X are perhaps the most compelling examples of functions that are clearly
part of the interface of the class X, but which are always nonmember functions (this is
of necessity, because the left-hand argument is a stream, not an X). The same ar-
gument applies to other nonmember operators on X objects. Make sure that your
operators appear in the same namespace as the class on which they operate. When
you have the option, prefer making operators and all other functions nonmember
nonfriends (see Item 44).

Example 2: Other functions. If the author of X supplies named helper functions that
take X objects, they should be supplied in the same namespace, otherwise calling
code that uses X objects will not be able to use the named functions without explicit
qualification or a using statement.

References
[StroustrupOO] §8.2, §10.3.2, §11.2.4 • [SutterOO] §31-34

106 C++ Coding Standards

58. Keep types and functions in separate name-
spaces unless they're specifically intended
to work together.

Summary
Help prevent name lookup accidents: Isolate types from unintentional
argument-dependent lookup (ADL, also known as Koenig lookup), and encourage
intentional ADL, by putting them in their own namespaces (along with their directly
related nonmember functions; see Item 57). Avoid putting a type into the same
namespace as a templated function or operator.

Discussion
By following this advice, you will avoid having to track down hard-to-diagnose er-
rors in your code and avoid having to know about excessively subtle language de-
tails that you, well, should never have to know about.

Consider this actual example that was posted publicly to a newsgroup:

#include <vector>

namespace N
{ struct X {};

template<typename T>
int* operator+(T, unsigned) {/* do something */} }

int main() {
std::vector<N::X> v(5);
v[0] ; }

The statement v[0]; compiles on some standard library implementations but not on
others. To make a very long story moderately less long (take a deep breath): The ex-
ceedingly subtle problem is that inside most implementations of
vec-tor<T>::operator[] lurks code like v.begin() + n, and the name lookup for that
operator function might reach out into the namespace (here N) of the type that vector
is instantiated with (here X). Whether it reaches out into N like that depends on how
vector<T>::iterator happens to be defined in that release of that standard library
implementation—but if it does look into N, then it will find N::operator+. Finally,
depending on the types involved, the compiler might just discover that N::operator+
is a better match than the std::operator+ for vector<T>"iterators that

Namespaces and Modules 107

was provided (and intended to be called) in that standard library implementation.
(One way that the standard library implementation could protect itself from this is to
not write code like v.begin() + n in that way, which injects an unintentional point of
customization: Either arrange for v.begin()'s type to not depend in any way on the
template parameter, or rewrite the call to operator+ as a qualified call. See Item 65.)

In short, you'll almost certainly never figure out what's going on from the error
message—if you're lucky enough to get an error message, that is, because you might
happen to hit the worst of all possible worlds where N::operator+ is chosen but un-
fortunately turns out to be compilable, although completely unintended and wildly
wrong.

If you think you haven't been bit by this, just think back: Can you remember a time
when you wrote code that used the standard library (for example) and got mysterious
and incomprehensible compiler errors? And you kept slightly rearranging your code
and recompiling, and rearranging some more and compiling some more, until the
mysterious compile errors went away, and then you happily continued on—with at
best a faint nagging curiosity about why the compiler didn't like the
only-ever-so-slightly different arrangement of the code you wrote at first? We've all
had those days, and the odds are decent that the mystery culprit was some form of the
aforementioned problem, where ADL pulled in names from other namespaces
inappropriately just because types from those namespaces were being used nearby.
This problem is not unique to uses of the standard library. It can and does happen in
C++ with the use of any type that is defined in the same namespace as functions—
especially templated functions, and most especially operators—that aren't specifi-
cally related to that type. Don't do that.

Bottom line: You shouldn't have to know this stuff. The easiest way to avoid this
whole category of problems is to in general avoid putting nonmember functions that
are not part of the interface of a type X into the same namespace as X, and especially
never ever put templated functions or operators into the same namespace as a
user-defined type.

Note: Yes, the C++ standard library puts algorithms and other function templates,
such as copy and distance, into the same namespace as lots of types, such as pair
and vector. It puts everything into a single namespace. That's unfortunate, and it
causes exactly these kinds of very subtle problems. We know better now. Learn from
the past. Don't do that.
For the flip side of this issue, see Item 57.

References
[StroustrupOO] §10.3.2, §11.2.4 • [SutterOO] §34 • [SutterO2] §39-40

108 C++ Coding Standards

59. Don't write namespace usings in a header
file or before an #include.

Summary
Namespace usings are for your convenience, not for you to inflict on others: Never
write a using declaration or a using directive before an #include directive.

Corollary: In header files, don't write namespace-level using directives or using dec-
larations; instead, explicitly namespace-qualify all names. (The second rule follows
from the first, because headers can never know what other header #includes might
appear after them.)

Discussion
In short: You can and should use namespace using declarations and directives liberally
in your implementation files after #include directives and feel good about it. Despite
repeated assertions to the contrary, namespace using declarations and directives are
not evil and they do not defeat the purpose of namespaces. Rather, they are what
make namespaces usable.

Namespaces deliver the powerful advantage of unambiguous name management.
Most of the time, different programmers don't choose the very same name for a type
or function; but on the off chance that they do so, and that the two pieces of code end
up being used together, having those names in separate namespaces prevents them
from colliding. (We don't, after all, want the global namespace pollution experienced
by default in languages like C.) In the rare case when there is such an actual ambiguity,
calling code can explicitly qualify a name to say which one it wants. But the vast
majority of the time there is no ambiguity: And that is why namespace using
declarations and directives are what make namespaces usable, because they greatly
reduce code clutter by freeing you from having to tediously qualify every name
every time (which would be onerous, and frankly people just won't put up with it)
and still letting you qualify names only in those rare cases when you need to resolve an
actual ambiguity.

But using declarations and directives are for your coding convenience, and you
shouldn't use them in a way that affects someone else's code. In particular, don't
write them anywhere they could be followed by someone else's code: Specifically,
don't write them in header files (which are meant to be included in an unbounded
number of implementation files, and you shouldn't mess with the meaning of that
other code) or before an #include (you really don't want to mess with the meaning of
code in someone else's header).

Namespaces and Modules 109

Most people understand viscerally why a using directive (e.g., using namespace A;)
causes pollution when it can affect code that follows and that isn't aware of it: Be-
cause it imports one namespace wholesale into another, including even those names
that haven't been seen yet, it's fairly obvious that it can easily change the meaning of
code that follows.

But here's the common trap: Many people think that using declarations issued at
namespace level (for example, using N::Widget;) are safe. They are not. They are at
least as dangerous, and in a subtler and more insidious way. Consider:

//snippet 1
namespace A { int
f(double); }

//snippet 2
namespace B
{ using A::f;

void g(); }

//snippet 3
namespace A {
int f(int); }

//snippet 4 void
B::g() {

f(1); // which overload is called?
}

The dangerous thing happening here is that the using declaration takes a snapshot of
whatever entities named f in namespace A have been seen by the time the using dec-
laration is encountered. So, from within B, which overloads are visible depends on
where these code snippets exist and in what order they are combined. (At this point,
your internal "but order dependencies are evil!" klaxon should be blaring.) The sec-
ond overload, f(int), would be a better match for the call f(l), but f(int) will be in-
visible to B::g if its declaration comes after the using declaration.

Consider two specific cases. First, let's say that snippets 1, 2, and 3 are in three dis-
tinct header files s1.h, s2.h, and s3.h, and snippet 4 in an implementation file s4.cpp
that includes those header files to pull the relevant declarations. Then, we have an
unfortunate phenomenon: The semantics of B::g depends on the order in which the
headers were included in s4.cpp! In particular:

110 C++ Coding Standards

• If s3.h comes before s2.h, B::g will call A::f(int).
• Else if sl.h comes before s2.h, B::g will call A::f(double).
• Else B::g won't compile at all.

At least in the preceding case, there's still one well-defined order, and the answer
will be exactly one of the three listed alternatives.
But now it gets much worse: Let's instead say that snippets 1, 2, 3, and 4 are in four
distinct header files sl.h, s2.h, s3.h, and s4.h. Now life is even more unfortunate: The
semantics of B::g depends on the order in which the headers were included, not only in
s4.h itself, but in any code that includes s4.h! In particular, an implementation file
client_code.cpp might try to include the headers in any order:

• If s3.h comes before s2.h, B::g will call A::f(int).
• Else if sl.h comes before s2.h, B::g will call A::f(double).
• Else B::g won't compile at all.

This is worse because two implementation files can include the headers in different
orders. Consider what happens if clientcodel.cpp includes sl.h, s2.h, and s4.h in
that order, but client_code_2.cpp includes s3.h, s2.h, and s4.h in that order. Then,
B::g violates the One Definition Rule (ODR) because it has two inconsistent and in-
compatible implementations that can't both be right—one that tries to fall A::f(int)
and one that tries to call A::f(double).
So don't write namespace using declarations or using directives in a header file, or
before an #include directive in an implementation file. You are liable to affect the
meaning of later code by causing namespace pollution, by taking an incomplete
snapshot of the names that you want to import, or both. (Note the qualifier "name-
space using declarations or using directives." This doesn't apply to writing class
member using declarations to bring in base class member names as needed.)
In all headers, and in all implementation files before the last #include, always explic-
itly namespace-qualify all names. In implementation files after all #includes, you
can and should write namespace using declarations and directives liberally. This is
the right way to reconcile code brevity with modularity.

Exceptions
Migrating a large project from an old, pre-ANSI/ISO implementation of the standard
library (one that puts all of its symbols in the global namespace) to an updated one
(where most everything is in namespace std) might force you to carefully put a using
directive in a header file. The way to do that is described in [SutterO2].

References
[StroustrupOO] §9.2.1 • [SutterOl] §39-40

N a m e s p a c e s a n d M o d u l e s 1 1 1

60. Avoid allocating and deallocating memory in
different modules.

Summary
Put things back where you found them: Allocating memory in one module and deal-
locating it in a different module makes your program fragile by creating a subtle
long-distance dependency between those modules. They must be compiled with the
same compiler version and same flags (notably debug vs. NDEBUG) and the same
standard library implementation, and in practice the module allocating the memory
had better still be loaded when the deallocation happens.

Discussion
Library writers want to improve the quality of their libraries, and as a direct conse-
quence the internal data structures and algorithms used by the standard memory al-
locator can significantly vary from one version to the next. Furthermore, various
compiler switches (e.g., turning debugging facilities on and off) can change the inner
workings of the memory allocator significantly.

Therefore, make very few assumptions about deallocation functions (e.g., ::operator
delete or std::free) when you cross module boundaries—especially boundaries of
modules that you can't guarantee will be compiled with the same C++ compiler and
the same build options. Often, it is the case that various modules are in the same
makefile and compiled with the same options, but comfort often leads to
forgetful-ness. Especially when it comes to dynamically linked libraries, large
projects distributed across large teams, or the challenging "hot swapping" of
modules, you should pay maximum attention to allocate and deallocate within the
same module or subsystem.

A good way to ensure that deletion is performed by the appropriate function is to use
the shared_ptr facility (see [C++TR104]). shared_ptr is a reference-counted smart
pointer that can capture its "deleter" at construction time. The deleter is a function
object (or a straight pointer to function) that performs deallocation. Because the said
function object, or pointer to function, is part of the shared_ptr object's state, the
module allocating the object can at the same time specify the deallocation function,
and that function will be called correctly even if the point of deallocation is some-
where within another module—admittedly at a slight cost. (Correctness is worth the
cost; see also Items 5, 6, and 8.) Of course, the original module must remain loaded.

References
[C++TR104]

112 C++ Coding Standards

61. Don't define entities with linkage in a
header file.

Summary
Repetition causes bloat: Entities with linkage, including namespace-level variables
or functions, have memory allocated for them. Defining such entities in header files
results in either link-time errors or memory waste. Put all entities with linkage in
implementation files.

Discussion
While starting to use C++, we all learn quite quickly that header files like

//avoid defining entities with external linkage in a header
int fudge Factor;
string hello("Hello, world!");
void foo() {/*... */}

are liable to cause link-time errors complaining of duplicate symbols as soon as such a
header is included by more than one source file. The reason is simple: Each source file
actually defines and allocates space for fudgeFactor and hello and foo's body, and
when the time comes to put it all together (linking), the linker is faced with several
symbols bearing the same name and competing for visibility.

The solution is simple—put just the declarations in the header:

extern int fudgeFactor;
extern string hello;
void foo(); // "extern" is optional with function declarations

The actual definitions go in a single implementation file:

int fudgeFactor;
string hello("Hello, world!");
void foo() {/*... */}

Also, do not definite namespace-level static entities in a header. For example:

//avoid defining entities with static linkage in a header
static int fudgeFactor;
static string hello("Hello, world!");
static void foo() {/*... */}

Such misuse of static is more dangerous than just defining global entities in the
header. With global entities, at least the linker is liable to promptly uncover the du-

N a m e s p a c e s a n d M o d u l e s 1 1 3

plication. But static data and functions are legal to duplicate because the compiler
recognizes that you are asking for a private copy in each source file. So, if you define
static data and static functions in a header and include that header in 50 files, the
bodies of the functions and the space for the data will be duplicated 50 times in the
final executable code (except in the presence of some modern linkers that merge to-
gether identical function bodies and const data when such merging is safe). Needless
to say, global data (such as the static fudgeFactor) is not really global because each
source file ends up manipulating its own copy, independent of all other copies in the
program.

Don't try to get around this by (ab)using unnamed namespaces in header files be-
cause the effects would be just as unpleasant:

//in a header file, this is just as bad as static
namespace {
int fudgeFactor;
string hello("Hello, world!");
void foo() {/*... */} }

Exceptions
The following entities with external linkage can go in header files:

• Inline functions: These have external linkage, but the linker is guaranteed not to
reject multiple copies. Other than that, they behave exactly like regular func
tions. In particular, the address of an inline function is guaranteed to be unique
throughout a program.

• Function templates: Similar to inline functions, instantiations behave just like
regular functions except that duplicate copies are acceptable (and had better be
identical). Of course, a good compilation framework eliminates the unnecessary
copies.

• Static data members of class templates: These can be particularly rough on the
linker, but that's not your problem—you just define them in your header file
and let your compiler and linker deal with it.

Also, a global data initialization technique known as "Schwarz counters" or "nifty
counters" prescribes planting static (or unnamed-namespace) data in a header file.
Jerry Schwarz made the technique popular by using it to initialize the standard I/O
streams cin, cout, cerr, and clog.

References
[Dewhurst03] §55 • [Ellis90] §3.3 • [StroustrupOO] §9.2, §9.4.1

114 C++ Coding Standards

62. Don't allow exceptions to propagate across
module boundaries.

Summary
Don't throw stones into your neighbor's garden: There is no ubiquitous binary stan-
dard for C++ exception handling. Don't allow exceptions to propagate between two
pieces of code unless you control the compiler and compiler options used to build
both sides; otherwise, the modules might not support compatible implementations
for exception propagation. Typically, this boils down to: Don't let exceptions propa-
gate across module/subsystem boundaries.

Discussion
The C++ Standard does not specify the way exception propagation has to be imple-
mented, and there isn't even a de facto standard respected by most systems. The me-
chanics of exception propagation vary not only with the operating system and com-
piler used, but also with the compiler options used to build each module of your
application with a given compiler on a given operating system. Therefore, an appli-
cation must prevent exception handling incompatibilities by shielding the boundaries
of each of its major modules, meaning each unit for which the developer can ensure
that the same compiler and options are consistently used.

At a minimum, your application must have catch-all catch(...) seals in the following
places, most of which apply directly to modules:

• Around main: Catch and log any otherwise uncaught exception that's about to
end your program ignominiously.

• Around callbacks from code you don't control: Operating systems and libraries offer
frameworks in which you pass a pointer to a function to be invoked later (e.g.,
when an asynchronous event occurs). Don't allow exceptions to propagate out
of your callback, because it's very possible that the code invoking your callback
does not use the same exception handling mechanism. For that matter, it might
not even have been written in C++.

• Around thread boundaries: Ultimately, a thread is created from within the bowels
of the operating system. Make sure your thread mainline function doesn't sur
prise the system by passing it an exception.

• Around module interface boundaries: Your subsystem will expose some public in
terface for the rest of the world to use. If the subsystem is packaged as a sepa
rate library, prefer to confine exceptions inside and use ye olde staid-but-stable
error codes for signaling errors to the outer world. (See Item 72.)

Names paces and M odul es 1 1 5

• Inside destructors: Destructors don't throw (see Item 51). Destructors that call
functions that might throw exceptions need to protect themselves against leaking
those exceptions.

Ensure that each module consistently uses a single error handling strategy internally
(preferably C++ exceptions; see Item 72) and a single error handling strategy in its
interface (e.g., error codes for a C API); the two might happen to be the same, but
they usually aren't. Error handling strategies change only on module boundaries.
Make clear how to interface the strategies between modules (e.g., how to interact
with COM or CORBA, or to always catch exceptions at a C API boundary). A good
solution is to define central functions that translate between exceptions and error
codes returned by a subsystem. This way, you can easily translate incoming errors
from peer modules into your internally used exceptions and ease integration.

Using two strategies instead of one may sound like overkill and you might be
tempted to forgo exceptions and only use the good old error codes throughout. But
don't forget that exception handling has real ease-of-use and robustness advantages, is
idiomatic C++, and can't be avoided in nontrivial C++ programs (because the
standard language and library throw exceptions), so you should prefer to use excep-
tion handling when you can. For more details, see Item 72.

A word of caution: Some operating systems use the C++ exception mechanism to
piggyback low-level, system-specific errors, such as dereferencing a null pointer.
Consequently, a catch (...) clause can catch more things than just straight C++ excep-
tions, and so your program might be in a twilight zone by the time the catch(...) is
executing. Consult your system's documentation and either be prepared for handling
such low-level exceptions in the smartest way you can devise, or use system-specific
calls to disable such piggybacking at the start of your application. Replacing catch(...)
with a series of catch(El&) {/*...*/} catch(E2&) {/*...*/} ... catch(En&) { /*...*/} for
each known base exception type E/ is not a scalable solution because you'd need to
update the caught list whenever you add a new library (using its own exception
hierarchy) to your application.

Using catch(...) in places other than those listed in this Item is often a sign of bad de-
sign, because it means you are eager to catch absolutely all exceptions without nec-
essarily having specific knowledge about how to handle them (see Item 74). A good
program doesn't have many catch-alls and, indeed, not many try/catch statements at
all; ideally, errors are propagated smoothly throughout, translated across module
boundaries (a necessary evil), and handled at strategically placed boundaries.

References
[StroustrupOO] §3.7.2, §14.7 • [SutterOO] §8-17 • [SutterO2] §17-23 • [SutterO4] §11-13

116 C++ Coding Standards

63. Use sufficiently portable types in a
module's interface.

Summary
Take extra care when living on the edge (of a module): Don't allow a type to appear in
a module's external interface unless you can ensure that all clients understand the type
correctly. Use the highest level of abstraction that clients can understand.

Discussion
The more widely distributed your library, and the less control you have over the
build environment of all of its clients, the fewer the types that the library can reliably
use in its external interface. Interfacing across modules involves binary data ex-
change. Alas, C++ doesn't specify standard binary interfaces; widely distributed li-
braries in particular might need to rely on built-in types like int and char to interface
with the outer world. Even compiling the same type using different build options on
the same compiler can cause binary-incompatible versions of the type.
Typically, either you control the compiler and options used to build the module and
all its clients, and you can use any type—or you don't, and you can use only plat-
form-provided types and C++ built-in types (even then, document the size and rep-
resentation you expect for the latter). In particular, never mention standard library
types in the interface of a module unless all other modules that use it will be compiled
at the same time and with the same standard library source image.
There is a tradeoff between the problems of using types that can't be correctly un-
derstood by all clients, and the problems of using a low level of abstraction. Abstrac-
tion is important; if some clients understand only low-level types, and you must
therefore use those, consider also supplying alternate operations that use
higher-level types. Consider a SummarizeFile function that takes the file to be
processed as a parameter. There are three common options for the parameter: It can
be a char* that points to a C-style string containing the file's name; a string that
containers the file's name; or an istream or a custom File object. Each of these choices
is a tradeoff:

• Option 1: char*. Clearly the char* type is accessible to the widest audience of cli
ents. Unfortunately, it is also the lowest-level option; in particular, it is less ro
bust (e.g., the caller and callee must explicitly decide who allocates the memory
and who deallocates it), more open to errors (e.g., the file might not exist), and
less secure (e.g., to classic buffer overrun attacks).

• Option 2: string. The string type is accessible to the more restricted audience of
clients that are written in C++ and compiled using the same standard library
implementation, the same compiler, and compatible compiler settings. In ex
change, it is more robust (e.g., callers and callees can be less explicit about

N ames paces and M odul es 1 1 7

memory management; but see Item 60) and more secure (e.g., string grows its
buffer as needed, and is not inherently as susceptible to buffer overrun attacks).
But this option is still relatively low-level, and thus open to errors that have to be
checked for explicitly (e.g., the file might not exist).

• Option 3: istream or File. If you're going to jump to class types anyway, thereby
requiring clients to be written in C++ using the same compiler and switches, use a
strong abstraction: An istream (or custom File object that wraps istream to
avoid a direct dependency on one standard library implementation) raises the
level of abstraction and makes the API much more robust. The function knows
that it's getting a File or a suitable input stream, does not need to manage memory
for string filenames, and is immune to many accidental and deliberate errors
possible with the other options. Few checks remain: The File must be open, and
the contents must be in the right format, but that's about all that can go wrong.

Even when you choose to use a lower-level abstraction in a module's external inter-
face, always use the highest level of abstraction internally and translate to the
lower-level abstraction at the module's boundary. For example, if you will have
non-C++ clients, you might use opaque void* or int handles to client code, but still use
objects internally, and cast only at the module's interface to translate between the two.

Examples
Example: Using stdr.string in a module interface. Say a module wants to provide this API:

std::string Translate(const std::string&);
For libraries used internally in one team or company, this is usually fine. But if you
need to dynamically link this module together with a caller that has a different im-
plementation of std::string (sporting a different memory layout), strange things will
happen because the client and the module can't understand each others' strings.
We have seen developers try to get around this by wrapping std::string with their
own CustomString, only to be shocked when they continue to encounter the very
same problem because they don't control the build process of all callers.
One solution is to rely on portable (probably built-in) types, either instead of or in
addition to the function that takes a string. For example:

void Translate(const char* src, char* dest, size_t destSize);

Using a lower-level abstraction is more portable, but always adds complexity; e.g., here,
both the caller and the callee have to explicitly deal with possible truncation if the
buffer is not big enough. (Note that this version uses a caller-allocated buffer to avoid
the pitfall of allocating and deallocating memory in different modules; see Item 60.)

References
[McConnell93] §6 • [MeyersOl] §15

Templates and Genericity

Your quote here.

-Bjarne Stroustrup,
[StroustrupOO] §13

And likewise: Your intro here.

Our vote for the most valuable Item in this section goes to Item 64: Blend static and
dynamic polymorphism judiciously.

119

120 C++ Coding Standards

64. Blend static and dynamic polymorphism
judiciously.

Summary
So much more than a mere sum of parts: Static and dynamic polymorphism are
complementary. Understand their tradeoffs, use each for what it's best at, and mix
them to get the best of both worlds.

Discussion
Dynamic polymorphism comes in the form of classes with virtual functions and in-
stances manipulated indirectly (through pointers or references). Static polymor-
phism involves template classes and template functions.
Polymorphism means that a given value can have more than one type, and a given
function can accept arguments of types other than the exact types of its parameters.
"Polymorphism is a way of gaining some of the freedom of dynamic type checking
without giving up the benefits of static type checking." —[WebberO3]
The strength of polymorphism is that the same piece of code can operate on different
types, even types that were not known at the time the code was written. Such
"post-hoc applicability" is the cornerstone of polymorphism because it amplifies the
usefulness and reusability of code (see Item 37). (Contrast that with monomorphic
code that rigidly operates only on the concrete types it was meant to work with.)
Dynamic polymorphism via public inheritance lets a value have more than one type.
For example, a Derived* p can be viewed as a pointer not only to a Derived, but to an
object of any type Base that's a direct or indirect base of Derived (the subsumption
property). Dynamic polymorphism is also referred to as inclusion polymorphism be-
cause the set modeled by Base includes the specializations modeled by Derived.
Due to its characteristics, dynamic polymorphism in C++ is best at:

• Uniform manipulation based on superset/subset relationships: Different classes that
hold a superset/subset (base/derived) relationship can be treated uniformly. A
function that works on Employee objects works also on Secretary objects.

• Static type checking: All types are checked statically in C++.
• Dynamic binding and separate compilation: Code that uses classes in a hierarchy

can be compiled apart from the code of the entire hierarchy. This is possible be
cause of the indirection that pointers provide (both to objects and to functions).

• Binary interfacing: Modules can be linked either statically or dynamically, as long
as the linked modules lay out the virtual tables the same way.

Static polymorphism via templates also lets a value have more than one type. Inside a
template<class T> void f(T t) {/*...*/}, t can have any type that can be substirut-

Templates and Genericity 121

ed inside f to render compilable code. This is called an "implicit interface," in contrast
to a base class's explicit interface. It achieves the same goal of polymorphism—
writing code that operates on multiple types—but in a very different way.
Static polymorphism is best at:

• Uniform manipulation based on syntactic and semantic interface: Types that obey a
syntactic and semantic interface can be treated uniformly. Interfaces are syntac
tic and implicit (not signature-based and explicit), and so allow any type substi
tution that fits a given syntax. For example, given the statement int i = p->f(5):
If p is a pointer to a Base class type, this calls a specific interface function, such
as perhaps a virtual int f(int). But if p is of a generic type, this call can bind to a
myriad of things, including that it might invoke an overloaded operator-> that
returns a type defining the function X f(double) where X is convertible to int.

• Static type checking: All types are checked statically.
• Static binding (prevents separate compilation): All types are bound statically.
• Efficiency: Compile-time evaluation and static binding allow optimizations and

efficiencies not available with dynamic binding.
Decide on your priorities, and use each type of polymorphism for its strengths.

Prefer to blend both kinds of polymorphism to combine their benefits while trying
not to combine their drawbacks:

• Static helps dynamic: Use static polymorphism to implement dynamically poly
morphic interfaces. For example, you might have an abstract base class Com
mand and define various implementations as tern plate </*...*/> class Concrete-
Command : public Command. Examples include implementing the Command
and Visitor design patterns (see [AlexandrescuOl] and [SutterO4]).

• Dynamic helps static: Offer a generic, comfortable, statically bound interface, but
internally dispatch dynamically, so you offer a uniform object layout. Good ex
amples are discriminated union implementations (see [AlexandrescuO2b] and
[Boost]) and trl::shared_ptr's Deleter parameter (see [C++TR104]).

• Any other blend: A bad blend that combines the weaknesses of both is worse than
either alone; a good blend that combines the benefits of both is better than either
alone. For example, don't put virtual functions into a class template unless you
want all virtual functions to be instantiated every time (this is in sharp contrast
to nonvirtual functions of templated types). The code size hit can be astronomi
cal, and you may overconstrain your generic type by instantiating functionality
that is never needed. The standard facets made this mistake. Don't make it again.

References
[AlexandrescuOl] §10 • [AlexandrescuOlb] * [C++TR104] • [Gamma95] • [MusserOl]
§1.2-3, §17 • [StroustrupOO] §24.4.1 • [SutterOO] §3 • [SutterO2] §1 • [SutterO4] §17, §35 •
[Vandevoorde03] §14 • [WebberO3] §8.6

122 C++ Coding Standards

65. Customize intentionally and explicitly.

Summary
Intentional is better than accidental, and explicit is better than implicit: When writing
a template, provide points of customization knowingly and correctly, and document
them clearly. When using a template, know how the template intends for you to
customize it for use with your type, and customize it appropriately.

Discussion
A common pitfall when writing template libraries is providing unintentional points
of customization—that is, points where a caller's code can get looked up and used
inside your template, but you didn't mean for a caller's code to get involved. It's
easy to do: Just call another function or operator the normal way (unqualified), and if
one of its arguments happens to be of a template parameter type (or a related type)
then ADL will pick it up. Examples abound: See Item 58 for an example.
Instead, be intentional: Know the three major ways to provide points of customiza-
tion in a template, decide which one you want to use at a given point in your template,
and code it correctly. Then, check to verify that that you didn't accidentally also code
a customization hook in places where you didn't mean to.
The first way to provide a point of customization is the usual "implicit interface"
(see Item 64) approach where your template simply relies on a type's having an ap-
propriate member with a given name:

// Option 1: Provide a point of customization by requiring T to provide "foo-ability" //
as a member function with a given name, signature, and semantics.
template<typename T>
void Sample1(T t) {
t.foo(); // foo is a point of
customization
typename T::value_type x; // another example: providing a point of custom-

} // ization to look up a type (usually via typedef)

To implement Option 1, the author of Sample1 must:

• Call the function with member notation: Just use the natural member syntax.
• Document the point of customization: The type must provide an accessible member

function foo that can be called with given arguments (here, none).
The second option is to use the "implicit interface" method, but with a nonmember
function that is looked up via argument-dependent lookup (i.e., it is expected to be in
the namespace of the type with which the template is instantiated); this is a major
motivation for the language's ADL feature (see Item 57). Your template is relying on a
type's having an appropriate nonmember with a given name:

Templates and Genericity 123

// Option 2: Provide a point of customization by requiring T to provide "foo-ability" //
as a nonmember function, typically looked up byADL, with a given name, signature,
//and semantics. (This is the only option that doesn't also work to look up a type.)
template<typename T>
void Sample2(T t) { foo(t);

cout < < t;
}

To implement Option 2, the
author of Sample2 must:

• Call the function with unqualified nonmember notation (including natural operator
notation in the case of operators) and ensure the template itself doesn't have a member
function with the same name: It is essential for the template not to qualify the call
to foo (e.g., don't write SomeNamespace::foo(t)) or to have its own member
function of the same name, because either of those would turn off ADL and thus
prevent name lookup from finding the function in the namespace of the type T.

• Document the point of customization: The type must provide a nonmember function
foo that can be called with given arguments (here, none).

Options 1 and 2 have similar advantages and applicability: The user can write the
customization function once for his type in a place where other template libraries
could also pick it up, thus avoiding writing lots of little adapters, one for each tem-
plate library. The corresponding drawback is that the semantics would have to be
reasonably broadly applicable so as to make sense for all those potential uses. (Note
that operators in particular fall into this category; this is another reason for Item 26.)

The third option is to use specialization, so that your template is relying on a type's
having specialized (if necessary) another class template you provide:

// Option 3: Provide a point of customization by requiring T to provide "foo-ability" //
by specializing SampleTraits< > and provide a (typically static) function with a
//given name, signature, and semantics.
template<typename T> void Sample3(T t) { typename S3Traits<T>::foo(t);
//S3Traits< >::foo is a point of customization

typename S3Traits<T>::value_type x; //another example: providing a point ofcustom-
} // ization to look up a type (usually via typedef)

In Option 3, making the user write an adapter ensures that custom code for this li-
brary is isolated inside this library. The corresponding drawback is that this can be
cumbersome; if several template libraries need the same common functionality, the
user has to write multiple adapters, one for each library.

// foo is a point of customization
//another example: operator< < with operator nota-//
tion is the same kind of point of customization

124 C++ Coding Standards

To implement this option, the author of Sample3 must:

• Provide a default class template in the template's own namespace: Don't use a function
template, which can't be partially specialized and leads to overloads and order
dependencies. (See also Item 66.)

• Document the point of customization: The user must specialize S3Traits in the tem
plate library's namespace for his own type, and document all of S3Traits's
members (e.g., foo) and their semantics.

Under all options, always clearly document also the semantics required of foo, no-
tably any essential actions (postconditions) foo must guarantee, and failure semantics
(what happens, including how errors are reported, if the actions don't succeed).

If the point of customization must be customizable also for built-in types, use Option
2 or Option 3.

Prefer Option 1 or Option 2 for common operations that really are services provided
by the type. Here's a litmus test: Could other template libraries use this facility too?
And are these generally accepted semantics for this name? If so, this option is
probably appropriate.

Prefer Option 3 for less-common operations whose meaning can be expected to vary.
You can then happily make the same names mean whatever you want in any given
namespace, without confusion or collision.

A template with multiple points of customization can choose a different appropriate
strategy for each point of customization. The point is that it must consciously choose
and document exactly one strategy for each point of customization, document the
requirements including expected postconditions and failure semantics, and imple-
ment the chosen strategy correctly.

To avoid providing points of customization unintentionally:

• Put any helper functions your template uses internally into their own nested name
space, and call them with explicit qualification to disable ADL: When you want to call
your own helper function and pass an object of the template parameter type,
and that call should not be a point of customization (i.e., you always intend your
helper to be called, not some other function), prefer to put the helper in a nested
namespace and explicitly turn off ADL by qualifying the call or putting the
function name in parentheses:

template<typename T>
void Sample4(T t) {

S4Helpers::bar(t); // disables ADL: foo is not a point of customization
(bar) (t); // alternative

}

Templates and Genericity 125

Avoid depending on dependent names: Informally, a dependent name is a name that
somehow mentions a template parameter. Many compilers do not support the
"two-phase lookup" for dependent names mandated by the C++ Standard, and
this means that template code that uses dependent names will behave differently
on different compilers unless it takes care to be explicit when using dependent
names. Particular care is required in the presence of dependent base classes,
which occur when a class template inherits from one of its template parameters
(e.g., T in the case template<typename T> class C : T { };) or from a type that is
built up from one of its template parameters (e.g., X<T> in the case
template<typename T> class C : X<T> {};).
In short, when referring to any member of a dependent base class, always ex-
plicitly qualify with the base class name or with this->, which you can think of
just as a magical way of forcing all compilers to do what you actually meant:

template<typename T> class C:X<T> { typename
X<T>::SomeType s; //use base's nested type or typedef

public: void f()
{ X<T>::baz();
this->baz();
}

};

// call base member function
// alternative

The C++ standard library generally favors relying on Option 2 (e.g.,
ostream_iterators look up operator< <, and accumulate looks up operator+, in your
type's namespace). It also uses Option 3 in some places (e.g., iterator_traits,
char_traits), particularly because those traits must be specializable for built-in types.

Note that, unfortunately, the C++ standard library fails to clearly specify the points
of customization of some algorithms. For example, it clearly says that the
three-parameter version of accumulate must call a user's operator+ using Option 2.
But it doesn't say whether sort must call a user's swap (thereby providing an
intentional point of customization using Option 2), whether it may call a user's
swap, or whether it calls any swap at all; today, some implementations of sort do
pull in a user-defined swap while others don't. This Item's point has only been
learned relatively recently, and now the standards committee is fixing the current
inadequate specification by removing such fuzziness from the standard. We know
better now. Learn from the past. Don't make the same mistakes. (For more options, see
Item 66.)

References
[StroustrnpOO] §8.2, §10.3.2, §11.2.4 • [SutterOO] §31-34 • [SutterO4d]

126 C++ Coding Standards

66. Don't specialize function templates.

Summary
Specialization is good only when it can be done correctly: When extending someone
else's function template (including std::swap), avoid trying to write a specialization;
instead, write an overload of the function template, and put it in the namespace of the
type(s) the overload is designed to be used for. (See Item 57.) When you write your
own function template, avoid encouraging direct specialization of the function
template itself.

Discussion
It's okay to overload function templates. Overload resolution considers all primary
templates equally, and that's why it works as you would naturally expect from your
experience with normal C++ function overloading: Whatever templates are visible are
considered for overload resolution, and the compiler simply picks the best match.

Unfortunately, it's a lot less intuitive to specialize function templates. There are two
basic reasons:

• You can't specialize function templates partially, only totally: Code that looks like
partial specialization is really just overloading instead.

• Function template specializations never participate in overloading: Therefore, any
specializations you write will not affect which template gets used, and this runs
counter to what most people would intuitively expect. After all, if you had writ
ten a nontemplate function with the identical signature instead of a function
template specialization, the nontemplate function would always be selected be
cause it's always considered to be a better match than a template.

If you're writing a function template, prefer to write it as a single function template
that should never be specialized or overloaded, and implement the function template
entirely in terms of a class template. This is the proverbial extra level of indirection
that steers you well clear of the limitations and dark corners of function templates.
This way, programmers using your template will be able to partially specialize and
explicitly specialize the class template to their heart's content without affecting the
expected operation of the function template. This nicely avoids both the limitation that
function templates can't be partially specialized, as well as the sometimes surprising
effect that function template specializations don't overload. Problem solved.

If you're using someone else's plain old function template that doesn't use this tech-
nique (i.e., a function template that is not implemented in terms of a class template),
and you want to write your own special-case version that should participate in over-

Templates and Genericity 127

loading, don't write it as a specialization; just make it an overloaded nontemplate
function. (See also Items 57 and 58.)

Examples
Example: stdr.swap. The basic swap template swaps two values a and b by creating a
temp copy of a, assigning a = b, and assigning b = temp. How can you extend it for
your own types? For example, let's say you have your own type Widget in your
own namespace N:

namespace N { class Widget
{/*... */}; }

Suppose that you have a more efficient way to swap two Widget objects. To enable it
for use with the standard library, should you provide an overload of swap (in the
same namespace as Widget; see Item 57) or specialize std::swap directly? The stan-
dard is unclear, and existing practice varies considerably (see Item 65). Today, in
practice, on some implementations a correct answer is to provide an overload in the
same namespace as Widget. For the above nontemplate Widget:

namespace N {
void swap(Widget&,

Widget&); }

But note that if Widget is instead a template,

namespace N {
template<typename T> class Widget {/*...*/}; }

then specializing std::swap isn't even possible, because there's no such thing as a partial
specialization of a function template. The best you can do is add the overload:

namespace ??? {
template<typename T> void swap(Widget<T>&, Widget<T>&); }

but this is problematic because if you put it in the namespace of Widget, then many
implementations won't find it, but the standard forbids you from putting it in std.
Catch-22. This problem would not exist if the standard either specified that overloads
in the namespace of the type will be found, or allowed you to add overloads to
namespace std, or (getting back to the point of this Item) specified swap to be im-
plemented in terms of a class template that you could partially specialize.

References
[Austem99] §A.1.4 • [SutterO4] §7 • [Vandevoorde03] §12

128 C++ Coding Standards

67. Don't write unintentionally
nongeneric code.

Summary
Commit to abstractions, not to details: Use the most generic and abstract means to
implement a piece of functionality.

Discussion
When writing code, use the most abstract means available that get the job done.
Think in terms of what operations put the least "capabilities strain" on the interfaces
they operate on. This habit makes your code more generic, and therefore more reus-
able and more resilient to changes in its surroundings.

On the contrary, code that gratuitously commits to details is rigid and fragile:

• Use != instead of < to compare iterators: Using != is more general and so applies to
a larger class of objects; using < asks for ordering, and only random-access itera
tors can implement operators If you use operator! = your code will "port" eas
ily to other kinds of iterators, such as forward and bidirectional iterators.

• Prefer iteration to indexed access: Most containers don't support indexed access;
for example, list can't implement it efficiently. But all containers support itera
tors. Iteration is a better approach because it is more general, and it can still be
used in conjunction with indexed access as needed.

• Use empty() instead ofsize() -- 0: "Empty/non-empty" is a more primitive con
cept than "exact size." For example, you might not know the size of a stream but
can always talk about emptiness, and the same applies to input iterators. Some
containers, such as list, naturally implement empty more efficiently than size.

• Use the highest class in the hierarchy that offers the functionality you need: When pro
gramming with dynamic polymorphic classes, don't depend on details you
don't need and that tie you to specific derived classes.

• Write const-correct code (see Item 15): Taking const& parameters puts less strain on
the caller because const& covers constant and non-constant objects alike.

Exceptions
In some cases, indexing instead of iteration enables compilers to do better optimiza-
tion. Before you're tempted to make use of this, make sure you really need it and that
your compiler really does it. (See Item 8).

References
[Koenig97] §12.7, §17-18 • [MeyersOl] §4 • [StroustrupOO] §13, §17.1.1 • [SuttertM] §1, §5, §34

Error Handling and Exceptions

Error handling is a difficult task for which the programmer
needs all the help that can be provided.

—Bjarne Stroustrup,
[Stroustrup94] §16.2

There are two ways to write error-free programs; only
the third one works.

—Alan Perlis

The question isn't whether or not we will make programming errors; the question is
whether or not we will arrange for our compiler and tools to find them for us.

This section documents hard-won wisdom and best practices, some of them gained
only after years and mountains of pain. Follow these rules and guidelines. Stick to
them. When it comes to writing robust, safe, and secure software, we need all the
help we can get.

Our vote for the most valuable Item in this section goes to Item 69: Establish a ra-
tional error handling policy, and follow it strictly.

129

130 C++ Coding Standards

68. Assert liberally to document internal
assumptions and invariants.

Summary
Be assertive! Use assert or an equivalent liberally to document assumptions internal
to a module (i.e., where the caller and callee are maintained by the same person or
team) that must always be true and otherwise represent programming errors (e.g.,
violations of a function's postconditions detected by the caller of the function). (See
also Item 70.) Ensure that assertions don't perform side effects.

Discussion
It's hard enough to find an error in your code when you're looking for it; it's even harder
when you've assumed your code is error-free. —Steve McConnell

It is hard to overestimate the power of assertions. The assert macro and alternatives
such as compile-time (and, less preferably, run-time) assertion templates are invalu-
able tools for detecting and debugging programming errors during a project's de-
velopment. Of all such tools, they arguably have the best complexity/effectiveness
ratio. The success of a project can be conditioned at least in part by the effectiveness
with which developers use assertions in their code.
Assertions commonly generate code in debug mode only (when the NDEBUG macro is
not defined), so they can be made "free" in release builds. Be generous with what you
check. Never write expressions with side effects in assert statements. In release mode,
when the NDEBUG macro is defined, asserts don't generate any code at all:

assert(+ + i < limit); // bad: i is incremented in debug mode only

According to information theory, the quantity of information in an event is inversely
proportional to the likelihood of that event happening. Thus, the less likely some as-
sert is to fire, the more information it will bring to you when it does fire.
Avoid assert(false), and prefer assert(!"informational message"). Most compilers
will helpfully emit the string in their error output. Also consider adding && "informa-
tional message" to more complex assertions, especially instead of a comment.
Consider defining your own assert. The standard assert macro unceremoniously
aborts the program with a message to the standard output. Your environment likely
offers enhanced debugging capabilities; for example, it might allow starting an inter-
active debugger automatically. If so, you may want to define your own MYASSERT
macro and use it. It can also be useful to retain most assertions even in release builds
(prefer not to disable checks for performance reasons unless there's a proven need;
see Item 8), and there is real benefit to having an assertion facility that can distin-
guish between "levels" of assertions, some of which stay on in release mode.

Err or Hand li ng and E xcept i ons 1 3 1

Assertions often check conditions that could be verified at compile time if the lan-
guage were expressive enough. For example, your whole design might rely on every
Employee having a nonzero id_. Ideally, the compiler would analyze Employee's
constructor and members and prove by static analysis that, indeed, that condition is
always true. Absent such omniscience, you can issue an assert(id_ != 0) inside the
implementation of Employee whenever you need to make sure an Employee is sane:

unsigned int Employee::GetlDQ {
assert(id_ != 0 && "Employee ID is invalid (must be nonzero)");
return id_; }

Don't use assertions to report run-time errors (see Items 70 and 72). For example,
don't use assert to make sure that malloc worked, that a window creation suc-
ceeded, or that a thread was started. You can, however, use assert to make sure that
APIs work as documented. For example, if you call some API function that is docu-
mented to always return a positive value, but you suspect it might have a bug, plant an
assert after the call to validate its postcondition.
It is not recommended to throw an exception instead of asserting, even though the
standard std::logic_error exception class was originally designed for this purpose.
The primary disadvantage of using an exception to report a programming error is
that you don't really want stack unwinding to occur—you want the debugger to
launch on the exact line where the violation was detected, with the line's state intact.
In sum: There are errors that you know might happen (see Items 69 to 75). For eve-
rything else that shouldn't, and it's the programmer's fault if it does, there is assert.

Examples
Example: Do assert on basic assumptions. We all have war stories about assertions that
"couldn't possibly fire," but did. Time and again, it's: "This value is certainly posi-
tive!" "That pointer is obviously not null!" Do recheck tautologies: Software devel-
opment is complex, change is the norm, and anything can happen in a program that is
changing. Assertions verify that what you believe is "obviously true" today actually
stays true. Do assert on tautologies that the type system cannot enforce:

string Date::DayOfWeek() const {
assert(day_ > 0 && day_ <= 31); //invariant checks
assert(month_ > 0 && month_ < = 12);
//... }

References
[AbrahamsOlb] • [AlexandrescuO3b] • [AlexandrescuO3c] • [Allison98] §13 • [CargiU92] pp.
34-35 • [Cline99] §10.01-10 • [Dewhurst03] §28 • [Keffer95] pp. 24-25 • [Lakos96] §2.6,
§10.2.1 • [McConnell93] §5.6 • [StroustrupOO] §24.3.7, §E.2, §E.3.5, §E.6 • [SutterOO] §47

132 C++ Coding Standards

69. Establish a rational error handling policy, and
follow it strictly.

Summary
Consciously specify, and conscientiously apply, what so many projects leave to
ad-hoc (mis)judgment: Develop a practical, consistent, and rational error handling
policy early in design, and then stick to it. Ensure that it includes:

• Identification: What conditions are errors.
• Severity: How important or urgent each error is.
• Detection: Which code is responsible for detecting the error.
• Propagation: What mechanisms are used to report and propagate error notifica

tions in each module.
• Handling: What code is responsible for doing something about the error.
• Reporting: How the error will be logged or users notified.

Change error handling mechanisms only on module boundaries.

Discussion
From this Item onward, this section focuses on dealing with run-time errors that are
not due to faulty coding internal to a module or subsystem. (As Item 68 covers sepa-
rately, prefer to use assertions to flag internal programming errors, ones that are just
outright coding errors on some programmer's part.)

Determine an overall error reporting and handling policy for your application and
for each module or subsystem, and stick to it. Include a policy for at least each of the
following points.

Universally:

• Error identification: For each entity (e.g., each function, each class, each module),
document the entity's internal and external invariants.

For each function:

• Error identification: For each function, document its preconditions and postcondi
tions, the invariants it shares responsibility for maintaining, and the error-safety
guarantee it supports. (See Items 70 and 71.) Note that destructors and dealloca
tion functions in particular must always be written to support the no-fail guar
antee, because otherwise it's often impossible to reliably and safely perform
cleanup (see Item 51).

Error Handling and Exceptions 133

For each error (see the definition of "error" in Item 70):

• Error severity and categorization: For each error, identify a severity level. Prefera
bly provide a way to fine-tune diagnostics for particular error categories and
levels to facilitate remote user assistance.

• Error detection: For each error, document which code is responsible for detecting
which error, following the advice of Item 70.

• Error handling: For each error, identify the code that is responsible for handling
the error, following the advice in Item 74.

• Error reporting: For each error, identify appropriate reporting method(s). These
commonly include recording the error in disk file logs, printed logs, electronic
dump transmissions, or possibly inconvenient and annoying pager calls in the
case of severe errors.

For each module:

• Error propagation: For each module (note: each module, not each error), identify
which coding mechanism will be used to propagate errors (e.g., C++ exceptions,
COM exceptions, CORBA exceptions, return codes).

We emphasize that error handling strategies should change only on module
boundaries (see Items 62 and 63). Each module should consistently use a single error
handling strategy and mechanism internally (e.g., modules written in C++ should
use exceptions internally; see Item 72) and consistently use a single, possibly different,
error handling strategy and mechanism in its interface (e.g., the module might
present a flat C API to accommodate callers that could be written in various languages,
or a COM wrapper that presents COM exceptions).

All functions that are entry points into the module are directly responsible for trans-
lating from the internal to the external strategy if they are different. For example, in a
module that uses C++ exceptions internally but presents a C API boundary, all C
APIs must catch(...) all exceptions and translate them to error codes.

Note in particular that callback functions and thread mainlines by definition are (or
can be) on a module boundary. Each callback function body and thread mainline
body should translate its internal error mechanism to the appropriate interface error
strategy (see Item 62).

References
[AbrahamsOlb] • [Allison98] §13 • [McConnell93] §5.6
[StroustrupOO] §14.9, §19.3.1 • [SutterO4b]

[Stroustrup94] §16.2, §E.2

134 C++ Coding Standards

70. Distinguish between errors and non-errors.

Summary
A breach of contract is an error: A function is a unit of work. Thus, failures should be
viewed as errors or otherwise based on their impact on functions. Within a function f,
a failure is an error if and only if it violates one of f's preconditions or prevents f from
meeting any of its callees' preconditions, achieving any of f's own postconditions, or
reestablishing any invariant that f shares responsibility for maintaining.

In particular, here we exclude internal programming errors (i.e., where the caller and
callee are the responsibility of the same person or team, such as inside a module),
which are a separate category normally dealt with using assertions (see Item 68).

Discussion
It is crucial to crisply distinguish between errors and non-errors in terms of their ef-
fects on functions, especially for the purpose of defining safety guarantees (see Item
71). The key words in this Item are precondition, postcondition, and invariant.

The function is the basic unit of work, no matter whether you are programming C++ in
a structured style, an OO style, or a generic style. A function makes assumptions
about its starting state (documented as its preconditions, which the caller is respon-
sible for fulfilling and the callee is responsible for validating) and performs one or
more actions (documented as its results or postconditions, which the function as
callee is responsible for fulfilling). A function may share responsibility for maintaining
one or more invariants. In particular, a nonprivate mutating member function is by
definition a unit of work on its object, and must take the object from one valid in-
variant-preserving state to another; during the body of the member function, the ob-
ject's invariants can be (and nearly always must be) broken, and that is fine and
normal as long as they are reestablished by the end of the member function.
Higher-level functions compose lower-level functions into larger units of work.

An error is any failure that prevents a function from succeeding. There are three kinds:

• Violation of, or failure to achieve, a precondition: The function detects a violation of
one its own preconditions (e.g., a parameter or state restriction), or encounters a
condition that prevents it from meeting a precondition of another essential func
tion that must be called.

• Failure to achieve a postcondition: The function encounters a condition that pre
vents it from establishing one of its own postconditions. If the function has a re
turn value, producing a valid return value object is a postcondition.

• Failure to reestablish an invariant: The function encounters a condition that pre
vents it from reestablishing an invariant that it is responsible for maintaining.

Error Handling and Exceptions 135

This is a special kind of postcondition that applies particularly to member func-
tions; an essential postcondition of every nonprivate member function is that it
must reestablish its class's invariants. (See [StroustrupOO] §E.2.)

Any other condition is not an error and therefore should not be reported as an error.
(See Examples.)
The code that could cause an error is responsible for detecting and reporting the error.
In particular, the caller should detect and report when it cannot meet a to-be-called
function's preconditions (especially ones the callee documents that it will not check,
such as vector::operator[] which does not promise to range-check its argument).
Because the called function cannot rely on callers to be well-behaved, however, the
called function ought still to validate its preconditions and to report violations by
emitting an error—or, if the function is internal to (only callable from within) the
module, so that any precondition violation is by definition an error in the module's
programming, by asserting (see Item 68). This is defensive programming.

A word of caution about specifying a function's preconditions: A condition should be
a precondition of a function f if and only if it is reasonable to expect all callers to check
and verify the condition's validity before calling f. For example, it is wrong for a
function to state a precondition that can only be checked by doing some of the
function's own substantial work, or by accessing private information; that work
should stay in the function and not be duplicated in the caller.

For example, a function that takes a string containing a file name would not nor-
mally make the file's existence a precondition, because callers cannot reliably guar-
antee that the file exists without taking a lock on the file (if they only check for the
file's existence without a lock, another user or process could delete or rename the file
between the caller's check and the callee's attempt to open). One correct way to
make the file's existence a precondition is to require the caller to open the file and
make the function's parameter an ifstream or equivalent (which is also safer, be-
cause it works at a higher level of abstraction) instead of passing a bald file name as a
raw string. Many preconditions can thus be replaced by stronger typing, which turns
run-time errors into compile-time errors (see Item 14).

Examples
Example 1: std::string::insert (precondition error). When trying to insert a new character
into a string at a specific position pos, a caller should check for invalid values of pos
that would violate a documented parameter requirement; for example, pos > size().
The insert function can't perform its work successfully if it doesn't have a valid
starting point.

Example 2: std::string::append (postcondition error). When appending a character to a
string, failure to allocate a new buffer if the existing one is full prevents the opera-

136 C++ Coding Standards

tion from performing its documented function and achieving its documented post-
conditions, and is therefore an error.

Example 3: Inability to produce a return value (postcondition error). For a value-returning
function, producing a valid return object is a postcondition. If the return value can't
be correctly created (e.g., if the function returns a double, but there exists no double
value with the mathematical properties requested of a result), that is an error.

Example 4: std::string::find_first_of (not an error in the context of string). When searching
for a character in a string, failure to find the character is a legitimate outcome and not
an error. At least, it is not an error as far the general-purpose string class is concerned;
if the owner of the given string assumed the character would be present and its
absence is thus an error according to a higher-level invariant, that higher-level
calling code would then appropriately report an error with respect to its invariant.

Example 5: Different error conditions in the same function. In spite of the increased reli-
ability of disks nowadays, writing to disk has traditionally remained subject to ex-
pected errors. If you design a File class, in the same function File::Write(const char*
buffer, size_t size), which requires that buffer is non-null and that the file be opened
for writing, you might decide to do the following:

• If buffer is NULL: Report an error on the precondition violation.

• If the File is read-only: Report an error on the precondition violation.

• If the write does not succeed: Report an error on the postcondition violation, be
cause the function cannot do the work it promises to do.

Example 6: Different status for the same condition. The same condition can be a valid
precondition for one function and not for another; the choice depends on the func-
tion's author, who is specifying his interface's semantics. In particular, std::vector
provides two ways to perform indexed access: operator[], which is not
bounds-checked, and at, which is. Both require a precondition that the argument is
not out of range. Because operator[] is not required to validate its argument or to be
safe to call with an invalid argument, it must document that the caller has sole
responsibility for ensuring that the argument is in the valid range; this function is
inherently less safe. On the other hand, at is documented to behave safely even in the
presence of an invalid argument, and to report an error (by throwing
std::out_of_range) if the argument is found to be out of range.

References
[AbrahamsOlb] • [MeyerOO] • [StroustrupOO] §8.3.3, §14.1, §14.5 • [SutterO4b]

Error Handling and Exceptions 137

71. Design and write error-safe code.

Summary
Promise, but don't punish: In each function, give the strongest safety guarantee that
won't penalize callers who don't need it. Always give at least the basic guarantee.

Ensure that errors always leave your program in a valid state. This is the basic guar-
antee. Beware of invariant-destroying errors (including but not limited to leaks),
which are just plain bugs.

Prefer to additionally guarantee that the final state is either the original state (if there
was an error the operation was rolled back) or the intended target state (if there was
no error the operation was committed). This is the strong guarantee.

Prefer to additionally guarantee that the operation can never fail at all. Although
this is not possible for most functions, it is required for functions like destructors
and deallocation functions. This is the no-fail guarantee.

Discussion
The basic, strong, and no-fail (then known as nothrow) guarantees were originally
described in [Abrahams96] and publicized in [GotW], [StroustrupOO] §E.2, and
[Sut-terOO] with respect to exception safety. They apply to all error handling regardless
of the specific method used, and so we will use them to describe error handling safety
in general. The no-fail guarantee is a strict superset of the strong guarantee, and the
strong guarantee is a strict superset of the basic guarantee.

In general, every function should provide the strongest guarantee that it can provide
without needlessly penalizing calling code that doesn't need the guarantee. Where
possible, it should additionally provide enough functionality to allow calling code
that needs a still stronger guarantee to achieve that (see the vector::insert case in the
Examples).

Ideally, we write functions that always succeed and therefore can provide the no-fail
guarantee. Certain functions must always provide the no-fail guarantee, notably de-
structors, deallocation functions, and swap functions (see Item 51).

Most functions, however, can fail. When errors are possible, the safest approach is to
ensure that a function supports a transactional behavior: Either it totally succeeds
and takes the program from the original valid state to the desired target valid state, or
it fails and leaves the program in the state it was before the call—any object's visible
state before the failed call is the same after the failed call (e.g., a global int's

138 C++ Coding Standards

value won't be changed from 42 to 43) and any action that the calling code would
have been able to take before the failed call is still possible with the same meaning
after the failed call (e.g., no iterators into containers have been invalidated, performing
+ + on the aforementioned global int will yield 43 not 44). This is the strong guarantee.

Finally, if providing the strong guarantee is difficult or needlessly expensive, pro-
vide the basic guarantee: Either the function totally succeeds and reaches the in-
tended target state, or it does not completely succeed and leaves the program in a
state that is valid (preserves the invariants that the function knows about and is re-
sponsible for preserving) but not predictable (it might or might not be the original
state, and none, some, or all of the postconditions could be met; but note that all in-
variants must still be reestablished). The design of your application must prepare for
handling that state appropriately.

That's it; there is no lower level. A failure to meet at least the basic guarantee is al-
ways a program bug. Correct programs meet at least the basic guarantee for all func-
tions; even those few correct programs that deliberately leak resources by design,
particularly in situations where the program immediately aborts, do so knowing
that they will be reclaimed by the operating system. Always structure code so that
resources are correctly freed and data is in a consistent state even in the presence of
errors, unless the error is so severe that graceful or ungraceful termination is the
only option.

When deciding which guarantee to support, consider also versioning: It's always
easy to strengthen the guarantee in a later release, whereas loosening a guarantee
later will break calling code that has come to rely on the stronger guarantee.

Remember that "error-unsafe" and "poor design" go hand in hand: If it is difficult to
make a piece of code satisfy even the basic guarantee, that almost always is a signal of
its poor design. For example, a function having multiple unrelated responsibilities is
difficult to make error-safe (see Item 5).

Beware if a copy assignment operator relies on a check for self-assignment in order to
function correctly. An error-safe copy assignment operator is automatically safe for
self-assignment. It's all right use a self-assignment check as an optimization to avoid
needless work. (See Item 55.)

Examples

Example 1: Retry after failure. If your program includes a command for saving data to a
file and the write fails, make sure you revert to a state where the caller can retry

Error Handling and Exceptions 139

the operation. In particular, don't release any data structure before data has been
safely flushed to disk. For example, one text editor we know of didn't allow changing
the file name to save to after a write error, which is a suboptimal state for further
recovery.

Example 2: Skins. If you write a skinnable application, don't destroy the existing skin
before attempting to load a new one. If loading the new skin fails, your application
might end up in an unusable state.

Example 3: std::vector::insert. Because a vector<T>'s internal storage is contiguous,
inserting an element into the middle requires shuffling some existing values over by
one position to make room for the new element. The shuffling is done using
T::T(const T&) and T::operator=, and if either of those two operations can fail (by
throwing an exception), the only way to make insert provide the strong guarantee is to
make a complete copy of the container, perform the operation on the copy, and, if
successful, swap the original's and copy's state using the no-fail vector<T>::swap.

But if that were done every time by insert itself, every caller of vector::insert would
always incur the space and performance penalty of making a complete copy of the
container, whether it needed the strong guarantee or not. That is needlessly expen-
sive. Instead, those callers who do want the strong guarantee can do the work them-
selves, and are given sufficient tools for doing so. (In the best case: Arrange for the
contained type to not throw from its copy constructor or copy assignment operators.
In the worst case: Take a copy, insert into the copy, and swap the copy with the
original when successful.)

Example 4: Unbundling a satellite. Consider a function f that as part of its work
launches a satellite, and the LaunchSatellite function it uses provides the strong or
no-fail guarantee. If f can perform all of its work that could fail before launching the
satellite, f can be coded to provide the strong guarantee. But if f must perform other
operations that might fail after having already performed the launch, it cannot pro-
vide the strong guarantee because it cannot bring the satellite back. (At any rate,
such an f probably ought to be split into two functions, because a single function
should probably not be trying to do multiple pieces of work of such significance; see
Item 5.)

References
[Abmhams96] • [AbrahamsOlb]
[StroustrupOO] §14.4.3, §E.2-4, §E.6
[SutterO4] §11-13 • [SutterO4b]

• [AlexandrescuO3d] • [Josuttis99] §5.11.2 •
[SutterOO] §8-19, §40-41, §47 • [SutterO2] §17-23 •

140 C++ Coding Standards

72. Prefer to use exceptions to report errors.

Summary
When harmed, take exception: Prefer using exceptions over error codes to report er-
rors. Use status codes (e.g., return codes, errno) for errors when exceptions cannot
be used (see Item 62), and for conditions that are not errors. Use other methods, such
as graceful or ungraceful termination, when recovery is impossible or not required.

Discussion
It's no coincidence that most modern languages created in the past 20 years use ex-
ceptions as their primary error reporting mechanism. Almost by definition, excep-
tions are for reporting exceptions to normal processing—also known as "errors," de-
fined in Item 70 as violations of preconditions, postconditions, and invariants. Like
all error reporting, exceptions should not arise during normal successful operation.

We will use the term "status codes" to cover all forms of reporting status via codes
(including return codes, errno, a GetLastError function, and other strategies to return
or retrieve codes), and "error codes" specifically for status codes that signify errors. In
C++, reporting errors via exceptions has clear advantages over reporting them via
error codes, all of which make your code more robust:

• Exceptions can't be silently ignored: The most terrible weakness of error codes is
that they are ignored by default; to pay the slightest attention to an error code,
you have to explicitly write code to accept the error and respond to it. It is
common for programmers to accidentally (or lazily) fail to pay attention to error
codes. This makes code reviews harder. Exceptions can't be silently ignored; to
ignore an exception, you must explicitly catch it (even if only with catch(...))
and choose not to act on it.

• Exceptions propagate automatically: Error codes are not propagated across scopes
by default; to inform a higher-level calling function of a lower-level error code, a
programmer writing the intervening code has to explicitly hand-write code to
propagate the error. Exceptions propagate across scopes automatically exactly
until they are handled. ("It is not a good idea to try to make every function a
fire-wall." —[Stroustrup94, §16.8])

• Exception handling removes error handling and recovery from the main line of control
flow: Error code detection and handling, when it is written at all, is necessarily
interspersed with (and therefore obfuscates) the main line of control flow. This
makes both the main control flow and the error handling code harder to under
stand and maintain. Exception handling naturally moves error detection and re-

Error Handling and Exceptions 141

covery into distinct catch blocks; that is, it makes error handling distinctly
modular instead of inline spaghetti. This makes the main line of control more
understandable and maintainable, and it's more than just of aesthetic benefit to
distinguish clearly between correct operation and error detection and recovery.

• Exception handling is better than the alternatives for reporting errors from constructors
and operators: The copy constructors and the operators have predefined signa-
tures that leave no room for return codes. In particular, constructors have no re-
turn type at all (not even void), and for example every operator+ must take ex-
actly two parameters and return one object (of a prescribed type; see Item 26).
For operators, using error codes is at least possible if not desirable; it would re-
quire errno-like approaches, or inferior solutions like packaging status with an
object. For constructors, using error codes is not feasible because the C++ lan-
guage tightly binds together constructor exceptions and constructor failures so
that the two have to be synonymous; if instead we used an errno-like approach
such as

SomeType anObject; //construct an object
if(SomeType::ConstructionWasOk()) { // test whether construction worked

then not only is the result ugly and error-prone, but it leads to misbegotten objects
that don't really satisfy their type's invariants—never mind the race conditions
inherent in calls to SomeType::ConstructionWasOk in multithreaded applications.
(See [StroustrupOO] §E.3.5.)

The main potential drawback of exception handling is that it requires programmers
to be familiar with a few recurring idioms that arise from exceptions' out-of-band
control flow. For example, destructors and deallocation functions must not fail (see
Item 51), and intervening code must be correct in the face of exceptions (see Item 71
and References); to achieve the latter, a common coding idiom is to perform all the
work that might emit an exception safely off to the side and only then, when you
know that the real work has succeeded, you commit and modify the program state
using only operations that provide the no-fail guarantee (see Item 51 and [SutterOO]
§9-10, §13). But then using error codes also has its own idioms; those have just been
around longer and so more people already know them—but, unfortunately, also
commonly and routinely ignore them. Caveat emptor.

Performance is not normally a drawback of exception handling. First, note that you
should turn always on exception handling in your compiler even if it is off by default,
otherwise you won't get standard behavior and error reporting from the C++
language operations such as operator new and standard library operations such as
STL container insertions (see Exceptions).

142 C++Coding Standards

[Aside: Turning on exception handling can be implemented so that it increases the
size of your executable image (this part is unavoidable) but incurs zero or near-zero
performance overhead in the case where no exception is thrown, and some compilers
do so. Other compilers do incur overhead, especially when providing secure modes
to prevent malicious code from attacking the exception handling mechanism via
buffer overruns. Whether there is overhead or not, at minimum do always at least
turn on your compiler's support for exception handling, because otherwise the
language and standard library won't report errors correctly. We mention this because
we know of projects that turn off exception handling, which is a far-reaching
fundamental decision and should never be done except as a last resort and with ex-
treme care (see Exceptions).]

Once your compiler's support for exception handling is turned on, the performance
difference between throwing an exception and returning an error code is typically
negligible in normal processing (the case where no error occurs). You may notice a
performance difference in the case where an error does occur, but if you're throwing so
frequently that the exception throwing/catching handling performance overhead is
actually noticeable, you're almost certainly using exceptions for conditions that are
not true errors and therefore not correctly distinguishing between errors and
non-errors (see Item 70). If they're really errors that truly violate pre- and postcondi-
tions and invariants, and if they're really happening that frequently, the application
has far more serious problems.

One symptom of error code overuse is when application code needs to check relent-
lessly for trivially true conditions, or (worse) fails to check error codes that it should
check.

One symptom of exception overuse is when application code throws and catches ex-
ceptions so frequently that a try block's success count and failure count are within
the same order of magnitude. Such a catch block is either not really handling a true
error (one that violates preconditions, postconditions, or invariants), or the program is
in serious trouble.

Examples

Example 1: Constructors (invariant error). If a constructor cannot successfully create an
object of its type, which is the same as saying that it cannot establish all of the new
object's invariants, it should throw an exception. Conversely, an exception thrown
from a constructor always means that the object's construction failed and the object's
lifetime never began; the language enforces this.

Example 2: Successful recursive tree search. When searching a tree using a recursive al-
gorithm, it can be tempting to return the result—and conveniently unwind the

Error Handling and Exceptions 143

search stack—by throwing the result as an exception. But don't do it: An exception
means an error, and finding the result is not an error (see [StroustrupOO]). (Note that,
of course, failing to find the result is also not an error in the context of the search
function; see the find_first_of example in Item 70.)

See also Item 70's examples, replacing "report an error" with "throw an exception."

Exceptions

In rare cases, consider using an error code if you are certain that both of the following
are true:

• The benefits of exceptions don't apply. For example, you know that nearly always
the immediate caller must directly handle the error and so propagation should
happen either never or nearly never. This is very rare because usually the callee
does not have this much information about the characteristics of all of its callers).

• The actual measured performance of throwing an exception over using an error code
matters: That is, the performance difference is measured empirically, so you're
probably in an inner loop and throwing often; the latter is rare because it usu
ally means the condition is not really an error after all, but let's assume that
somehow it is.

In very rare cases, some hard real-time projects may find themselves under pressure
to consider turning off exception handling altogether because their compiler's ex-
ception handling mechanism has worst-case time guarantees that make it difficult or
impossible for key operations to meet deadline schedules. Of course, turning off ex-
ception handling means that the language and standard library will not report errors in
a standard way (or in some cases at all; see your compiler's documentation) and the
project's own error reporting mechanisms would have to be based on codes instead. It
is difficult to exaggerate just how undesirable and how much of a last resort this should
be; before making this choice, analyze in detail how you will report errors from
constructors and operators and how that scheme will actually work on the compiler(s)
you are using. If after serious and deep analysis you still feel that you are really
forced to turn off exception handling, still don't do it project-wide: Do so in as few
modules as possible, and facilitate this by trying to group such deadline-sensitive
operations together into the same module as much as possible.

References

[AlexandrescuO3d] • [Allison98] §13 • [Stroustrup94] §16 • [StroustrupOO] §8.3.3, §14.1,
§14.4-5, §14.9, §E.3.5 • [SutterOO] §8-19, §40-41, §47 • [SutterO2] §17-23 • [SutterO4]
§11-16 • [SutterO4b]

144 C++ Coding Standards

73. Throw by value, catch by reference.

Summary
Learn to catch properly: Throw exceptions by value (not pointer) and catch them by
reference (usually to const). This is the combination that meshes best with exception
semantics. When rethrowing the same exception, prefer just throw; to throw e;.

Discussion
When throwing an exception, throw an object by value. Avoid throwing a pointer,
because if you throw a pointer, you need to deal with memory management issues:
You can't throw a pointer to a stack-allocated value because the stack will be un-
wound before the pointer reaches the call site. You could throw a pointer to dynami-
cally allocated memory (if the error you're reporting isn't "out of memory" to begin
with), but you've put the burden on the catch site to deallocate the memory. If you
feel you really must throw a pointer, consider throwing a value-like smart pointer
such as a shared_ptr<T> instead of a plain T*.

Throwing by value enjoys the best of all worlds because the compiler itself takes re-
sponsibility for the intricate process of managing memory for the exception object.
All you need to take care of is ensuring that you implement a non-throwing copy
constructor for your exception classes (see Item 32).

Unless you are throwing a smart pointer, which already adds an indirection that
preserves polymorphism, catching by reference is the only good way to go. Catching a
plain value by value results in slicing at the catch site (see Item 54), which violently
strips away the normally-vital polymorphic qualities of the exception object. Catch-
ing by reference preserves the polymorphism of the exception object.

When rethrowing an exception e, prefer writing just throw; instead of throw e; be-
cause the first form always preserves polymorphism of the rethrown object.

Examples
Example: Rethrowing a modified exception. Prefer to rethrow using throw;:

catch(MyException& e) { //catch by reference to non-const
e.AppendContext("Passed through here"); //modify
throw; // rethrow modified object

References
[DewhurstO3] §64-65 • [Meyers96] §13 • [StroustrupOO] §14.3 • [Vandevoorde03] §20

Error Handling and Exceptions 145

74. Report, handle, and translate errors
appropriately.

Summary
Know when to say when: Report errors at the point they are detected and identified as
errors. Handle or translate each error at the nearest level that can do it correctly.

Discussion
Report an error (e.g., write throw) wherever a function detects an error that it cannot
resolve itself and that makes it impossible for the function to continue execution.
(See Item 70.)
Handle an error (e.g., write a catch that doesn't rethrow the same or another exception
or emit another kind of error code) in the places that have sufficient knowledge to
handle the error, including to enforce boundaries defined in the error policy (e.g., on
main and thread mainlines; see Item 62) and to absorb errors in the bodies of de-
structors and deallocation operations.

Translate an error (e.g., write a catch that does rethrow a different exception or emits
another kind of error code) in these circumstances:

• To add higher-level semantic meaning: For example, in a word processing applica
tion, Document::Open could accept a low-level unexpected-end-of-file error and
translate it to a document-invalid-or-corrupt error, adding semantic information.

• To change the error handling mechanism: For example, in a module that uses excep
tions internally but whose C API public boundary reports error codes, a bound
ary API would catch an exception and emit a corresponding error code that ful
fills the module's contract and that the caller can understand.

Code should not accept an error if it doesn't have the context to do something useful
about that error. If a function isn't going to handle (or translate, or deliberately absorb)
an error itself, it should allow or enable the error to propagate up to a caller who can
handle it.

Exceptions
It can occasionally be useful to accept and re-emit (e.g., catch and rethrow) the same
error in order to add instrumentation, even though the error is not actually being
handled.

References
[StroustrupOO] §3.7.2, §14.7, §14.9 • [SutterOO] §8 • [SutterO4] §11 • [SutterO4b]

146 C++ Coding Standards

75. Avoid exception specifications.

Summary
Take exception to these specifications: Don't write exception specifications on your
functions unless you're forced to (because other code you can't change has already
introduced them; see Exceptions.)

Discussion
In brief, don't bother with exception specifications. Even experts don't bother. The
main problems with exception specifications are that they're only "sort of" part of
the type system, they don't do what most people think, and you almost always
don't want what they actually do.
Exception specifications aren't part of a function's type, except when they are. They
form a shadow type system whereby writing an exception specification is variously:

• Illegal: In a typedef for a pointer to function.
• Allowed: In the identical code without the typedef.
• Required: In the declaration of a virtual function that overrides a base class vir

tual function that has an exception specification.
• Implicit and automatic: In the declaration of the constructors, assignment opera

tors, and destructors when they are implicitly generated by the compiler.

A common but nevertheless incorrect belief is that exception specifications statically
guarantee that functions will throw only listed exceptions (possibly none), and en-
able compiler optimizations based on that knowledge.

In fact, exception specifications actually do something slightly but fundamentally
different: They cause the compiler to inject additional run-time overhead in the form of
implicit try/catch blocks around the function body to enforce via run-time checking
that the function does in fact emit only listed exceptions (possibly none), unless the
compiler can statically prove that the exception specification can never be violated
in which case it is free to optimize the checking away. And exception specifications
can both enable and prevent further compiler optimizations (besides the inherent
overhead already described); for example, some compilers refuse to inline functions
that have exception specifications.

Worst of all, however, is that exception specifications are a blunt instrument: When
violated, by default they immediately terminate your program. You can register an
unexpected_handler, but it's highly unlikely to help you much because you get ex-
actly one global handler and the only way the handler could avoid immediately call-
ing terminate would be to rethrow an exception that is permissible—but because

Error Handling and Exceptions 147

you have only one handler for your whole application, it's hard to see how it could do
useful recovery or usefully know what exceptions might be legal without trivializing
exception specifications altogether (e.g., following the discipline of having all
exception specifications allow some general UnknownException eliminates any ad-
vantage that having an exception specification might have had in the first place).
You generally can't write useful exception specifications for function templates
anyway, because you generally can't tell what exceptions the types they operate on
might throw.

Paying a performance overhead in exchange for enforcements that are nearly always
useless because they are fatal if they ever fire is an excellent example of a premature
pessimization (see Item 9).

These is no easy fix for the problems described in this Item. In particular, the prob-
lems are not easily solved by switching to static checking. People often suggest
switching from dynamically checked exception specifications to statically checked
ones, as provided in Java and other languages. In short, that just trades one set of
problems for another; users of languages with statically checked exception specifica-
tions seem to equally often suggest switching to dynamically checked ones.

Exceptions
If you have to override a base class virtual function that already has an exception spec-
ification (e.g., ahem, std::exception::what), and you don't have the ability to change
the class to remove the exception specifications (or to convince the class's maintainer to
remove them), you will have to write a compatible exception specification on your
overriding function, and you should prefer to make it no less restrictive than the base
version so as to minimize the frequency with which it might be violated:

class Base {//... //in a class written by someone else
virtual f() throw(X, Y, Z); // the author used an exception specification,

}; // and if you can't get him to remove it...

class MyDerived : public Base {//... //...then in your own class your override
virtual f() throw(X, Y, Z); //must have a compatible (andpreferably

}; //the identical) exception specification

[BoostLRG]'s experience is that a throws-nothing exception specification (i.e.,
throw()) on a non-inline function "may have some benefit with some compilers."
Not a stunning endorsement from one of the most highly regarded and expertly de-
signed C++ library projects in the world.

References
[BoostLRG] • [StroustrupOO] §14.1, §14.6 • [SutterO4] §13

STL: Containers

By default, use vector when you need a container.

—Bjarne Stroustrup,
[StroustrupOO] §17.7

We know that you already prefer to use standard containers instead of handcrafted
ones. But which container should you use? What should (and shouldn't) you store in
containers, and why? How should you populate them? What are the essential idioms
to know?

This section covers the answers to these questions and more. And it's no accident
that the first three Items of the section all begin with the words: "Use vector...".

Our vote for the most valuable Item in this section goes to Item 79: Store only values
and smart pointers in containers. To this we add: If you use [Boost] and [C++TR104]
for nothing else, use them for shared_ptr.

149

150 C++ Coding Standards

76. Use vector by default. Otherwise, choose an
appropriate container.

Summary
Using the "right container" is great: If you have a good reason to use a specific con-
tainer type, use that container type knowing that you did the right thing.

So is using vector: Otherwise, write vector and keep going without breaking stride,
also knowing you did the right thing.

Discussion
Here are three fundamental issues and related questions for programming in general,
and for choosing a container in particular:

• Write for correctness, simplicity, and clarity first (see Item 6): Prefer to choose the
container that will let you write the clearest code. Examples: If you need to in
sert at a specific position, use a sequence container (e.g., vector, list). If you need
random-access iterators, use vector, deque, or string. If you need dictionary-like
lookups like c[0] = 42;, use an associative container (e.g., set, map)—but if you
need an ordered associative collection, you can't use hash-based (nonstandard
hash_... or standard unordered_...) containers.

• Write for efficiency only when and where necessary (see Item 8): If lookup speed is a
proven critical consideration, based on actual performance data, prefer a hash-
based (nonstandard hash_... or standard unordered_...) containers, then a sorted
vector, then a set or map, usually in that order. Even then, big-Oh differences
(e.g., linear-time vs. logarithmic-time; see Item 7) only matter if the containers
are big enough to swamp the constant factor, which for containers of small ob
jects like doubles frequently doesn't happen until after container sizes exceed
several thousand elements.

• Prefer to write transactional, strongly error-safe code where reasonably possible (see
Item 71), and don't use invalid objects (see Item 99): If you need transactional se
mantics for inserting and erasing elements, or need to minimize iterator invali
dations, prefer a node-based container (e.g., list, set, map).

Otherwise, follow the Standard's advice: "vector is the type of sequence that should
be used by default." ([C++03] §23.1.1)

If you doubt this advice, ask yourself if you really have a compelling reason not to
use the only standard container that guarantees all of the following properties, vector
alone is:

STL: Containers 151

• Guaranteed to have the lowest space overhead of any container (zero bytes per
object).

• Guaranteed to have the fastest access speed to contained elements of any
container.

• Guaranteed to have inherent locality of reference, meaning that objects near
each other in the container are guaranteed to be near each other in memory
which is not guaranteed by any other standard container.

• Guaranteed to be layout-compatible with C, unlike any other standard con
tainer. (See Items 77 and 78.)

• Guaranteed to have the most flexible iterators (random access iterators) of any
container.

• Almost certain to have the fastest iterators (pointers, or classes with comparable
performance that often compile away to the same speed as pointers when not in
debug mode), faster than those of all other containers.

Do you have a reason not to use that container by default? If you do have a reason,
because of your answers to the first three question in this Item, that's just great and
perfectly fine—use the other container knowing you did the right thing. If you
don't, write vector and keep going without breaking stride, again knowing you did
the right thing.

Finally, prefer to use standard library containers and algorithms over
vendor-specific or handcrafted code.

Examples
Example: vector for small lists. Is it a common fallacy to use list just because "list is
obviously the right type for list operations," such as insertion into the middle of a
sequence. Using a vector for small lists is almost always superior to using list. Even
though insertion in the middle of the sequence is a linear-time operation for vector
and a constant-time operation for list, vector usually outperforms list when containers
are relatively small because of its better constant factor, and list's Big-Oh advantage
doesn't kick in until data sizes get larger.

Here, use vector unless the data sizes warrant a different choice (see Item 7), or be-
cause the strong safety guarantee is essential and the contained type's copy con-
structor or copy assignment operator might fail (in which case, it can be important
that list provides the strong guarantee for insert operations for collections of such
types).

 [C++03] §23.1.1 • [)osuttis99] §6.9 • [MeyersOl] §2-2, §23, §26, §23,
[MusserOl] §6.1 • [StroustrupOO] §17.1, §17.6 • [SutterOO] §7, §20 •

[SutterO2] §7

References
[Austern99] §5.4.1
§25

152 C++ Coding Standards

77. Use vector and string instead of arrays.

Summary
Why juggle Ming vases? Avoid implementing array abstractions with C-style arrays,
pointer arithmetic, and memory management primitives. Using vector or string not
only makes your life easier, but also helps you write safer and more scalable software.

Discussion
Buffer overruns and security flaws are, hands down, a front-running scourge of to-
day's software. Silly limitations due to fixed-length arrays are a major annoyance
even when within the limits of correctness. Most of these are caused by using bare
C-level facilities—such as built-in arrays, pointers and pointer arithmetic, and man-
ual memory management—as a substitute for higher-level concepts such as buffers,
vectors, or strings.

Here are some reasons to prefer the standard facilities over C-style arrays:

• They manage their own memory automatically: No more need for fixed buffers of
"longer than any reasonable length" ("time bombs" is a more accurate descrip
tion), or for frantic realloc'ing and pointer adjustment.

• They have a rich interface: You can implement complex functionality easily and
expressively.

• They are compatible with C's memory model: vector and string::c_str can be passed
to C APIs—in both read and write modes, of course. In particular, vector is
C++'s gateway to C and other languages. (See Items 76 and 78.)

• They offer extended checking: The standard facilities can implement (in debug
mode) iterators and indexing operators that expose a large category of memory
errors. Many of today's standard library implementations offer such debugging
facilities—use them! (Run, don't walk, to Item 83.)

• They don't waste much efficiency for all that: Truth be told, in release mode vector
and string favor efficiency over safety when the two are in tension. Still, all in
all, the standard facilities offer a much better platform for creating safe compo
nents than do bare arrays and pointers.

• They foster optimizations: Modern standard library implementations include op
timizations that many of us mere mortals have never thought of.

An array can be acceptable when its size really is fixed at compile time (e.g., float[3] for a
three-dimensional point; switching to four dimensions would be a redesign anyway).

References
[AlexandrescuOla] • [DewhurstO3] §13, §60,
§3.5-7, §5.3, §20.4.1, §C7 • [SutterOO] §36

}68 • [MeyersOl] §13, §16 • [StroustrupOO]

T

STL: Containers 1 53

78. Use vector (and string::c_str) to exchange data
with non-C++ APIs.

Summary
vector isn't lost in translation: vector and string::c_str are your gateway to commu-
nicate with non-C++ APIs. But don't assume iterators are pointers; to get the address of
the element referred to by a vector<T>::iterator iter, use &*iter.

Discussion
vector (primarily) and string::c_str and string::data (secondarily) are the best way to
communicate data with non-C++ APIs in general, and C libraries in particular.

vector's storage is always contiguous, so accessing the address of its first element re-
turns a pointer to its contents. Use &*v.begin(), &v[0], or &v.front() to get a pointer to
v's first element. To get a pointer to a vector's n-th element, prefer to do the
arithmetic first and take the address later (e.g., &v.begin()[n] or &v[n]) instead of
fetching a pointer to front and then doing pointer arithmetic (e.g., (&v.front())[n]).
This is because in the former case you are giving a checked implementation a crack at
verifying that you don't access an element outside v's bounds (see Item 83).
Do not assume that v.begin() returns a pointer to the first element, or in general that
vector iterators are pointers. Although some STL implementations do define
vec-tor<T>::iterators as bare T* pointers, iterators can be, and increasingly are, full-
blown types (see again Item 83).
Although most implementations use contiguous memory for string, that's not guar-
anteed, so never take the address of a character in a string and assume it points to
contiguous memory. The good news is that string::c_str always returns a
null-terminated C-style string. (string::data also returns a pointer to contiguous
memory, except that it's not guaranteed to be zero-terminated.)

When you pass pointers into a vector v's data, C code can both read from and write to
v's elements but must stay within size's bounds. A well-designed C API takes a maxi-
mum number of objects (up to v.size()) or a past-the-end pointer (&*v.begin()+v.size()).
If you have a container of T objects other than vector or string and want to pass its
contents to (or populate it from) a non-C++ API that expects a pointer to an array of T
objects, copy the container's contents to (or from) a vector<T> that can directly
communicate with the non-C++ API.

References
[}osuttis99] §6.2.3, §11.2.4 • [MeyersOl] §16* [MusserOl] §B • [StroustrupOO] §16.3.1

154 C++ Coding Standards

79. Store only values and smart pointers in
containers.

Summary
Store objects of value in containers: Containers assume they contain value-like types,
including value types (held directly), smart pointers, and iterators.

Discussion
The most common use of containers is to store values held directly (e.g., vector<int>,
set <string >). For containers of pointers: If the container owns the pointed-to objects,
prefer a container of reference-counted smart pointers (e.g.,
list<shared_ptr<Wid-get> >); otherwise, a container of raw pointers (e.g.,
list<Widget*>) or of other pointer-like values such as iterators (e.g., list<
vector<Widget>::iterator >) is fine.

Examples
Example 1: auto_ptr. Objects of auto_ptr<T> are not value-like because of their
trans-fer-of-ownership copy semantics. Using a container of auto_ptrs (e.g., a vector<
auto_ptr<int> >) should fail to compile. Even if it does compile, never write that; if
you want to write it, you almost certainly want a container of shared_ptrs instead.
Example 2: Heterogeneous containers. To have a container store and own objects of dif-
ferent but related types, such as types derived from a common Base class, prefer
container< shared_ptr<Base> >. An alternative is to store proxy objects whose non-
virtual functions pass through to corresponding virtual functions of the actual object.
Example 3: Containers of non-value types. To contain objects even though they are not
copyable or otherwise not value-like (e.g., DatabaseLocks and TcpConnections), prefer
containing them indirectly via smart pointers (e.g., container<
shared_ptr<Data-baseLock> > and container< shared_ptr<TcpConnection> >).
Example 4: Optional values. When you want a map<Thing, Widget>, but some Things
have no associated Widget, prefer map<Thing, shared_ptr<Widget> >.
Example 5: Index containers. To have a main container hold the objects and access
them using different sort orders without resorting the main container, you can set up
secondary containers that "point into" the main one and sort the secondary containers
in different ways using dereferenced compare predicates. But prefer a container of
MainContainer::iterators (which are value-like) instead of a container of pointers.

References
[Allison98] §14 • [Austern99] §6 • [DezvhurstO3] §68
• [MeijersOl] §3, §7-8 • [SuttHyslO4b]

■ [Josuttis99] §5.10.2 • [Koenig97] §5

STL: Containers 155

80. Prefer push_back to other ways of
expanding a sequence.

Summary
push_back all you can: If you don't need to care about the insert position, prefer using
push_back to add an element to sequence. Other means can be both vastly slower
and less clear.

Discussion
You can insert elements into sequences at different points using insert, and you can
append elements to sequences in various ways including:

vector<int> vec;
vec.resize(vec.size() + 1, 1);
vec.insert(vec.end(), 2);
vec.push_back(3);

// vec is empty // vec
contains {1} // vec
contains { 1 , 2 } // vec
contains { 1 , 2 , 3 }

Of all forms, push_back alone takes amortized constant time. The other forms' per-
formance can be as bad as quadratic. Needless to say, beyond small data volumes
that makes those alternatives potential scalability barriers. (See Item 7.)
push_back's magic is simple: It expands capacity exponentially, not by a fixed in-
crement. Hence the number of reallocations and copies decreases rapidly with size.
For a container populated using only push_back calls, on average each element has
been copied only once—regardless of the final size of the container.

Of course, resize and insert could employ the same strategy, but that is dependent on
the implementation; only push_back offers the guarantee.

Algorithms can't call push_back directly because they don't have access to the con-
tainer. You can ask algorithms to use push_back anyway by using a back_inserter.

Exceptions
If you know you're adding a range, even at the end of a container, prefer to use a
range insertion function (see Item 81).

Exponential growth is generous with memory allocation. To fine-tune growth, call
reserve explicitly—push_back, resize, and the like never trigger reallocation if they
have enough space. To "right-size" a vector, use the shrink-to-fit idiom (see Item 82).

References
[StroustrupOO] §3.7-8, §16.3.5, §17.1.4.1

156 C++ Coding Standards

81. Prefer range operations to single-element
operations.

Summary
Don't use oars when the wind is fair (based on a Latin proverb): When adding ele-
ments to sequence containers, prefer to use range operations (e.g., the form of insert
that takes a pair of iterators) instead of a series of calls to the single-element form of the
operation. Calling the range operation is generally easier to write, easier to read, and
more efficient than an explicit loop. (See also Item 84.)

Discussion
The more context you can give a function, the better the chances that it can do some-
thing useful with the information. In particular, when you call a single function and
pass it a pair of iterators first and last that delimit a range, it can perform optimiza-
tions based on knowing the number of objects that are going to be added, which it
obtains by computing distance(first,last).
The same applies to "repeat n times" operations, such as the vector constructor that
takes a repeat count and a value.

Examples
Example 1: vectorr.insert. Let's say you want to add n elements into a vector v. Calling
v.insert(position,x) repeatedly can cause multiple reallocations as v grows its storage
to accommodate each new element. Worse, each single-element insert is a linear
operation because it has to shuffle over enough elements to make room, and this
makes inserting n elements with repeated calls to the single-element insert actually a
quadratic operation! Of course, you could get around the multiple-reallocation
problem by calling reserve, but that doesn't reduce the shuffling and the quadratic
nature of the operation. It's faster and simpler to just say what you're doing:
v.insert(position,first,last), where first and last are iterators delimiting the range of
elements to be added into v. (If first and last are input iterators, there's no way to de-
termine the size of the range before actually traversing it, and therefore v might still
need to perform multiple reallocations; but the range version is still likely to per-
form better than inserting elements individually.)
Example 2: Range construction and assignment. Calling a constructor (or assign function)
that takes an iterator range typically performs better than calling the default
constructor (or clear) followed by individual insertions into the container.

References
[MeyersOl] §5 • [StroustrupOO] §16.3.8

STL: Containers 1 57

82. Use the accepted idioms to really shrink
capacity and really erase elements.

Summary
Use a diet that works: To really shed excess capacity from a container, use the "swap
trick." To really erase elements from a container, use the erase-remove idiom.

Discussion
Some containers (e.g., vector, string, deque) can end up carrying around extra capacity
that's no longer needed. Although the C++ standard library containers provide no
guaranteed way to trim excess capacity, the following "swap trick" idiom works in
practice to get rid of excess capacity for such a c of type container:

container<T>(c).swap(c); // the shrink-to-fit idiom to shed excess capacity

Or, to empty c out completely, clearing all contained elements and shedding all pos-
sible capacity, the idiom is:

container<T>().swap(c); // the idiom to shed all contents and capacity

In related news, a common surprise for new STL programmers is that the remove
algorithm doesn't really remove elements from a container. Of course, it can't; an al-
gorithm just works on an iterator range, and you can't actually remove something
from a container without calling a container member function, usually erase. All
remove does is to shuffle values around so that the elements that shouldn't be "re-
moved" get shuffled up toward the beginning of the range, and return an iterator to
one past the end of the unremoved elements. To really get rid of them, the call to
remove needs to be followed by a call to erase—hence the "erase-remove" idiom.
For example, to erase all elements equal to value from a container c, you can write:

c.erase(remove(c.begin(), c.end() ,value)); Prefer to use a member version of

remove or removejf on a container that has it.

Exceptions
The usual shrink-to-fit idiom won't work on copy-on-write implementations of
std::string. What usually does work is to call s.reserve(0) or to fake the string out by
writing string(s.begirt(), s.end()).swap(s); to use the iterator range constructor. In
practice, these work to shed excess capacity. (Better still, std::string implementations
are abandoning copy-on-write, which is an outdated optimization; see [SutterO2].)

References
[Josuttis99] §6.2.1 • [MeyersOl] §17, §32, §44 • [SutterOO] §7 • [SutterO2] §7, §16

T

STL: Algorithms

Prefer algorithms to loops.

—Bjarne Stroustrup,
[StroustrupOO] §18.12

Algorithms are loops—only better. Algorithms are the "patterns" of loops, adding
far more semantic content and richness than a naked for would do alone. Of course,
the moment you start using algorithms you'll also start using function objects and
predicates; write them correctly, and use them well.

Our vote for the most valuable Item in this section goes to Item 83: Use a checked
STL implementation.

159

160 C++ Coding Standards

83. Use a checked STL implementation.

Summary
Safety first (see Item 6): Use a checked STL implementation, even if it's only available
for one of your compiler platforms, and even if it's only used during pre-release testing.

Discussion
Just like pointer mistakes, iterator mistakes are far too easy to make and will usually
silently compile but then crash (at best) or appear to work (at worst). Even though
your compiler doesn't catch the mistakes, you don't have to rely on "correction by
visual inspection," and shouldn't: Tools exist. Use them.

Some STL mistakes are distressingly common even for experienced programmers:

• Using an invalidated or uninitialized iterator: The former in particular is easy to do.
• Passing an out-of-bounds index: For example, accessing element 113 of a 100-

element container.
• Using an iterator "range" that isn't really a range: Passing two iterators where the

first doesn't precede the second, or that don't both refer into the same container.
• Passing an invalid iterator position: Calling a container member function that takes

an iterator position, such as the position passed to insert, but passing an iterator
that refers into a different container.

• Using an invalid ordering: Providing an invalid ordering rule for ordering an as
sociative container or as a comparison criterion with the sorting algorithms. (See
[MeyersOl] §21 for examples.) Without a checked STL, these would typically
manifest at run time as erratic behavior or infinite loops, not as hard errors.

Most checked STL implementations detect these errors automatically, by adding extra
debugging and housekeeping information to containers and iterators. For example,
an iterator can remember the container it refers into, and a container can remember
all outstanding iterators into itself so that it can mark the appropriate iterators as
invalid as they become invalidated. Of course, this makes for fatter iterators,
containers with extra state, and some extra work every time you modify the con-
tainer. But it's worth it—at least during testing, and perhaps even during release
(remember Item 8; don't disable valuable checks for performance reasons unless and
until you know performance is an issue in the affected cases).

Even if you don't ship with checking turned on, and even if you only have a
checked STL on one of your target platforms, at minimum ensure that you routinely
run your full complement of tests against a version of your application built with a
checked STL. You'll be glad you did.

STL: Algorithms 161

Examples
Example 1: Using an invalid iterator. It's easy to forget when iterators are invalidated
and use an invalid iterator (see Item 99). Consider this example adapted from
[MeyersOl] that inserts elements at the front of a deque:

deque<double>::iterator current = d.begin();

for(size_t i = 0; i < max;
d.insert(current++, data[i] + 41); // do you see the bug?

Quick: Do you see the bug? You have three seconds.—Ding! If you didn't get it in
time, don't worry; it's a subtle and understandable mistake. A checked STL imple-
mentation will detect this error for you on the second loop iteration so that you
don't need to rely on your unaided visual acuity. (For a fixed version of this code, and
superior alternatives to such a naked loop, see Item 84.)

Example 2: Using an iterator range that isn't really a range. An iterator range is a pair of
iterators first and last that refer to the first element and the one-past-the-end-th ele-
ment of the range, respectively. It is required that last be reachable from first by re-
peated increments of first. There are two common ways to accidentally try to use an
iterator range that isn't actually a range: The first way arises when the two iterators
that delimit the range point into the same container, but the first iterator doesn't ac-
tually precede the second:

for_each(c.end(), c begin(), Something); //not always this obvious

On each iteration of its internal loop, for_each will compare the first iterator with the
second for equality, and as long as they are not equal it will continue to increment the
first iterator. Of course, no matter how many times you increment the first iterator, it
will never equal the second, so the loop is essentially endless. In practice, this will, at
best, fall off the end of the container c and crash immediately with a memory protec-
tion fault. At worst, it will just fall off the end into uncharted memory and possibly
read or change values that aren't part of the container. It's not that much different in
principle from our infamous and eminently attackable friend the buffer overrun.

The second common case arises when the iterators point into different containers:

for_each(c.begin(), d.end(), Something); //not always this obvious

The results are similar. Because checked STL iterators remember the containers that
they refer into, they can detect such run-time errors.

References
[Dinkumivare-Safc] • [Horstmann95] • [}osuttis99] §5.11.1 • [Metrowerksj
§21, §50 • [STLport-Debng] • [StroustrupOO] §18.3.1, §19.3.1

[MeyersOl]

162 C++ Coding Standards

84. Prefer algorithm calls to handwritten loops.

Summary
Use function objects judiciously: For very simple loops, handwritten loops can be the
simplest and most efficient solution. But writing algorithm calls instead of handwritten
loops can be more expressive and maintainable, less error-prone, and as efficient.
When calling algorithms, consider writing your own custom function object that en-
capsulates the logic you need. Avoid cobbling together parameter-binders and simple
function objects (e.g., bind2nd, plus), which usually degrade clarity. Consider trying
the [Boost] Lambda library, which automates the task of writing function objects.

Discussion
Programs that use the STL tend to have fewer explicit loops than non-STL programs,
replacing low-level semantics-free loops with higher-level and better-defined ab-
stract operations that convey greater semantic information. Prefer a "process this
range" algorithmic mindset over "process each element" loopy thinking.
A primary benefit that algorithms and design patterns have in common is that they
let us speak at a higher level of abstraction with a known vocabulary. These days, we
don't say "let many objects watch one object and get automatic notifications when
its state changes;" rather, we say just "Observer." Similarly, we say "Bridge,"
"Factory," and "Visitor." Our shared pattern vocabulary raises the level, effectiveness,
and correctness of our discussion. With algorithms, we likewise don't say "perform an
action on each element in a range and write the results somewhere;" rather, we say
transform. Similarly, we say for_each, replace_if, and partition. Algorithms, like
design patterns, are self-documenting. Naked for and while loops just don't do when
it comes to imparting any inherent semantic information about the purpose of the
loop; they force readers to inspect their loop bodies to decipher what's going on.
Algorithms are also more likely to be correct than loops. Handwritten loops easily
make mistakes such as using invalidated iterators (see Items 83 and 99); algorithms
come already debugged for iterator invalidation and other common errors.

Finally, algorithms are also often more efficient than naked loops (see [SutterOO] and
[MeyersOl]). They avoid needless minor inefficiencies, such as repeated evaluations of
container.end(). Slightly more importantly, the standard algorithms you're using
were implemented by the same people who implemented the standard containers
you're using, and by dint of their inside knowledge those people can write algo-
rithms that are more efficient than any version you would write. Most important of all,
however, is that many algorithms have highly sophisticated implementations that
we in-the-trenches programmers are unlikely ever to match in handwritten code
(unless we don't need the full generality of everything a given algorithm does).

STL: Algorithms 163

In general, the more widely used a library is, the better debugged and more efficient it
will be simply because it has so many users. You are unlikely to be using any other
library that is as widely used as your standard library implementation. Use it and
benefit. STL's algorithms are already written; why write them again?

Consider trying [Boost] lambda functions. Lambda functions are an important tool
that solves the biggest drawback of algorithms, namely readability: They write the
function objects for you, leaving the actual code in place at the call point. Without
lambda functions, your choices are to either use function objects (but then even simple
loop bodies live in a separate place away from the call point) or else use the standard
binders and function objects such as bind2nd and plus (these are tedious and
confusing to use, and hard to combine because fundamental operations like
compose are not part of the standard; but do consider the [C++TR104] bind library).

Examples
Here are two examples adapted from [MeyersOl]:

Example 1: Transforming a deque. After working through several incorrect iterations
that ran afoul of iterator invalidation issues (e.g., see Item 83), we finally come up
with the following correct handwritten loop for adding 41 to every element of data,
an array of doubles, and placing the result at the beginning of d, a deque<double>:

deque<double>::iterator current = d.begin();

for(size_t i = 0; i < max; ++i) {
current = d.insert(current, data[i] + 41); //be careful to keep current valid...
+ +current; //... then increment it when it's safe

}

An algorithm call would have bypassed the correctness pitfalls straight away:
transform(data, data + max, // copy elements from data

inserter(d, d.begin()), //to the front of d
bind2nd(plus<double>(), 41)); //adding 41 to each

Granted, bind2nd and plus are awkward. Frankly, nobody really uses them much,
and that's just as well because they hurt readability (see Item 6).
But lambda functions, which generate the function object for us, let us write simply:

transform(data, data + max, inserter(d, d.begin()), _1 + 41);

Example 2: Find the first element between x and y. Consider this naked loop that searches
a vector<int> v for the first value between x and y, by calculating an iterator that
points to the found element or to v.end():

for(vector<int>::iterator i = v.begin(); i != v.end(); ++i)
if(*i > x && *i < y) break;

164 C++ Coding Standards

An algorithm call is problematic. Absent lambdas, the two options are to write a cus-
tom function object or to use the standard binders. Alas, with the binders option we
can't use the standard binders alone but need to use the nonstandard (although
widely-available) compose2 adapter, and even at that the code is just impenetrable,
and nobody would ever really write it:

vector<int>::iterator i = find_if(v.begin(), v.end(),
compose2(logical_and<bool>(),

bind2nd(gr
bind2nd(less<int>(), y)));

The other option, namely writing a custom function object, is viable. It looks good at
the call point, and its main drawback is that it requires writing a BetweenValues
function object that moves the body's logic visually away from the call point:

template<typename T>
class BetweenValues: public unary_function<T, bool> {
public:
BetweenValues(const T& low, const T& high): lowjlow), high_(high) {} bool
operator()(const T& val) const {return val > low_ && val < high_;}

private: // far away from the point of use
T low_, high_;

};

vector<int>::iterator i - findjf(v.begin(), v.end(), BetweenValues<int>(x, y)); Lambda

functions, which generate the function object for us, let us write simply:

vector<int>::iterator i = find_if(v.begin(), v.end(), _1 > x && _1 < y);

Exceptions
When used with function objects, algorithm calls place the body of the loop away
from the call site, which can make the loop harder to read. (Cobbling together simple
objects with the standard and nonstandard binders isn't a realistic option.)

[Boost] lambda functions solve these two problems and work reliably on modern
compilers, but they don't work on older compilers and they can generate dense error
messages when they're coded incorrectly. Calling named functions, including
member functions, still requires binder-like syntax.

References
[Allison98] §15 • [Austern99] §11-13 • [Boost] Lambda library • [McConnell93] §15 •
[MeyersOl] §43 • [MusserOl] §11 • [StroustrupOO] §6.1.8, §18.5.1 • [SutterOO] §7

STL: Algorithms 165

85. Use the right STL search algorithm.

Summary
Search "just enough"—the right search may be STL (slower than light), but it'll still
be pretty fast: This Item applies to searching for a particular value in a range, or for
the location where it would be if it were in the range. To search an unsorted range, use
find/findjf or count/count_if. To search a sorted range, use lower_bound,
up-per_bound, equal_range, or (rarely) binary_search. (Despite its common name,
bi-nary_search is usually not the right choice.)

Discussion
For unsorted ranges, find/find_if and count/count_if can tell you in linear time
whether and where, respectively, an element exists in a range. Note that find/find_if
is typically more efficient because it can stop searching when a match is found.
For sorted ranges, prefer the four binary search algorithms, binary_search,
lower_bound, upper_bound, and equal_range, which work in logarithmic time.
Alas, despite its nice name, binary_search is nearly always useless because it only re-
turns a bool indicating whether a match was found or not. Usually, you want
lower_bound or upper_bound—or equal_range, which gives you the results of both
lower_bound and upper_bound (but not at twice the cost).

lower_bound returns an iterator pointing to the first match (if there is one) or the lo-
cation where it would be (if there is not); the latter is useful to find the right place to
insert new values into a sorted sequence. upper_bound returns an iterator pointing
to one past the last match (if there is one), which is the location where the next
equivalent element can be added; this is useful to find the right place to insert new
values into a sorted sequence while keeping equivalent elements in the order in
which they were inserted.

Prefer p = equal_range(first, last, value); distance(p.first, p.second); as a faster
version of count(first, last, value); for sorted ranges.

If you are searching an associative container, prefer using the member functions
with the same names instead of the nonmember algorithms. The member versions
are usually more efficient, including that the member version of count runs in loga-
rithmic time (and so there's no motivation to replace a call the member count with a
call to equal_range followed by distance, as there is with the nonmember count).

References
[Austern99] §13.2-3 • [BentleyOO] §13
[StroustrupOO] §17.1.4.1, §18.7.2

[MeyersOl] §34, §45 • [MusserOl] §22.2

166 C++ Coding Standards

86. Use the right STL sort algorithm.

Summary

Sort "just enough:" Understand what each of the sorting algorithms does, and use
the cheapest algorithm that does what you need.

Discussion

You don't always need a full sort; you usually need less, and rarely you need more. In
general order from cheapest to most expensive, your standard sorting algorithm
options are: partition, stable_partition, nth_element, partial_sort (with its variant
partial_sort_copy), sort, and stable_sort. Use the least expensive one that does the
work you actually need; using a more powerful one is wasteful.

partition, stable_partition, and nth_element run in linear time, which is nice.

nth_element, partial_sort, sort, and stable_sort require random-access iterators. You
can't use them if you have only bidirectional iterators (e.g., list<T>::iterators). If you
need these algorithms but you don't have random-access iterators, consider using
the index container idiom: Create a container that does support random-access itera-
tors (e.g., a vector) of iterators into the range you have, and then use the more pow-
erful algorithm on that using a dereferencing version of your predicate (one that
dereferences the iterators before doing its usual comparison).

Use the stable_... versions only if you need to preserve the relative ordering of equal
elements. Note that partial_sort and nth_element aren't stable (meaning that they
don't keep equivalent elements in the same relative order they were in before the
sort), and they have no standardized stable versions. If you otherwise want these al-
gorithms but need stability, you probably want stable_sort.

Of course, don't use any sorting algorithm at all if you don't have to: If you are using
a standard associative container (set/multiset or map/multimap) or the
prior-ity_queue adapter, and only need one sort order, the elements in the container
stay sorted all the time.

Examples

Example 1: partition. Use partition to just divide the range into two groups: all ele-
ments that satisfy the predicate, followed by all elements that don't. This is all you
need to answer questions like these:

STL: Algorithms 167

• "Who are all the students with a grade of B+ or better?" For example, partition(
students.begin(), students.end(), GradeAtLeast("B+")); does the work and re
turns an iterator to the first student whose grade is not at least B+.

• "What are all the products with weight less than 10kg?" For example, partition(
products.begin(), products.end(), WeightUnder(lO)); does the work and re
turns an iterator to the first product whose weight is 10kg or less.

Example 2: nth_element. Use nth_element to put a single element in the correct n-th
position it would occupy if the range were completely sorted, and with all other
elements correctly preceding or following that n-th element. This is all you need to
answer questions like these:

• "Who are my top 20 salespeople?" For example, nth_element(s.begin(),
s.begin() + 19, s.end(), SalesRating); puts the 20 best elements at the front.

• "What is the item with the median level of quality in this production run?" That
element would be in the middle position of a sorted range. To find it, do
nth_element(run.begin(), run.begin()+run.size()/2, run.end(), ItemQuality);.

• "What is the item whose quality is at the 75th percentile?" That item would be
25% of the way through the sorted range. To find it, do nth_element(
run.begin(), run.begin() + run.size()*.25, run.end(), ItemQuality);.

Example 3: partial_sort. partial_sort does the work of nth_element, plus the elements
preceding the n-th are all in their correct sorted positions. Use partial_sort to answer
questions similar to those nth_element answers, but where you need the elements
that match to be sorted (and those that don't match don't need to be sorted). This is all
you need to answer questions like, "Who are the first-, second-, and third-place
winners?" For example, partial_sort(contestants.begin(), contestants.begin() + 3,
contestants.endO, ScoreCompare); puts the top three contestants, in order, at the
front of the container—and no more.

Exceptions
Although partial_sort is usually faster than a full sort because it has to do less work, if
you are going to be sorting most (or all) of the range, it can be slower than a full sort.

References

[Austern99] §13.1 • [BentleyOO] §11 • [Josuttis99] §9.2.2 • [MeyersOl] §31 • [MusserOl]
§5.4, §22.26 • [StroustrupOO] §17.1.4.1, §18.7

168 C++ Coding Standards

87. Make predicates pure functions.

Summary
Predicate purity: A predicate is a function object that returns a yes/no answer, typi-
cally as a bool value. A function is pure in the mathematical sense if its result de-
pends only on its arguments (note that this use of "pure" has nothing to do with pure
virtual functions).

Don't allow predicates to hold or access state that affects the result of their
opera-tor(), including both member and global state. Prefer to make operator() a
const member function for predicates (see Item 15).

Discussion
Algorithms make an unknowable number of copies of their predicates at unknow-
able times in an unknowable order, and then go on to pass those copies around
while casually assuming that the copies are all equivalent.

That is why it's your responsibility to make sure that copies of predicates are indeed
all equivalent, and that means that they must be pure functions: functions whose re-
sult is not affected by anything other than the arguments passed to operator(). Addi-
tionally, predicates must also consistently return the same result for the same set of
arguments they are asked to evaluate.

Stateful predicates may seem useful, but they are explicitly not very useful with the
C++ standard library and its algorithms, and that is intentional. In particular, stateful
predicates can only be useful if:

• The predicate is not copied: The standard algorithms make no such guarantee, and
in fact assume that predicates are safely copyable.

• The predicate is applied in a documented deterministic order: The standard algo
rithms generally make no guarantee about the order in which the predicate will
be applied to the elements in the range. In the absence of guarantees about the
order in which objects will be visited, operations like "flag the third element"
(see Examples) make little sense, because which element will be visited "third"
is not well-defined.

It is possible to work around the first point by writing a lightweight predicate that
uses reference-counting techniques to share its deep state. That solves the
predicate-copying problem too because the predicate can be safely copied without
changing its semantics when it is applied to objects. (See [Sutter02].) It is not possible,
however, to work around the second point.

STL: Algorithms 169

Always declare a predicate type's operator() as a const member function so that the
compiler can help you avoid this mistake by emitting an error if you try to change
any data members that the predicate type may have. This won't prevent all abuses—
for example, it won't flag accesses to global data—but it will help the compiler to
help you avoid at least the most common mistakes.

Examples

Example: FlagNth. Here is the classic example from [SutterO2], which is intended to
remove the third element from a container v:

class FlagNth { public: FlagNth(size_t n):
current_(0), n_(n) {}

//evaluate to true if and only if this is the n-th invocation
template<typename T>
bool operator()(const T&) {return ++current_ == n_;} //bad: non-const

private: size_t current_,
n_;

//... later...

v.erase(remove_if(v.begin(), v.end(), FlagNth(3)));

This is not guaranteed to remove the third element, even though that was intended. In
most real-world STL implementations, it erases both the third and the sixth elements.
Why? Because remove_if is commonly implemented in terms of find_if and
remove_copy_if, and it passes along a copy of the predicate to each of those func-
tions, possibly after it has already itself done some work that affects the predicate's
state.

Conceptually, this example is perverse because remove_if only guarantees that it
will remove all elements satisfying some criterion. It does not document the order in
which elements in the range will be visited or removed, so the code is relying on an
assumed, but undocumented and unsatisfied, assumption.

The correct way to remove a particular element is to iterate to it and then call erase.

References
[Austern99] §4.2.2 • []osuttis99] §5.8.2, §8.1.4 • [MeyersOl] §39 • [StroustrupOO] §10.2.6 •
[SutterO2] §2-3

170 C++ Coding Standards

88. Prefer function objects over functions as
algorithm and comparer arguments.

Summary
Objects plug in better than functions: Prefer passing function objects, not functions,
to algorithms. Comparers for associative containers must be function objects. Func-
tion objects are adaptable and, counterintuitively, they typically produce faster code
than functions.

Discussion
First, function objects are easy to make adaptable, and always should be (see Item
89). Even if you already have a function, sometimes you have to wrap it in ptr_fun or
mem_fun anyway to add adaptability. For example, you have to do this in order to
build up more complex expressions using binders (see also Item 84):

inline bool lsHeavy(const Thing&) {/*...*/}

find_if(v.begin(), v.end(), not1(IsHeavy)); //error: isn't adaptable

The workaround is to insert ptr_fun (or, for a member function, mem_fun or
mem_fun_ref):

inline bool lsHeavy(const Thing&) {/*..*/}

find_if(v.begin(), v.end(), not1(ptr_fun<Thing,void>(IsHeavy)));
// ok: now it's adaptable

Aside: Yes, it's a pain that here you need to explicitly specify ptr fun's template
ar-guments. This is another drawback to using functions. Briefly, the reason the
tem-plate arguments are needed is that ptr_fun deduces the argument and return
types exactly and creates a pointer_to_unary_function, which in turn helpfully tries to
add another &, and references to references are not currently allowed by ISO C++.
There are ways in which ptr_fun could, and probably should, be fixed so as to strip
top-level const and & from non-pointer parameter and return types (see Item 89), but
it doesn't do that today.

You don't have to remember this stuff if you're using a correctly-written function
object (see Item 89), which is adaptable from the get-go without special syntax:

struct IsHeavy : unary_function<Thing, bool> { bool
operator()(const Thing&) const {/*...*/}

};

find_if(v.begin(), v.end(), notl(IsHeavy())); //ok: adaptable

STL: Algorithms 1 7 1

More importantly, you need a function object, not a function, to specify comparers
for associative containers. This is because it's illegal to instantiate a template type
parameter with a function type directly:

bool CompareThings(const Thing&, const Thing&);

set<Thing, CompareThings> s; //error

Instead, you need:

struct CompareThings : public binary_function<Thing,Thing,bool>
{ bool operator()(const Thing&, const Thing&) const;

};

set<Thing, CompareThings> s; //ok

Finally, there is also an efficiency benefit. Consider this familiar algorithm:
template<typename Iter, typename Compare>
Iter find_if(Iter first, Iter last, Compare comp);

If we pass a function as the comparer to findjf inline

bool Function(const Thing&) {/*...*/}

find_if(v.begin(), v.end(), Function);

we're actually passing a reference to Function. Compilers rarely inline such function
calls (except as part of whole-program analysis, which is still a relatively recent fea-
ture on popular compilers), even when as above the function is declared inline and is
visible while compiling the find_if call. And, as noted, functions aren't adaptable.
If we pass a function object as the comparer to find_if

struct FunctionObject: unaryJ:unction<Thing, bool> {
bool operator()(const Thing&) const {/*...*/} };

findjf(v.begin(), v.end(), FunctionObject());

we're passing an object that typically has an (implicitly or explicitly) inline
opera-tor() function. Compilers have routinely inlined such calls since C++'s Bronze
Age.
Note: This is not to encourage premature optimization (see Item 8), but to discour-age
premature pessimization (see Item 9). If you already have a function, go ahead and
pass a pointer to the function (unless you have to wrap it with ptrfun or mem fun
anyway). But if you're writing a new piece of code for use as an argument to an
algorithm, prefer writing the extra boilerplate to make it a function object.

References
[Austern99] §4, §8, §15 • [Josuttis99] §5.9 • [MeyersOl] §46 • [MusserOl] §8 • [SutterO4] §25

172 C++ Coding Standards

89. Write function objects correctly.

Summary
Be cheap, be adaptable: Design function objects to be values that are cheap to copy.
Where possible, make them adaptable by inheriting from unary_- or binary_function.

Discussion
Function objects are modeled on function pointers. Like function pointers, the con-
vention is to pass them by value. All of the standard algorithms pass objects by
value, and your algorithms should too. For example:

template<class Inputlter, class Func>
Function for_each(Inputlter first, Inputlter last, Function f);

Therefore, function objects must be cheap to copy and monomorphic (immune to
slicing, so avoid virtual functions; see Item 54). But large and/or polymorphic objects
are useful, and using them is okay; just hide the size and richness using the Pimpl
idiom (see Item 43), which leaves the outer class as the required cheap-to-copy
monomorphic type that still accesses rich state. The outer class should:

• Be adaptable: Inherit from unary_function or binary_function. (See below.)
• Have a Pimpl: Store a pointer (e.g., shared_ptr) to a large/rich implementation.
• Have the function call operator(s): Pass these through to the implementation object.

That should be all that's needed in the outer class, other than possibly providing
non-default versions of construction, assignment, and/or destruction.
Function objects should be adaptable. The standard binders and adapters rely on
certain typedefs, which are provided most conveniently when your function object
derives from unary_function or binary__function. Instantiate unary_function or
bi-nary_function with the same types as your operator() takes and returns, except
that for each non-pointer type strip off any top-level consts and &s from the type.

Avoid providing multiple operator() functions, because that makes adaptability dif-
ficult. It's usually impossible to provide the right adaptability typedefs because the
same typedef would have different values for different operator() functions.
Not all function objects are predicates. Predicates are a subset of function objects.
(See Item 87.)

References
[Allison98] §15, §C • [Austern99] §4, §8, §15 • [Gamma95] Bridge • [Josuttis99] §8.2.4 •
[Koenig97] §21, §29 • [Meyers97] §34 • [MeyersOl] §38, §40, §46 • [MusserOl] §2.4, §8, §23 •
[SutterOO] §26-30 • [Vandevoorde03] §22

Type Safety

Trying to outsmart a compiler defeats much of the purpose of using one.

—Brian Kernighan & P.J. Plauger

If you lie to the compiler, it will get its revenge.

—Henry Spencer

There will always be things we wish to say in our programs that
in all known languages can only be said poorly.

—Alan Perlis

Last, but certainly not least, we will consider type correctness—a very important
property of a program that you should strive to preserve at all times. Theoretically, a
type-correct function can never access untyped memory or return forged values.
Practically, if your code maintains type soundness, it avoids a large category of nasty
errors ranging from nonportability to corrupting memory to creating bogus values to
exhibiting undefined behavior.

The basic idea underpinning how to maintain type soundness is to always read bits in
the format in which they were written. Sometimes, C++ makes it easy to break this
rule, and the following Items detail how to avoid such mistakes.

Our vote for the most valuable Item in this section goes to Item 91: Rely on types,
not on representations. The type system is your friend and your staunchest ally;
enlist its help, and try never to abuse its trust.

173

174 C++ Coding Standards

90. Avoid type switching; prefer polymorphism.

Summary
Switch off: Avoid switching on the type of an object to customize behavior. Use tem-
plates and virtual functions to let types (not their calling code) decide their behavior.

Discussion
Type switching to customize behavior is brittle, error-prone, unsafe, and a clear sign of
attempting to write C or Fortran code in C++. It is a rigid technique that forces you to
go back and do surgery on existing code whenever you want to add new features. It is
also unsafe because the compiler will not tell you if you forget to modify all of the
switches when you add a type.
Ideally, adding new features to a program equates to adding more new code (see
Item 37). In reality, we know that that's not always true—oftentimes, in addition to
writing new code, we need to go back and modify some existing code. Changing
working code is undesirable and should be minimized, however, for two reasons:
First, it might break existing functionality. Second, it doesn't scale well as the system
grows and more features are added, because the number of "maintenance knots"
that you need to go back and change increases as well. This observation led to the
Open-Closed principle that states: An entity (e.g., class or module) should be open
for extension but closed for modification. (See [Martin96c] and [MeyerOO].)
How can we write code that can be easily extended without modifying it? Use
polymorphism by writing code in terms of abstractions (see also Item 36) and then
adding various implementations of those abstractions as you add functionality.
Templates and virtual function calls form a dependency shield between the code us-
ing the abstractions and the code implementing them (see Item 64).
Of course, managing dependencies this way depends on finding the right abstrac-
tions. If the abstractions are imperfect, adding new functionality will require chang-
ing the interface (not just adding new implementations of the interface), which usu-
ally requires changes to existing code. But abstractions are called "abstractions" for a
reason—they are supposed to be much more stable than the "details," that is, the ab-
stractions' possible implementations.
Contrast that with code that uses few or no abstractions, but instead traffics directly in
concrete types and their specific operations. That code is "detailed" already—in fact,
it is swimming in a sea of details, a sea in which it is doomed soon to drown.

Examples
Example: Drawing shapes. The classic example is drawing objects. A typical C-style,
switch-on-type solution would define an enumerated member variable id_ for each

Type Safety 175

shape that stores the type of that shape: rectangle, circle, and so on. Drawing code
looks up the type and performs specific tasks:

class Shape {//... enum { RECTANGLE, TRIANGLE,
CIRCLE } id_;

void Draw() const {
switch(id_){ //bad
case RECTANGLE: //... rectangle
drawing code... break;

case TRIANGLE: //... triangle
drawing code ... break;

case CIRCLE:
//... circle drawing code...
break;

default: //bad
assert(! "Oops, forgot to update this switch when adding a new Shape");

break; } }
};

Such code creaks under its own weight, fragility, rigidity, and complexity. In particular,
it suffers from the dreaded transitive cyclic dependency mentioned in Item 22. The
default branch is symptomatic of "don't know what to do with this type" syndrome.
Contrast that with an implementation that you could pull from any OO text:

class Shape {//...
virtual void Draw() const = 0; //let each derived class implement it

};

Alternatively (or in addition), consider this implementation that follows the advice
to make decisions at compile time where possible (see Item 64):

template<class S>
void Draw(const S& shape) {

shape.DrawO; //might or might not be virtual;
}; // see Item 64

Now the responsibility of drawing each geometric figure goes to the figure imple-
mentation itself—and there's no more "can't handle this type" syndrome anymore.

References
[DewhurstO3] §69, §96 • [Martin96c] • [MeyerOO] • [StroustrupOOl §12.2.5 • [SutterO4] §36

176 C++ Coding Standards

91. Rely on types, not on representations.

Summary
Don't try to X-ray objects (see Item 96): Don't make assumptions about how objects
are exactly represented in memory. Instead, let types decide how their objects are
written to and read from memory.

Discussion
The C++ Standard makes few guarantees about how types are represented in memory:

• Base two is guaranteed for integral numbers.
• Two's complement is guaranteed for negative integral numbers.
• Plain Old Data (POD) types have C-compatible layout: Member variables are

stored in their order of declaration.
• int holds at least 16 bits.

In particular, the following may be common but are not guaranteed on all current ar-
chitectures, and in particular are liable to be broken on newer architectures:

• int is not exactly 32 bits, nor any particular fixed size.
• Pointers and ints don't always have the same size and can't always be freely

cast to one another.
• Class layout does not always store bases and members in declaration order.
• There can be gaps between the members of a class (even a POD) for alignment.
• offsetof only works for PODs, not all classes (but compilers might not emit errors).
• A class might have hidden fields.
• Pointers might not look like integers at all. If two pointers are ordered, and you cast

them to integral values, the resulting values might not be ordered the same way.
• You can't portably assume anything about the placement in memory of auto

matic variables, or about the direction in which the stack grows.
• Pointers to functions might have a different size than void*, even though some

APIs force you to assume that their sizes are the same.
• You can't always write just any object at just any memory address, even if you

have enough space, due to alignment issues.
Just define types appropriately, then read and write data using those types instead of
thinking bits and words and addresses. The C++ memory model ensures efficient
execution without forcing you to rely on manipulating representation. So don't.

References
[DewhurstO3] §95

Type Safety 177

92. Avoid using reinterpret_cast.

Summary
Lies have short legs (German and Romanian proverb): Don't try to use
reinterpret_-cast to force the compiler to reinterpret the bits of an object of one type
as being the bits of an object of a different type. That's the opposite of maintaining
type safety, and reinterpret_cast isn't even guaranteed to do that or anything else in
particular.

Discussion
Recall: If you lie to the compiler, it will get its revenge. —Henry Spencer

reinterpret_cast reflects the strongest assumption a programmer can make about ob-
ject representation, namely that the programmer knows better than the compiler—to
the point of being determined to pick an argument with the compiler's carefully
maintained type information. Compilers will shut up if you tell them to, but use of
force should be a last resort. Avoid assuming how data is represented, because such
assumptions dramatically affect the safety and reliability of your code.
Besides, the reality is that reinterpret_cast's effects are worse than reinterpreting ob-
jects' bit patterns (which would be bad enough). Except that some conversions are
guaranteed to be reversible, its effects are actually implementation-defined, so you
don't know if it will do even that. It is unreliable and nonportable.

Exceptions

Some low-level system-specific programming might force you to use
reinter-pretcast to stream bits in and out some port, or to transform integers in
addresses. Use unsafe casting as rarely as you can and only in well-hidden functions
that abstract it away, so as to make your code ready for porting with minimal changes.
If you need to cast among unrelated pointer types, prefer casting via void* instead of
using reinterpret_cast directly. That is, instead of

Tl* p1 = ...;
T2* p2 = reinterpret_cast<T2*>(p1);

write

Tl* p1 = ... ;
void* pV = p1;
T2* p2 = static_cast<T2*>(pV);

References
[C++03] §5.2.10(3) • [DewhurstO3] §39 • [StroustrupOO] §5.6

178 C++ Coding Standards

93. Avoid using static_cast on pointers.

Summary
Pointers to dynamic objects don't static_cast: Safe alternatives range from using
dy-namic_cast to refactoring to redesigning.

Discussion
Consider replacing uses of static_cast with its more powerful relative dynamic_cast,
and then you won't have to remember when static_cast is safe and when it's dan-
gerous. Although dynamic_cast can be slightly less efficient, it also detects illegal
casting (and don't forget Item 8). Using static_cast instead of dynamic_cast is like
eliminating the stairs night-light, risking a broken leg to save 90 cents a year.
Prefer to design away downcasting: Refactor or redesign your code so that it isn't
needed. If you see that you are passing a Base to a function that really needs a De-
rived to do its work, examine the chain of calls to identify where the needed type in-
formation was lost; often, changing a couple of prototypes leads to an excellent solu-
tion that also clarifies the type information flow to you.
Excessive downcasts might indicate that the base class interface is too sparse. This
can lead to designs that define more functionality in derived classes, and then
downcast every time the extended interface is needed. The one good solution is to
redesign the base interface to provide more functionality.
If, and only if, the overhead of the dynamic_cast actually matters (see Item 8), con-
sider defining your own cast that uses dynamic_cast during debugging and
static_cast in the "all speed no guarantees" mode (see [StroustrupOO]):

template<class To, class From> To checked_cast(From* from) {
assert(dynamic_cast<To>(from) == static_cast<To>(from) && "checked_cast failed");
return static_cast<To>(from);

template<class To, class From> To checked_cast(From& from) {
assert(dynamic_cast<To>(from) == static_cast<To>(from) && "checked_cast failed");
return static_cast<To>(from);

This little duo of functions (one each needed for pointers and references) simply
tests whether the two casts agree. We leave it up to you to customize checked_cast
for your needs, or to use one provided by a library.

References
[DewhurstO3] §29, §35, §41 • [Meyers97] §39 • [StroustrupOO] §13.6.2 • [SutterOO] §44

Type Safety 179

94. Avoid casting away const.

Summary
Some fibs are punishable: Casting away const sometimes results in undefined be-
havior, and it is a staple of poor programming style even when legal.

Discussion
Once you go const, you (should) never go back. If you cast away const on an object
whose original definition really did define it to be const, all bets are off and you are in
undefined behavior land. For example, compilers can (and do) put constant data into
ROM or write-protected RAM pages. Casting away const from such a truly const
object is a punishable lie, and often manifests as a memory fault.
Even when it doesn't crash your program, casting away const is a broken promise and
doesn't do what many expect. For example, this doesn't allocate a variable-sized array:

void Foolish(unsigned int n)
{ const unsigned int size = 1;
const_cast<unsigned int&>(size) = n; //bad: don't do this
char bufferfsize]; // will always have size 1

}
C++ has one implicit const_cast, the "conversion of death" from a string literal to char*:

char* weird = "Trick or treat?";
The compiler performs a silent const_cast from const char[16] to char*. This was al-
lowed for compatibility with C APIs, but it's a hole in C++'s type system. String lit-
erals are ROM-able, and trying to modify the string is liable to cause a memory fault.

Exceptions
Casting away const can be necessary to call const-incorrect APIs (see Item 15). It is
also useful when a function that must take and return the same kind of reference has
const and non-const overloads, implemented by having one call the other:

const Object& f(const Objects);
Object& f(Objects obj) {
const Objects ref = obj;
return const_cast<Object&>(foo(ref)); //have to const_cast the return type }

References
[DewhurstO3] §32, §40 • [SutterOO] §44

180 C++ Coding Standards

95. Don't use C-style casts.

Summary
Age doesn't always imply wisdom: C-style casts have different (and often dangerous)
semantics depending on context, all disguised behind a single syntax. Replacing
C-style casts with C++-style casts helps guard against unexpected errors.

Discussion
One problem with C-style casts is that they provide one syntax to do subtly different
things, depending on such vagaries as the files that you #include. The C++ casts,
while retaining some of the dangers inherent in casts, avoid such ambiguities,
clearly document their intent, are easy to search for, take longer to write (which
makes one think twice)—and don't silently inject evil reinterpret_casts (see Item 92).

Consider the following code, where Derived inherits from Base:

extern void Fun(Derived*);

void Gun(Base* pb) {
//let's assume Gun knows for sure pb actually points to a Derived
//and wants to forward to Fun
Derived* pd = (Base*)pb; //bad: C-style cast
Fun(pd); }

If Gun has access to the definition of Derived (say by including "derived.h"), the
compiler will have the necessary object layout information to make any needed
pointer adjustments when casting from Base to Derived. But say Gun's author for-
gets to #include the appropriate definition file, and Gun only sees a forward declara-
tion of class Derived;. In that case, the compiler will just assume that Base and De-
rived are unrelated types, and will reinterpret the bits that form Base* as a Derived*,
without making any necessary adjustments dictated by object layout!

In short, if you forget to #include the definition, your code crashes mysteriously,
even though it compiles without errors. Avoid the problem this way:

extern void Fun(Derived*);

void Gun(Base* pb) {
//if we know for sure that pb actually points to a Derived, use: Derived* pd
= static_cast<Derived*>(pb); //good: C++-style cast //otherwise: =
dynamic_cast<Derived*>(pb); //good: C++-style cast Fun(pd);

}

Type Safety 181

Now, if the compiler doesn't have enough static information about the relationship
between Base and Derived, it will issue an error instead of automatically performing a
bitwise (and potentially lethal) reinterpret_cast (see Item 92).
The C++-style casts can protect the correctness of your code during system evolution
as well. Say you have an Employee-rooted hierarchy and you need to define a unique
employee ID for each Employee. You could define the ID to be a pointer to the
Employee itself. Pointers uniquely identify the objects they point to and can be
compared for equality, which is exactly what's needed. So you write:

typedef Employee* EmployeelD;

Employee& Fetch(EmployeelD id)
{ return *id; }

Say you code a fraction of the system with this design. Later on, it turns out that you
need to save your records to a relational database. Clearly, saving pointers is not
something that you'd want to do. So, you change the design such that each em-
ployee has a unique integral identifier. Then, the integral IDs can be persisted in the
database, and a hash table maps the IDs to Employee objects. Now the typedef is:

typedef int EmployeelD;

Employee& Fetch(EmployeelD id)
{ return employeeTable_.lookup(id); }

That is a valid design, and you'd expect that all misuses of EmployeelD would be
flagged as compile-time errors. And they will, except for this little obscure code:

void TooCoolToUseNewCasts(EmployeelD id) {
Secretary* pSecretary = (Secretary*)id; //bad: C-style cast

}

With the old typedef, the C-style cast performed a static_cast; with the new one, it
performs a reinterpret_cast against some integer, firmly planting the code in the
scary realm of undefined behavior (see Item 92).

C++-style casts are also easy to search for with automatic tools such as grep. (No
grep regular expression can catch the C cast syntax.) Because casts are very dangerous
(especially static_cast of pointers and reinterpret_cast; see Item 92), using automated
tools to keep track of them is always a good idea.

References
[DewhurstO3] §40 • [Meyers96] §2 • [StroustrupOO] §15.4.5 • [SutterOO] §44

182 C++ Coding Standards

96. Don't memcpy or memcmp non-PODs.

Summary

Don't try to X-ray objects (see Item 91): Don't use memcpy and memcmp to copy or
compare anything more structured than raw memory.

Discussion
memcpy and memcmp violate the type system. Using memcpy to copy objects is
like making money using a photocopier. Using memcmp to compare objects is like
comparing leopards by counting their spots. The tools and methods might appear to
do the job, but they are too coarse to do it acceptably.
C++ objects are all about information hiding (arguably the most profitable principle in
software engineering; see Item 11): Objects hide data (see Item 41) and devise precise
abstractions for copying that data through constructors and assignment operators (see
Items 52 through 55). Bulldozing over all that with memcpy is a serious violation of
information hiding, and often leads to memory and resource leaks (at best), crashes
(worse), or undefined behavior (worst). For example:

{
shared_ptr<int> p1(new int), p2(new int); //create two ints on the heap
memcpy(&p1, &p2, sizeof(p1)); //bad: a heinous crime

} // memory leak: p2's int is never deleted //
memory corruption: p1 s int is deleted twice

Abusing memcpy can affect aspects as fundamental as the type and the identity of an
object. Compilers often embed hidden data inside polymorphic objects (the so-called
virtual table pointer, or vptr) that give the object its run-time identity. In the case of
multiple inheritance, several such vptrs can coexist at various offsets inside the object,
and most implementations add yet more internal pointers when using virtual
inheritance. During normal use, the compiler takes care of managing all of these
hidden fields; memcpy can only wreak havoc.
Similarly, memcmp is an inappropriate tool for comparing anything more elaborate
than bits. Sometimes, it does too little (e.g., comparing C-style strings is not the same as
comparing the pointers with which the strings are implemented). And sometimes,
paradoxically, memcmp does too much (e.g., memcmp will needlessly compare
bytes that are not part of an object's state, such as padding inserted by the compiler
for alignment purposes). In both cases, the comparison's result will be wrong.

References
[DewhurstO3] §50 • [Stroustrup94] §11.4.4

Type Safety 183

97. Don't use unions to reinterpret
representation.

Summary
A deceit is still a lie: Unions can be abused into obtaining a "cast without a cast" by
writing one member and reading another. This is more insidious and even less pre-
dictable than reinterpret_cast (see Item 92).

Discussion
Don't read a field of a union unless it was the field that was last written. Reading a
different field of a union than the field that was last written has undefined behavior,
and is even worse than doing a reinterpret_cast (see Item 92); at least with the latter
the compiler has the fighting chance to warn and repel an "impossible
reinterpreta-tion" such as pointer to char. When abusing a union, no reinterpretation
of bits will ever yield a compile-time error or a reliable result.

Consider this code that is intended to deposit a value of one type (char*) and extract
the bits of that value as a different type (long):

union {
long intValue_;
char* pointerValuej };

pointerValue_ = somePointer;
long int gotcha = intValuej

This has two problems:

• It assumes too much: It assumes that sizeof(long) and sizeof(char*) are equal, and
that the bit representations are identical. These things are not true on all imple
mentations (see Item 91).

• It obscures your intent for both human readers and compilers: Playing union games
makes it harder for compilers to catch genuine type errors, and for humans to
spot logical errors, than even the infamous reinterpret_cast (see Item 92).

Exceptions
If two POD structs are members of a union and start with the same field types, it is
legal to write one such matching field and read another.

References
[AlexandrescuO2b] • [StroustrupOO] §C.8.2 • [SutterO4] §36

184 C++ Coding Standards

98. Don't use varargs (ellipsis).

Summary
Ellipses cause collapses: The ellipsis is a dangerous carryover from C. Avoid varargs,
and use higher-level C++ constructs and libraries instead.

Discussion
Functions taking a variable number of arguments are a nice commodity, but C-style
varargs aren't the way to get them. Varargs have many serious shortcomings:

• Lack of type safety: Essentially, the ellipsis tells the compiler: "Turn all checking
off. I'll take over from here and start reinterpret_casting." (See Item 92.)

• Tight coupling and required manual cooperation between caller and callee: The lan
guage's type checking has been disabled, so the call site must use alternate ways
to communicate the types of the arguments being passed. Such protocols (e.g.,
printf's format string) are notoriously error-prone and unsafe because they can
not be fully checked or enforced by either the caller or the callee. (See Item 99.)

• Undefined behavior for objects of class type: Passing anything but primitive and
POD (plain old data) types via varargs has undefined behavior in C++. Unfor
tunately, most compilers don't give a warning when you do it.

• Unknown number of arguments: For even the simplest variable-arguments func
tion (e.g., min) with a variable number of arguments of known type (e.g., int),
you still need to have a protocol for figuring out the number of arguments.
(Ironically, this is a good thing because it further discourages using varargs.)

Avoid using varargs in your functions' signatures. Avoid calling functions with var-
args in their own signatures, including legacy functions and standard C library func-
tions such as sprintf. Admittedly, calls to sprintf can often look more compact and
easier to read than equivalent calls using stringstream formatting and operator<<—
just like it's also admittedly easier to hop into a car without pesky safety belts and
bumpers. The risks are just not worth it. printf-related vulnerabilities continue to be a
serious security problem at the time of this writing (see [CowanOl]), and an entire
subindustry of tools exists to help find such type errors (see [TsaiOl]).

Prefer to use type-safe libraries that support variable arguments using other means.
For example, the [Boost] format library uses advanced C++ features to combine
safety with speed and convenience.

References
[Boost] • [CowanOl] • [Murray93] §2.6 • [SutterOi] §2-3 • [TsaiOl]

Type Safety 185

99. Don't use invalid objects. Don't
use unsafe functions.

Summary
Don't use expired medicines: Both invalid objects and historical but unsafe functions
wreak havoc on your program's health.

Discussion
There are three major kinds of invalid objects:

• Destroyed objects: Typical examples are automatic objects that have gone out of
scope and deleted heap-based objects. After you call an object's destructor, its
lifetime is over and it is undefined and generally unsafe to do anything with it.

• Semantically invalidated objects: Typical examples include dangling pointers to de
leted objects (e.g., a pointer p after a delete p;) and invalidated iterators (e.g., a
vector<T>::iterator i after an insertion at the beginning of the container the it
erator refers into). Note that dangling pointers and invalidated iterators are con
ceptually identical, and the latter often directly contain the former. It is generally
undefined and unsafe to do anything except assign another valid value to an in
validated object (e.g., p = new Object; or i = v.begin();).

• Objects that were never valid: Examples include objects "obtained" by forging a
pointer (using reinterpret_cast, see Item 92), or accessing past array boundaries.

Be aware of object lifetimes and validity. Never dereference an invalid iterator or
pointer. Don't make assumptions about what delete does and doesn't do; freed
memory is freed, and shouldn't be subsequently accessed under any circumstances.
Don't try to play with object lifetime by calling the destructor manually (e.g.,
obj.~T()) and then calling placement new. (See Item 55.)

Don't use the unsafe C legacy: strcpy, strncpy, sprintf, or any other functions that do
write to range-unchecked buffers, and/or do not check and correctly handle
out-of-bounds errors. C's strcpy does not check limits, and [C99]'s strncpy checks
limits but does not append a null if the limit is hit; both are crashes waiting to happen
and security hazards. Use more modern, safer, and more flexible structures and
functions, such as those found in the C++ standard library (see Item 77). They are not
always perfectly safe (for the sake of efficiency), but they are much less prone to errors
and can be better used to build safe code.

References
[C99] • [SutterOO] §1 • [SutterO4] §2-3

186 C++ Coding Standards

100. Don't treat arrays polymorphically.

Summary
Arrays are ill-adjusted: Treating arrays polymorphically is a gross type error that
your compiler will probably remain silent about. Don't fall into the trap.

Discussion
Pointers serve two purposes at the same time: that of monikers (small identifiers of
objects), and that of array iterators (they can walk through arrays of objects using
pointer arithmetic). As monikers, it makes a lot of sense to treat a pointer to Derived as
a pointer to Base. As soon as the array iteration part enters the stage, however, such
substitutability breaks down because an array of Derived isn't the same as an array
of Base. To illustrate: Mice and elephants are both mammals, but that doesn't mean a
convoy of a thousand elephants would be as long as one of a thousand mice.

Size does matter. When substituting a pointer to Derived to a pointer to Base, the
compiler knows exactly how to adjust the pointer (if necessary) because it has
enough information about both classes. However, when doing pointer arithmetic on a
pointer p to Base, the compiler computes p[n] as *(p + n * sizeof(Base)), thus as-
suming that the objects lying in memory are all Base objects—and not objects of
some derived type that might have a different size. Imagine, now, just how easy it is to
tromp all over of an array of Derived if you convert the pointer marking its start to
Base* (with compiler's silent approval) and then perform pointer arithmetic on that
pointer (while the compiler doesn't blink an eye either)!
Such accidents are an unfortunate interaction between substitutability, which dic-
tates that pointers to derived classes should be usable as pointers to their bases, and
C's legacy pointer arithmetic, which assumes pointers are monomorphic and uses
solely static information to compute strides.
To store arrays of polymorphic objects, you need an array (or, better still, a real con-
tainer; see Item 77) of pointers to the base class (e.g., plain pointers or, better still,
shared_ptrs; see Item 79). Then each pointer in the array refers to a polymorphic ob-
ject, likely an object allocated on the free store. Or, if you want to expose an interface
to a container of polymorphic objects, you need to encapsulate the entire array and
offer a polymorphic interface for iteration.
Incidentally, a good reason to prefer references to pointers in interfaces is to make it
clear that you're talking about one object, as opposed to possibly an array of them.

References
[C++TR104] • [DewhurstO3] §33, §89 • [SutterOO] §36

Bibliography

Note: For browsing convenience, this bibliography is also available online at:

http://www.gotw.ca/pubHcations/c++cs/bibliography.htm The bold references (e.g.,

[Abrahams96]) are hyperlinks in the online bibliography.

[Abelson96]

[Abrahams96]

[AbrahamsOla]

[AbrahamsOlb]

[AlexandrescuOOa]

[AlexandrescuOOb]

[AlexandrescuOOc]

[AlexandrescuOl]

H. Abelson and G. J. Sussman. Structure and Interpretation of
Computer Programs (2"d Edition) (MIT Press, 1996).

D. Abrahams. "Exception Safety in STLport" (STLport website,
1996).

D. Abrahams. "Exception Safety in Generic Components," in
M. Jazayeri, R. Loos, D. Musser (eds.), Generic Programming:
International Seminar on Generic Programming, Dagstuhl Castle,
Germany, April/May 1998, Selected Papers, Lecture Notes in
Computer Science 1766 (Springer, 2001).

D. Abrahams. "Error and Exception Handling" ([Boost] web-
site, 2001).

A. Alexandrescu. "Traits: The else-if-then of Types" (C++
Report, 12(4), April 2000).

A. Alexandrescu. "Traits on Steroids" (C++ Report, 12(6),
June 2000).

A. Alexandrescu and P. Marginean. "Change the Way You
Write Exception-Safe Code—Forever" (C/C++ Users Journal,
18(12), December 2000).

A. Alexandrescu. Modern C++ Design (Addison-Wesley,
2001).

187

http://www.gotw.ca/pubHcations/c++cs/bibliography.htm

188 Bibliography

[AlexandrescuOla]

[AlexandrescuO2a]

[AlexandrescuO2b]

[AlexandrescuO3a]

[AlexandrescuO3b]

[AlexandrescuO3c]

[AlexandrescuO3d]

[AlexandrescuO4]

[Allison98]

[Austern99]

[Barton94]

[BentleyOO]

[BetterSCM]

[Boost]

[BoostLRGJ

[Brooks95]

[Butenhof97]

A. Alexandrescu. "A Policy-Based basic_string Implementa-
tion" (C/C++ Users Journal, 19(6), June 2001).

A. Alexandrescu. "Multithreading and the C++ Type Sys-
tem" (InformIT website, February 2002).

A. Alexandrescu. "Discriminated Unions (I)," "... (II)," and
"... (Ill)" (C/C++ Users Journal, 20(4,6,8), April/June/August
2002).

A. Alexandrescu. "Move Constructors" (C/C++ Users Journal,
21(2), February 2003).

A. Alexandrescu. "Assertions" (C/C++ Users Journal, 21(4),
April 2003).

A. Alexandrescu and P. Marginean. "Enforcements" (C/C++
Users Journal, 21(6), June 2003).

A. Alexandrescu and D. Held. "Smart Pointers Reloaded"
(C/C++ Users Journal, 21(10), October 2003).

A. Alexandrescu. "Lock-Free Data Structures" (C/C++ Users
Journal, 22(10), October 2004).

C. Allison. C & C++ Code Capsules (Prentice Hall, 1998).

M. H. Austern. Generic Programming and the STL
(Addison-Wesley, 1999).

J. Barton and L. Nackman. Scientific and Engineering C++
(Addison-Wesley, 1994).

J. Bentley. Programming Pearls (2"d Edition) (Addison-Wesley,
2000).

Better SCM Initiative website.

C++ Boost.

"Boost Library Requirements and Guidelines" (Boost web-
site).

F. Brooks. The Mythical Man-Month (Addison-Wesley, 1975;
reprinted with corrections in 1995).

D. Butenhof. Programming with POSIX Threads (Addison-
Wesley, 1997).

Bibliography 189

[Cargill92]

[C90]

[C99]

[C++98]

[C++03]

[C++TR104]

[Cline99]

[Constantine95]

[Coplien92]

[CormenOl]

[CVS]

[CowanOl]

[DewhurstO3]

[Dinkumware-Safe]

[Ellis90]

T. Cargill. C++ Programming Style (Addison-Wesley, 1992).

ISO/IEC 9899:1990(E), Programming Languages — C (ISO C90
and ANSI C89 Standard).

ISO/IEC 9899:1999(E), Programming Languages — C (revised
ISO and ANSI C99 Standard).

ISO/IEC 14882:1998(E), Programming Languages—C++ (ISO
and ANSI C++ Standard).

ISO/IEC 14882:2003(E), Programming Languages—C++ (up-
dated ISO and ANSI C++ Standard including the contents of
[C++98] plus errata corrections).

ISO/IEC JTC1/SC22/WG21/N1711. (Draft) Technical Report
on Standard Library Extensions (ISO C++ committee working
document, November 2004). This is a near-final draft of the
extensions to the C++ standard library due to be published in
2005, including shared_ptr.

M. Cline, G. Lomow, and M. Girou. C++ FAQs (2"d Edition)
(Addison-Wesley, 1999).

L. Constantine. Constantine on Peopleware (Yourdon Press,
1995).

J. Coplien. Advanced C++ Programming Styles and Idioms (Ad-
dison-Wesley, 1992).

T. Cormen, C. Leiserson, R. Rivest, C. Stein. Introduction to
Algorithms (2nd Edition) (MIT Press, 2001).

CVS home page.

C. Cowan, M. Barringer, S. Beattie, and G. Kroah-Hartman.
"FormatGuard: Automatic Protection From printf Format
String Vulnerabilities" {Proceedings of the 2001 USENIX Secu-
rity Symposium, August 2001, Washington, D.C.).

S. Dewhurst. C++ Gotchas (Addison-Wesley, 2003).

Dinkumware Unabridged Library documentation
(Dinkumware website).

M. Ellis and B. Stroustrup. The Annotated C++ Reference Man-
ual (Addison-Wesley, 1990).

190 Bibliography

[Gamma95]

[GnuMake]

[GotW]

[HenneyOO]

[HenneyOl]

[HenneyO2a]

[HenneyO2b]

[Henricson97]

[Horstmann95]

[Josuttis99]

[Keffer95]

[Kernighan99]

[Knuth89]

[Knuth97a]

[Knuth97b]

[Knuth98]

[Koenig97]

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software
(Addison-Wesley, 1995).
Gnu make (Gnu website).

H. Sutter. Guru of the Week column.

K. Henney. "C++ Patterns: Executing Around Sequences"
(EuroPLoP 2000 proceedings).

K. Henney. "C++ Patterns: Reference Accounting"
(Eu-roPLoP 2001 proceedings).

K. Henney. "Stringing Things Along" (Application Develop-
ment Advisor, July-August 2002).

K. Henney. "The Next Best String" (Application Development
Advisor, October 2002).

M. Henricson and E. Nyquist. Industrial Strength C++ (Pren-
tice Hall,1997).

C. S. Horstmann. "Safe STL" (1995).

N. Josuttis. The C++ Standard Library (Addison-Wesley, 1999).

T. Keffer. Rogue Wave C++ Design, Implementation, and Style
Guide (Rogue Wave Software, 1995).

B. Kernighan and R. Pike. The Practice of Programming (Addi-
son-Wesley, 1999).

D. Knuth. "The Errors of TeX" (Software—Practice & Experi
ence, 19(7), July 1989.

D. Knuth. The Art of Computer Programming, Volume 1: Fun-
damental Algorithms (3rd Edition) (Addison-Wesley, 1997).

D. Knuth. The Art of Computer Programming, Volume 2:
Semi-numerical Algorithms (3rd Edition) (Addison-Wesley,
1997).

D. Knuth. The Art of Computer Programming, Volume 3: Sorting
and Searching (2nd Edition) (Addison-Wesley, 1998).

A. Koenig and B. Moo. Ruminations on C++ (Addison-Wesley,
1997).

Bibliography 191

[Lakos96]

[Liskov88]

[Martin96a]

[Martin96b]

[Martin96c]

[Martin98]

[MartinOO]

[McConnell93]

[Metrowerks]

[MeyerOO]

[Meyers96]

[Meyers97]

[MeyersOO]

[MeyersOl]

[MeyersO4]

[MilewskiOl]

[Miller56]

[MozillaCRFAQ]

J. Lakos. Large-Scale C++ Software Design (Addison-Wesley,
1996).

B. Liskov. "Data Abstraction and Hierarchy" (SIGPLAN No-
tices, 23(5), May 1988).

R. C. Martin. "The Dependency Inversion Principle" (C++
Report, 8(5), May 1996).

R. C. Martin. "Granularity" (C++ Report, 8(9), October 1996).

R. C. Martin. "The Open-Closed Principle" (C++ Report, 8(1),
January 1996).

R. C. Martin, D. Riehle, F. Buschmann (eds.). Pattern Lan-
guages of Program Design 3 (Addison-Wesley, 1998).

R. C. Martin, "Abstract Classes and Pure Virtual Functions" in
R. C. Martin (ed.), More C++ Gems (Cambridge University
Press, 2000).

S. McConnell. Code Complete (Microsoft Press, 1993).

Metrowerks.

B. Meyer. Object-Oriented Software Construction (2'"' Edition)
(Prentice Hall, 2000).

S. Meyers. More Effective C++ (Addison-Wesley, 1996).

S. Meyers. Effective C++ (2nd Edition) (Addison-Wesley, 1997).

S. Meyers. "How Non-Member Functions Improve Encapsu-
lation" (C/C++ Users journal, 18(2), February 2000).

S. Meyers. Effective STL (Addison-Wesley, 2001).

S. Meyers and A. Alexandrescu. "C++ and the Perils of Dou-
ble-Checked Locking, Part 1" and "...Part 2" (Dr. Dobb's
journal, 29(7,8), July and August 2004).

B. Milewski. C++ In Action (Addison-Wesley, 2001).

G. A. Miller. "The Magical Number Seven, Plus or Minus
Two: Some Limits on Our Capacity for Processing Informa-
tion" (The Psychological Review, 1956, vol. 63).

"Frequently Asked Questions About mozilla.org's Code Re-
view Process" (Mozilla website).

192 Bibliography

[Murray93]

[MusserOl]

[ParnasO2]

[Peters99]

[Piwowarski82]

[Saks99]

[SchmidtOl]

[SeamonkeyCR]

[Sedgewick98]

[STLport-Debug]

[Stroustrup94]

[StroustrupOO]

[Sutter99]

[SutterOO]

[SutterO2]

[SutterO3]

[SutterO4]

R. Murray. C++ Strategies and Tactics (Addison-Wesley, 1993).

D. R. Musser, G. J. Derge, and A. Saini. STL Tutorial and Refer-
ence Guide, 2nd Edition (Addison-Wesley, 2001).

D. Parnas. "The Secret History of Information Hiding" (Soft-
ware Pioneers: Contributions To Software Engineering,
Springer-Verlag, New York, 2002).

T. Peters. "The Zen of Python" (comp.lang.pyfhon, June
1999).

P. Piwowarski. "A Nesting Level Complexity Measure"
{ACM SIGPLAN Notices, 9/1982).

D. Saks. "Thinking Deeply," "Thinking Deeper," and "Think-
ing Even Deeper" (C/C++ Users Journal, 17(4,5,6), April, May,
and June 1999).

D. Schmidt, M. Stal, H. Rohnert, R Buschmann.
Pattern-Oriented Software Architecture, Volume 2: Patterns for
Concurrent and Networked Objects (Wiley, 2001).

"Seamonkey Code Reviewer's Guide" (Mozilla website).

R. Sedgewick. Algorithms in C++, Parts 1-4: Fundamentals, Data
Structure, Sorting, Searching (3rd Edition) (Addison-Wesley,
1998).

B. Fomitchev. "STLport: Debug Mode" (STLport website).

B. Stroustrup. The Design and Evolution of C++
(Addison-Wesley, 1994).

B. Stroustrup. The C++ Programming Language (Special 3"1 Edi-
tion) (Addison-Wesley, 2000).

H. Sutter. "ACID Programming" (Guru of the Week #61).

H. Sutter. Exceptional C++ (Addison-Wesley, 2000).

H. Sutter. More Exceptional C++ (Addison-Wesley, 2002).

H. Sutter. "Generalizing Observer" (C/C++ Users Journal,
21(9), September 2003).

H. Sutter. Exceptional C++ Style (Addison-Wesley, 2004).

Bibliography 193

[SutterO4a]

[SutterO4b]

[SutterO4c]

[SutterO4d]

[SuttHyslOl]

[SuttHyslO2]

[SuttHyslO3]

[SuttHyslO4a]

[SuttHyslO4b]

[Taligent94]

[TsaiOl]

[Vandevoorde03]

[WebberO3]

H. Sutter. "Function Types" (C/C++ Users Journal, 22(7), July
2004).

H. Sutter. "When and How To Use Exceptions" {C/C++ Users
Journal, 22(8), August 2004).

H. Sutter. "'Just Enough' Thread Safety" (C/C++ Users Journal,
22(9), September 2004).

H. Sutter. "How to Provide (or Avoid) Points of Customization
in Templates" (C/C++ Users Journal, 22(11), November 2004).

H. Sutter and J. Hyslop. "Hungarian wartHogs" (C/C++ Users
Journal, 19(11), November 2001).

H. Sutter and J. Hyslop. "A Midsummer Night's Madness"
(C/C++ Users Journal, 20(8), August 2002).

H. Sutter and J. Hyslop. "Sharing Causes Contention"
(C/C++ Users Journal, 21(4), April 2003).

H. Sutter and J. Hyslop. "Getting Abstractions" (C/C++ Users
Journal, 22(6), June 2004).

H. Sutter and J. Hyslop. "Collecting Shared Objects" (C/C++
Users Journal, 22(8), August 2004).

Taligent's Guide to Designing Programs (Addison-Wesley,
1994).

T. Tsai and N. Singh. "Libsafe 2.0: Detection of Format String
Vulnerability Exploits" (Avaya Labs, March 2001).

D. Vandevoorde and N. Josuttis. C++ Templates
(Addison-Wesley, 2003).

A. B. Webber. Modern Programming Languages: A Practical In-
troduction (Franklin, Beedle & Associates, 2003).

Summary of Summaries

Organizational and Policy Issues
Don't sweat the small stuff. (Or: Know what not to standardize.)
Say only what needs saying: Don't enforce personal tastes or obsolete practices.
Compile cleanly at high warning levels.

Take warnings to heart: Use your compiler's highest warning level. Require clean (warning-free) builds.
Understand all warnings. Eliminate warnings by changing your code, not by reducing the warning level.
Use an automated build system.

Push the (singular) button: Use a fully automatic ("one-action") build system that builds the whole
project without user intervention.

3. Use a version control system.
The palest of ink is better than the best memory (Chinese proverb): Use a version control system (VCS).
Never keep files checked out for long periods. Check in frequently after your updated unit tests pass.
Ensure that checked-in code does not break the build.

4. Invest in code reviews.
Re-view code: More eyes will help make more quality. Show your code, and read others'. You'll all learn and
benefit.

Design Style
5. Give one entity one cohesive responsibility.

Focus on one thing at a time: Prefer to give each entity (variable, class, function, namespace, module,
library) one well-defined responsibility. As an entity grows, its scope of responsibility naturally increases,
but its responsibility should not diverge.

6. Correctness, simplicity, and clarity come first.
KISS (Keep It Simple Software): Correct is better than fast. Simple is better than complex. Clear is better
than cute. Safe is better than insecure (see Items 83 and 99).

7. Know when and how to code for scalability.
Beware of explosive data growth: Without optimizing prematurely, keep an eye on asymptotic complexity.
Algorithms that work on user data should take a predictable, and preferably no worse than linear, time

195

0.

1.

2.

196 Summary of Summaries

with the amount of data processed. When optimization is provably necessary and important, and
especially if it's because data volumes are growing, focus on improving big-Oh complexity rather than on
micro-optimizations like saving that one extra addition.

8. Don 't optimize prematurely.
Spur not a willing horse (Latin proverb): Premature optimization is as addictive as it is unproductive. The
first rule of optimization is: Don't do it. The second rule of optimization (for experts only) is: Don't do it yet.
Measure twice, optimize once.

9. Don't pessimize prematurely.
Easy on yourself, easy on the code: All other things being equal, notably code complexity and readability,
certain efficient design patterns and coding idioms should just flow naturally from your fingertips and
are no harder to write than the pessimized alternatives. This is not premature optimization; it is avoiding
gratuitous pessimization.

10. Minimize global and shared data.
Sharing causes contention: Avoid shared data, especially global data. Shared data increases coupling,
which reduces maintainability and often performance.

11. Hide information.
Don't tell: Don't expose internal information from an entity that provides an abstraction.

12. Know when and how to code for concurrency.
'lsareafe"ly: If your application uses multiple threads or processes, know how to minimize sharing

objects where possible (see Item 10) and share the right ones safely.
13. Ensure resources are owned by objects. Use explicit RAII and smart pointers.

Don't saw by hand when you have power tools: C++'s "resource acquisition is initialization" (RAII) idiom is
the power tool for correct resource handling. RAII allows the compiler to provide strong and automated
guarantees that in other languages require fragile hand-coded idioms. When allocating a raw resource,
immediately pass it to an owning object. Never allocate more than one resource in a single statement.

Coding Style
14. Prefer compile- and link-time errors to run-time errors.

Don't put off 'til run time what you can do at build time: Prefer to ivrite code that uses the compiler to
check for invariants during compilation, instead of checking them at run lime. Run-time checks are
control- and data-dependent, which means you'll seldom know whether they are exhaustive. In contrast,
compile-time checking is not control- or data-dependent and typically offers higher degrees of confidence.

15. Use const proactively.
const is your friend: Immutable values are easier to understand, track, and reason about, so prefer
constants over variables wherever it is sensible and make const your default choice when you define a value:
It's safe, it's checked at compile time (see Item 14), and it's integrated with C++'s type system. Don't cast
away const except to call a const-incorrect function (see Item 94).

Summary of Summaries 197

16. Avoid macros.
TO_PUT_IT_BLUNTLY: Macros are the bluntest instrument of C and C++'s abstraction facilities,
ravenous wolves in functions' clothing, hard to tame, marching to their own beat all over your scopes.
Avoid them.

17. Avoid magic numbers.
Programming isn't magic, so don't incant it: Avoid spelling literal constants like 42 or 3.14159 in code.
They are not self-explanatory and complicate maintenance by adding a hard-to-detect form of duplication.
Use symbolic names and expressions instead, such as width * aspectRatio.

18. Declare variables as locally as possible.
Avoid scope bloat, as with requirements so too with variables): Variables introduce state, and you should
have to deal with as little state as possible, with lifetimes as short as possible. This is a specific case of Item 10
that deserves its own treatment.

19. Always initialize variables.
Start with a clean slate: Uninitialized variables are a common source of bugs in C and C++ programs.
Avoid such bugs by being disciplined about cleaning memory before you use it; initialize variables upon
definition.

20. Avoid long functions. Avoid deep nesting.
Short is better than long, flat is better than deep: Excessively long functions and nested code blocks are
often caused by failing to give one function one cohesive responsibility (see Item 5), and both are usually
solved by better refactoring.

21. Avoid initialization dependencies across compilation units.
Keep (initialization) order: Namespace-level objects in different compilation units should never depend on
each other for initialization, because their initialization order is undefined. Doing otherwise causes
headaches ranging from mysterious crashes when you make small changes in your project to severe
non-portability even to new releases of the same compiler.

22. Minimize definitional dependencies. Avoid cyclic dependencies.
Don't be over-dependent: Don't #include a definition when a forward declaration will do. Don't be
co-dependent: Cyclic dependencies occur when two modules depend directly or indirectly on one another. A
module is a cohesive unit of release (see page 103); modules that are interdependent are not really individual
modules, but super-glued together into what's really a larger module, a larger unit of release. Thus, cyclic
dependencies work against modularity and are a bane of large projects. Avoid them.

23. Make header files self-sufficient.
Behave responsibly: Ensure that each header you write is compilable standalone, by having it include any
headers its contents depend upon.

24. Always write internal #include guards. Never write external #include guards.
Wear head(er) protection: Prevent unintended multiple inclusions by using #include guards with unique
names for all of your header files.

198 Summary of Summaries

Functions and Operators
25. Take parameters appropriately by value, (smart) pointer, or reference.

Parameterize well: Distinguish among input, output, and input/output parameters, and between value
and reference parameters. Take them appropriately.

26. P rese rve natu ra l seman tics fo r ove rloaded ope ra to rs .
Programmers hate surprises: Overload operators only for good reason, and preserve natural semantics; if
that's difficult, you might be misusing operator overloading.

27. Pre fe r the canon ical fo rms of a r ithmetic and assignmen t ope rators .
If you a+b, also a+=b: When defining binary arithmetic operators, provide their assignment versions as
well, and write to minimize duplication and maximize efficiency.

28. Prefer the canonical form of + + and --. P refer calling the prefix forms.
If you + +c, also C++: The increment and decrement operators are tricky because each has pre- and
postfix forms, with slightly different semantics. Define operator++ and operator— such that they
mimic the behavior of their built-in counterparts. Prefer to call the prefix versions if you don't need the
original value.

29. Cons ide r ove rload ing to avoid imp lic i t type conve rs ions.
Do not multiply objects beyond necessity (Occam's Razor): Implicit type conversions provide syntactic
convenience (but see Item 40). But when the work of creating temporary objects is unnecessary and
optimization is appropriate (see Item 8), you can provide overloaded functions with signatures that match
common argument types exactly and won't cause conversions.

30. Avo id ove rload ing &&, | |, o r, (comma).
Wisdom means knowing when to refrain: The built-in &&, \\, and, (comma) enjoy special treatment from
the compiler. If you overload them, they become ordinary functions with very different semantics (you will
violate Items 26 and 31), and this is a sure way to introduce subtle bugs and fragilities. Don't overload
these operators naively.

31. Don' t write code tha t depends on the o rde r o f evaluat ion o f funct ion
a rgumen ts .
Keep (evaluation) order: The order in which arguments of a function are evaluated is unspecified, so don't rely
on a specific ordering.

Class Design and Inheritance
32. Be clear what kind of class you're writing.

Know thyself: There are different kinds of classes. Know which kind you are writing.
33. Prefe r min imal c lasses to monolith ic classes.

Divide and conquer: Small classes are easier to write, get right, test, and use. They are also more likely to be
usable in a variety of situations. Prefer such small classes that embody simple concepts instead of
kitchen-sink classes that try to implement many and/or complex concepts (see Items 5 and 6).

Summary of Summaries 199

34. Prefer composition to inheritance.
Avoid inheritance taxes: Inheritance is the second-tightest coupling relationship in C++, second only to
friendship. Tight coupling is undesirable and should be avoided where possible. Therefore, prefer
composition to inheritance unless you know that the latter truly benefits your design.

35. Avoid inheriting from classes that were not designed to be base classes.
Some people don't want to have kids: Classes meant to be used standalone obey a different blueprint than
base classes (see Item 32). Using a standalone class as a base is a serious design error and should be avoided. To
add behavior, prefer to add nonmember functions instead of member functions (see Item 44). To add state, prefer
composition instead of inheritance (see Item 34). Avoid inheriting from concrete base classes.

36. Prefer providing abstract interfaces.
Love abstract art: Abstract interfaces help you focus on getting an abstraction right without muddling it
with implementation or state management details. Prefer to design hierarchies that implement abstract
interfaces that model abstract concepts.

37. Public inheritance is substitutability. Inherit, not to reuse, but to be reused.
Know what: Public inheritance allows a pointer or reference to the base class to actually refer to an object of
some derived class, without destroying code correctness and without needing to change existing code. Know
why: Don't inherit publicly to reuse code (that exists in the base class); inherit publicly in order to be
reused (by existing code that already uses base objects polymorphically).

38. Practice safe overriding.
Override responsibly: When overriding a virtual function, preserve substitutability; in particular, observe
the function's pre- and post-conditions in the base class. Don't change default arguments of virtual
functions. Prefer explicitly redeclaring overrides as virtual. Beware of hiding overloads in the base class.

39. Consider making virtual functions nonpublic, and public functions nonvirtual.
In base classes with a high cost of change (particularly ones in libraries and frameworks): Prefer to make
public functions nonvirtual. Prefer to make virtual functions private, or protected if derived classes need to
be able to call the base versions. (Note that this advice does not apply to destructors; see Item 50.)

40. Avoid providing implicit conversions.
Not all change is progress: Implicit conversions can often do more damage than good. Think twice before
providing implicit conversions to and from the types you define, and prefer to rely on explicit conversions
(explicit constructors and named conversion functions).

41. Make data members private, except in behaviorless aggregates (C-style
structs).
They're none of your caller's business: Keep data members private. Only in the case of simple C-style struct
types that aggregate a bunch of values but don't pretend to encapsulate or provide behavior, make all data
members public. Avoid mixes of public and nonpublic data, which almost always signal a muddled
design.

200 Summary of Summaries

42. Don't give away your internals.
Don't volunteer too much: Avoid returning handles to internal data managed by your class, so clients
won't uncontrollably modify state that your object thinks it owns.

43. Pimpl judiciously.
Overcome the language's separation anxiety: C++ makes private members inaccessible, but not invisible.
Where the benefits warrant it, consider making private members truly invisible using the Pimpl idiom to
implement compiler firewalls and increase information hiding. (See Items 11 and 41.)

44. Prefer writing nonmember nonfriend functions.
Avoid membership fees: Where possible, prefer making functions nonmember nonfriends.

45. Always provide new and delete together.
They're a package deal: Every class-specific overload void* operator new(parms) must be accompanied by
a corresponding overload void operator delete(void*, parms), where parms is a list of extra
parameter types (of which the first is always std::size_t). The same goes for the array forms new[] and
delete[].

46. If you provide any class-specific new, provide all of the standard forms (plain,
in-place, and nothrow).
Don't hide good news: If a class defines any overload of operator new, it should provide overloads of all
three of plain, in-place, and non-throwing operator new. If you don't, they'll be hidden and unavailable to
users of your class.

Construction, Destruction, and Copying
47. Define and initialize member variables in the same order.

Agree with your compiler: Member variables are always initialized in the order they are declared in the
class definition; the order in which you write them in the constructor initialization list is ignored. Make
sure the constructor code doesn't confusingly specify a different order.

48. Prefer initialization to assignment in constructors.
Set once, use everywhere: In constructors, using initialization instead of assignment to set member
variables prevents needless run-time work and takes the same amount of typing.

49. Avoid calling virtual functions in constructors and destructors.
Virtual functions only "virtually" always behave virtually: Inside constructors and destructors, they
don't. Worse, any direct or indirect call to an unimplemented pure virtual function from a constructor or
destructor results in undefined behavior. If your design wants virtual dispatch into a derived class from a
base class constructor or destructor, you need other techniques such as post-constructors.

50. Make base class destructors public and virtual, or protected and nonvirtual.
To delete, or not to delete; that is the question: If deletion through a pointer to a base Base should be
allowed, then Base's destructor must be public and virtual. Otherwise, it should be protected and
nonvirtual.

Summary of Summaries 201

51. Destructors, deallocation, and swap never fail.
Everything they attempt shall succeed: Never allow an error to be reported from a destructor, a resource
deallocation function (e.g., operator delete), or a swap function. Specifically, types whose destructors
may throw an exception are flatly forbidden from use with the C++ standard library.

52. Copy and des troy consis ten tly.
What you create, also clean up: If you define any of the copy constructor, copy assignment operator, or
destructor, you might need to define one or both of the others.

53. Explic it ly enable or disable copy ing.
Copy consciously: Knowingly choose among using the compiler-generated copy constructor and
assignment operator, writing your own versions, or explicitly disabling both if copying should not be
allowed.

54. Avoid slic ing. Conside r Clone instead of copying in base classes.
Sliced bread is good; sliced objects aren't: Object slicing is automatic, invisible, and likely to bring
wonderful polymorphic designs to a screeching halt. In base classes, consider disabling the copy
constructor and copy assignment operator, and instead supplying a virtual Clone member function if
clients need to make polymorphic (complete, deep) copies.

55. Pre fe r the canon ical fo rm of ass ignment .
Your assignment: When implementing operator-, prefer the canonical form—nonvirtual and with a
specific signature.

56. Wheneve r i t makes sense, p rovide a no -fa il swap (and provide it co rrec tly) .
swap is both a lightweight and a workhorse: Consider providing a swap function to efficiently and
infallibly swap the internals of this object with another's. Such a function can be handy for implementing a
number of idioms, from smoothly moving objects around to implementing assignment easily to
providing a guaranteed commit function that enables strongly error-safe calling code. (See also Item 51.)

Namespaces and Modules
57. Keep a type and its nonmember function interface in the same namespace.

Nonmembers are functions too: Nonmember functions that are designed to be part of the interface of a
class X (notably operators and helper functions) must be defined in the same namespace as the X in order to
be called correctly.

58. Keep types and func tions in sepa ra te namespaces un les s they're spec if ical ly
in tended to work toge the r .
Help prevent name lookup accidents: Isolate types from unintentional argument-dependent lookup (ADL,
also known as Koenig lookup), and encourage intentional ADL, by putting them in their own namespaces
(along with their directly related nonmember functions; see Item 57). Avoid putting a type into the same
namespace as a templated function or operator.

59. Don't write namespace usings in a header f ile o r be fore an #include.
Namespace usings are for your convenience, not for you to inflict on others: Never write a using
declaration or a using directive before an #include directive.

202 Summary of Summaries

Corollary: In header files, don't write namespace-level using directives or using declarations; instead,
explicitly namespace-qualify all names. (The second rule follows from the first, because headers can never
know what other header #includes might appear after them.)

60. Avo id a lloca ting and dea l loca t ing memory in d iffe ren t modules .
Put things back where you found them: Allocating memory in one module and deallocating it in a
different module makes your program fragile by creating a subtle long-distance dependency between those
modules. They must be compiled with the same compiler version and same flags (notably debug vs.
NDEBUG) and the same standard library implementation, and in practice the module allocating the
memory had better still be loaded when the deallocation happens.

61. Don't de f ine ent it ies with linkage in a header f ile .
Repetition causes bloat: Entities with linkage, including namespace-level variables or functions, have
memory allocated for them. Defining such entities in header files results in either link-time errors or
memory waste. Put all entities with linkage in implementation files.

62. Don' t a l low excep t ions to p ropaga te ac ross modu le bounda ries .
Don't throiv stones into your neighbor's garden: There is no ubiquitous binary standard for C++
exception handling. Don't allow exceptions to propagate between two pieces of code unless you control the
compiler and compiler options used to build both sides; otherwise, the modules might not support
compatible implementations for exception propagation. Typically, this boils down to: Don't let exceptions
propagate across module/subsystem boundaries.

63. Use suffic ient ly po rtable types in a modu le 's in terface.
Take extra care when living on the edge (of a module): Don't allow a type to appear in a module's external
interface unless you can ensure that all clients understand the type correctly. Use the highest level of
abstraction that clients can understand.

Templates and Genericity
64. Blend static and dynamic polymorphism judiciously.

So much more than a mere sum of parts: Static and dynamic polymorphism arc complementary.
Understand their tradeoffs, use each for what it's best at, and mix them to get the best of both worlds.

65. Customize inten tiona lly and exp lic it ly.
Intentional is better than accidental, and explicit is better than implicit: When writing a template, provide
points of customization knowingly and correctly, and document them clearly. When using a template,
know hoiv the template intends for you to customize it for use with your type, and customize it
appropriately.

66. Don' t spec ia lize funct ion templa tes .
Specialization is good only when it can be done correctly: When extending someone else's function
template (including std::swap), avoid trying to write a specialization; instead, write an overload of the
function template, and put it in the namespace of the type(s) the overload is designed to be used for. (See
Item 57.) When you write your own function template, avoid encouraging direct specialization of the
function template itself.

Summary of Summaries 203

67. Don't write unintentionally nongeneric code.
Commit to abstractions, not to details: Use the most generic and abstract means to implement a piece of
functionality.

Error Handling and Exceptions
68. Assert liberally to document internal assumptions and invariants.

Be assertive! Use assert or an equivalent liberally to document assumptions internal to a module (i.e.,
where the caller and callee are maintained by the same person or team) that must always be true and
otherwise represent programming errors (e.g., violations of a function's postconditions detected by the
caller of the function). (See also Item 70.) Ensure that assertions don't perform side effects.

69. Establish a rational error handling policy, and follow it strictly.
Consciously specify, and conscientiously apply, what so many projects leave to ad-hoc (mis)judgment:
Develop a practical, consistent, and rational error handling policy early in design, and then stick to it.
Ensure that it includes:
• Identification: What conditions are errors.
• Severity: How important or urgent each error is.
• Detection: Which code is responsible for detecting the error.
• Propagation: What mechanisms are used to report and propagate error notifications in each module.
» Handling: What code is responsible for doing something about the error.
• Reporting: How the error will be logged or users notified.
Change error handling mechanisms only on module boundaries.

70. Distinguish between errors and non-errors.
A breach of contract is an error: A function is a unit of work. Thus, failures should be viewed as errors or
otherwise based on their impact on functions. Within a function f, a failure is an error if and only if it
violates one off's preconditions or prevents ffrom meeting any of its callees' preconditions, achieving any
off's own postconditions, or reestablishing any invariant that f shares responsibility for maintaining. In
particular, here we exclude internal programming errors (i.e., where the caller and callee are the
responsibility of the same person or team, such as inside a module), which are a separate category
normally dealt with using assertions (see Item 68).

71. Design and write error-safe code.
Promise, but don't punish: In each function, give the strongest safety guarantee that won't penalize
callers who don't need it. Always give at least the basic guarantee.
Ensure that errors always leave your program in a valid state. This is the basic guarantee. Beware of
invariant-destroying errors (including but not limited to leaks), which are just plain bugs.
Prefer to additionally guarantee that the final state is either the original state (if there was an error the
operation was rolled back) or the intended target state (if there was no error the operation was
committed). This is the strong guarantee.

204 Summary of Summaries

Prefer to additionally guarantee that the operation can never fail at all. Although this is not possible for
most functions, it is required for functions like destructors and deallocation functions. This is the no-fail
guarantee.

72. Prefer to use exceptions to report errors.
When harmed, take exception: Prefer using exceptions over error codes to report errors. Use status codes
(e.g., return codes, errno) for errors when exceptions cannot be used (see Item 62), and for conditions that
are not errors. Use other methods, such as graceful or ungraceful termination, "when recovery is
impossible or not required.

73. Throw by value, catch by reference.
Learn to catch properly: Throw exceptions by value (not pointer) and catch them by reference (usually to
const). This is the combination that meshes best with exception semantics. When rethrowing the same
exception, prefer just throw; to throw e;.

74. Report, handle, and translate errors appropriately.
Know when to say when: Report errors at the point they are detected and identified as errors. Handle or
translate each error at the nearest level that can do it correctly.

75. Avoid exception specifications.
Take exception to these specifications: Don't write exception specifications on your functions unless
you're forced to (because other code you can't change has already introduced them; see Exceptions.)

STL: Containers
76. Use vector by default. Otherwise, choose an appropriate container.

Using the "right container" is great: If you have a good reason to use a specific container type, use that
container type knowing that you did the right thing.
So is using vector: Otherwise, write vector and keep going without breaking stride, also knowing you
did the right thing.

77. Use vector and string instead of arrays.
Why juggle Ming vases? Avoid implementing array abstractions with C-style arrays, pointer arithmetic,
and memory management primitives. Using vector or string not only makes your life easier, but also helps
you write safer and more scalable software.

78. Use vector (and string::c_str) to exchange data with non-C++ APIs.
vector isn't lost in translation: vector and string::c_str are your gateway to communicate ivith non-C++
APIs. But don't assume iterators are pointers; to get the address of the element referred to by a
vector< T>::iterator iter, use &*iter.

79. Store only values and smart pointers in containers.
Store objects of value in containers: Containers assume they contain value-like types, including value
types (held directly), smart pointers, and iterators.

Summary of Summaries 205

80. Prefer push back to other ways of expanding a sequence.
push_back all you can: If you don't need to care about the insert position, prefer using push_back to add an
element to sequence. Other means can be both vastly slower and less clear.

81. Prefer range operations to single-element operations.
Don't use oars when the ivind is fair (based on a Latin proverb): When adding elements to sequence
containers, prefer to use range operations (e.g., the form of insert that takes a pair of iterators) instead of a
series of calls to the single-element form of the operation. Calling the range operation is generally easier to
write, easier to read, and more efficient than an explicit loop. (See also Item 84.)

82. Use the accepted idioms to really shrink capacity and really erase elements.
Use a diet that works: To really shed excess capacity from a container, use the "swap trick." To really
erase elements from a container, use the erase-remove idiom.

STL: Algorithms
83. Use a checked STL implementation.

Safety first (see Item 6): Use a checked STL implementation, even if it's only available for one of your compiler
platforms, and even if it's only used during pre-release testing.

84. Prefer algorithm calls to handwritten loops.
Use function objects judiciously: For very simple loops, handwritten loops can be the simplest and most
efficient solution. But writing algorithm calls instead of handwritten loops can be more expressive and
maintainable, less error-prone, and as efficient.
When calling algorithms, consider writing your own custom function object that encapsulates the logic you
need. Avoid cobbling together parameter-binders and simple function objects (e.g., bind2nd, plus), which
usually degrade clarity. Consider trying the [Boost] Lambda library, which automates the task of writing
function objects.

85. Use the right STL search algorithm.
Search "just enough"—the right search may be STL (slower than light), but it'll still be pretty fast: This
Item applies to searching for a particular value in a range, or for the location where it would be if it were in
the range. To search an unsorted range, use find/find_jf or count/count_jf. To search a sorted range, use
lower_bound, upper_bound, equal_range, or (rarely) binary_search. (Despite its common name,
binary_ search is usually not the right choice.)

86. Use the right STL sort algorithm.
Sort "just enough:" Understand what each of the sorting algorithms does, and use the cheapest algorithm
that does what you need.

87. Make predicates pure functions.
Predicate purity: A predicate is a function object that returns a yes/no answer, typically as a bool value. A
function is pure in the mathematical sense if its result depends only on its arguments (note that this use
of "pure" has nothing to do with pure virtual functions).
Don't allow predicates to hold or access state that affects the result of their operator(), including both
member and global state. Prefer to make operator() a const member function for predicates (see Item 15).

206 Summary of Summaries

88. Prefer function objects over functions as algorithm and comparer arguments.
Objects plug in better than functions: Prefer passing function objects, not functions, to algorithms.
Comparers for associative containers must be function objects. Function objects are adaptable and,
counterintuitively, they typically produce faster code than functions.

89. Write function objects correctly.
Be cheap, be adaptable: Design function objects to be values that are cheap to copy. Where possible, make
them adaptable by inheriting from unary_- or binary_function.

Type Safety
90. Avoid type switching; prefer polymorphism.

Switch off: Avoid switching on the type of an object to customize behavior. Use templates and virtual
functions to let types (not their calling code) decide their behavior.

91. Rely on types, no t on representat ions .
Don't try to X-ray objects (see Item 96): Don't make assumptions about how objects are exactly
represented in memory. Instead, let types decide how their objects are written to and read from memory.

92. Avoid using reinterpret_cast.
Lies have short legs (German and Romanian proverb): Don't try to use reinterpret_cast to force the
compiler to reinterpret the bits of an object of one type as being the bits of an object of a different type.
That's the opposite of maintaining type safety, and reinterpret_cast isn't even guaranteed to do that or
anything else in particular.

93. Avoid using static_cast on pointers .
Pointers to dynamic objects don't static_cast: Safe alternatives range from using dynamic_cast to
refactoring to redesigning.

94. Avo id cas ting away cons t.
Some fibs are punishable: Casting away const sometimes results in undefined behavior, and it is a staple of
poor programming style even ivhen legal.

95. Don't use C-style casts .
Age doesn't always imply ivisdom: C-style casts have different (and often dangerous) semantics depending
on context, all disguised behind a single syntax. Replacing C-style casts with C++-style casts helps guard
against unexpected errors.

96. Don' t memcpy or memcmp non-PODs .
Don't try to X-ray objects (see Item 91): Don't use memcpy and memcmp to copy or compare anything
more structured than raw memory.

97. Don' t use un ions to re in te rp re t rep resen ta t ion .
A deceit is still a lie: Unions can be abused into obtaining a "cast without a cast" by writing one member and
reading another. This is more insidious and even less predictable than reinterpret__cast (see Item 92).

Summary of Summaries 207

98. Don't use varargs (ellipsis).
Ellipses cause collapses: The ellipsis is a dangerous carryover from C. Avoid varargs, and use higher-level
C++ constructs and libraries instead.

99. Don't use invalid objects. Don't use unsafe functions.
Don't use expired medicines: Both invalid objects and historical but unsafe functions wreak havoc on
your program's health.

100. Don't treat arrays polymorphically.
Arrays are ill-adjusted: Treating arrays polymorphically is a gross type error that your compiler will
probably remain silent about. Don't fall into the trap.

Index

#include
and using, 108
vs. forward declaration, 40

#include guards, 27, 33
internal vs. external, 43

#undef
as soon as possible, 33

&&
preferable to nested ifs, 38 ?:,

36
[]. See operators, []
++C, 50

Abelson, Harold, 13
Abrahams, Dave, xv
abstraction, 20 and
dependency

management, 11 and
get/set, 20, 72, 73 and
interfaces, 62 abstractions

build higher-level from
lower-level, 12 depending

upon instead of
details, 41 vs. details, 128

accumulate, 125 Acyclic Visitor,
41 ADL, 104,105,106,107,122
and template customization,

122 disabling unwanted,
124

aggregates, 20 Albaugh,
Tyrrell, xv algorithmic
complexity, 14

and STL, 14
exponential, 15
linear-looking that is really

quadratic, 15,156
algorithms

and design patterns, 162
are loops, 159
binary__search, 165
count, 165
countjf, 165
equaLrange, 165
find, 165
findjf, 165
lower_bound, 165
nth_element, 166
partial_sort, 166
partial__sort_copy, 166
partition, 166
searching, 165
sort, 166
sorting, 166
stable_partition, 166
stable_sort, 166
upper_bound, 165
vs. loops, 38,162

alignment, 176
Allison, Chuck, xv
allocation, 111
never allocate more than
once per statement, 25
allocator

example use of, 5
ambiguities, 77
ambiguities,

avoiding declaration, 13
amortized constant time, 155
append, 135 arithmetic
operators. See

operators, arithmetic
arrays

fixed-size, 15
inferior to containers, 152

assert, 33,130,135
example of, 5, 98,175
macro needed for, 33
only for internal

programming errors, 132,
134

prefer instead of logic_error,
131

assertions. See assert
assignment

copy. See copy assignment
self, 99,138 assignment

operators. See
operators, assignment

asymptotic complexity. See
algorithmic complexity

at
vs. [], 136

atomic operations, 21
auto j>tr, 94,154

209

210 Index

B

Bajaj, Samir, xv BankAccount,
72 Barbour, Marc, xv base
classes. See classes, base base
two, 176 basic_string, 12, See
also

containers
append, 135
find_first_of, 136
insert, 135
monolithic, 79

behavior
undefined. See undefined

behavior Bell, Gordon,
13 Bentley, Jon, 13, 16
Between Values, 164 Big
Four, 55, 85, 94, See also

default constructor; copy
construction; copy
assignment; destructor

Big-Oh. See algorithmic
complexity

binary compatibility, 116, 120
binary_f unction, 172
binary_search, 165 bind2nd, 162,
163

example use of, 163, 164
Bird, 67 bloat, 112
Boedigheimer, Kim, xv
Boost, 3, 147, See also

shared_ptr
discriminated unions library,

121
format library, 184
Lambda library, 4, 162, 163,

164
Lambda library, example use

of, 163
preprocessor library, 33

bounds checking, 29, 152
brace placement, 2 braces.
See brace placement

matching, 38 branch
prediction, 16

Bridge, 162
buffer overruns. See security
bugs. See insects
build

breaking, 8
unit tests, 8

build system
automated, 7

build times, 76

C, 36, See also C, obsolete uses
of

C, obsolete uses of, xi
arrays, 37, 152, 186 casts,
180, 181 global
namespace, 108
Hungarian notation, 3
implicit cast from const

char[] to (non-const) char*
hole in the type system,
179

macros, 32, 33
manual memory

management, 24, 152
manual resource

management, 24,152
memcpy/memcmp (except

for PODs), 182
null-terminated character

array strings, 37, 152
pointer arithmetic, 152 printf,
184 realloc, 12 sprintf, 184
switching on a type flag, 174,

175 unions to
reinterpret

representation, 183
unsafe functions

(strcpy/strncpy, strcmp,
sprintf, gets, etc.), 185

varargs, 46,184 variable
definition at

beginning of scope, 35, 36
C++

vs. ++C, 50

caching, 16
caffeine

lack of, 96 callback
functions, 133

and exceptions, 114
instead of locking, 23

Carlson, Richard
reference to, 2,144,155

casts, 180
and not const, 179
explicit preferred, 6

catch
..., 81, 93,114,115,133,140

Catch-22, 127 cerr, 19, 113
char_traits, 125 check in. See
version control

system check out. See
version control

system checked STL
implementation,

160
checked_cast, 178 cin,
19,113 clarity

prime importance of, 13
class templates. See also

templates
specialization, 127

classes
and namespaces, 104
and nonmember functions,

104
and portability, 116
base, 56, 69, 90, 91, 96,101
composition vs. inheritance,

58,61
concrete, 60, 91
data members, 72
derived. See polymorphism

and substitutability
exception, 56
kinds of, 56
minimal vs. monolithic, 57
mixin, 65
policy, 56, 65, 91
traits, 56
unions, 183

Index 211

value, 56, 101,154 clean
compiles. Sec compiler

warnings
clear

better than cute, 13
cliff, 85
Cline, Marshall, xv
clog, 113 Clone, 96, 97

vs. copy construction, 97
Cobol, 36 code reviews, 9

this book's table of contents
as checklist, 9

coding style
vs. design style, 11

cohesion, 12, 38 COM, 7,
63, 91,115,133 Command,
41, 121 comments, 2
CompareThings, 171
compatibility

source vs. binary, 73
compile

cleanly. See compiler
warnings

compile time
and errors, 28

compiler firewall. See Pimpl
compiler warnings, 4
compiler-generated functions,

85, See copy construction;
copy assignment; destructor

compile-time
conditions, 29
errors, 27
polymorphism, 29

complex
simple better than, 13

complexity
algorithmic. See algorithmic

complexity
asymptotic. See algorithmic

complexity
compose, 163
compose2

example use of, 164
composition

vs. inheritance, 58, 61
concurrency, 19, 21, See also
locking vast majority of objects
not

shared, 22
conditional compilation, 33
conditions

compile-time, 29
const, 27, 30

and pointers, 30 avoid
on pass-by-value

parameters, 31 instead of
magic numbers,

34
not deep, 30 simplifies code, 30
viral, 30 const_cast, 179
const-correctness, 31,128,179
construction

copy. So' copy construction
construction order

of member variables, 86
ConstructionWasOK
not recommended, 141
constructor parameters
prefer named variables

instead of temporaries, 13
constructors

and virtual functions, 88
copy. See copy construction
default. See default
constructor initialization list,
87 initialization list ordering
not significant, definition
order significant, 86
post-constructors, 88 prefer
initializer list instead

of assignment, 18
reporting errors from, 141,

142
virtual constructors, 88
containers and copy

construction/assignment, 95
and smart pointers, 95

and thread safety, 21
choosing, 150
default, 150
hash-based, 15, 150, 181
heterogeneous, 154
index, 154
map, and optional values,

154
of non-value types, 154
range vs. single-element

functions, 155,156
shrink-to-fit, 157
store values, 154
string, 152
vector, 150, 152, 153
vector vs. list, 151
vector, advantages of, 150

conversion sequences, 70
conversions

implicit, 70, See implicit type
conversions

named functions, 70 copy,
107 copy assignment, 25, 55, 85,
87,

99
and containers, 95
and copy construction, 94, 95
and destructor, 94
and swap, 101
not virtual, 99

copy construction, 25, 55, 85
copy constructors

and containers, 95
and copy assignment, 94, 95
and destructor, 94
vs. Clone, 97

copy-on-write, 23 CORBA,
7, 63, 91,115,133 correct

better than fast, 13
correctness

prime importance of, 13
corruption, 21 count, 165
countjf, 165 coupling, 19
cout, 19, 113 covariance, 69

212 Index

COW. Sec copy-on-write
CPU-bound, 17 Create, 89
curly braces. See brace

placement
CustomAHocator, 80
customization

and C++ standard library,
125

of templates, 122
CustomString, 117 cute

clear better than, 13 cvs,
8 cyclic dependencies, 40

breaking, 41

dangling pointers, 185
data

exposing, 20
global. Set'global variables

data validation, 29 data
volumes

growth of, 14
database-bound, 17
Date, 72 deadlock, 21
deallocation, 111
deallocation functions

never fail, 92
Dechev, Damian, xv
declaration

vs. definition, 40
declaration ambiguities

avoiding, 13
default, 175
default arguments

and virtual functions, 66
default constructor, 55, 85, 87,

156 default
container

vector, 150
definition

of member variables, 86
vs. declaration, 40 delete. See

also operators, delete

and polymorphism, 91
with new, 80

dependencies, 103
and templates, 42
compile-time, 58
cyclic. See cyclic

dependencies
managing, 20
upon abstractions instead of

details, 41
dependency cycles

across modules, 41
Dependency Inversion

Principle, 41, 62 dependency
management, 74,

Sec also encapsulation and
information hiding
broad importance of, 11
member vs. nonmember

functions, 79
dependent names, 125
deployment

ease of, 57
design patters

and algorithms, 162
design style

design vs. coding style, 11
destructor, 55, 85

and copy assignment, 94
and copy construction, 94
nonvirtual, 61, See also

slicing
public and virtual, 63

destructors, 68, See also RAII
and exceptions, 115
and virtual functions, 88
in base classes, 90
never fail, 92

details
vs. abstractions, 128

Dewhurst, Steve, xv
Diamond, Norman, 85
Dimov, Peter, xv dint

gratuitous use of odd word,
162 disabling

warnings. See
warnings

disk capacity
growth of, 14

disk-bound, 17 distance,
107, 156,165 divide and
conquer. See

minimal vs. monolithic
DLLs, 103 DoClone, 98
downcasts, 29 Draw, 175
dusty corners, 13
dynamic_cast, 69, 178

downcasting with, 29
dynamically checked errors. Sc

errors, dynamic checking

EBO. See empty base class
optimization ECO. See

empty base class
optimization

efficiency. See performance
empty base class optimization,

59, 63
emptyO

vs. size() == 0, 128
encapsulation, 20, 57, 72, 74, 76

member vs. nonmember
functions, 79

enums, 29,175
instead of magic numbers,

34
equalrange, 165
ER units

comparison with, xiii errno,
140, So' also error codes error
code

overuse, 142
error codes

translating to/from
exceptions, 115

vs. exceptions, 140 error
handling policy. Sec

errors, policy for handling
error messages

and macros, 33 error
safety, 57, 59, 77

Index 213

and RAII, 24
errors

and modules, 133
and operators, 141
assert, 130
categorizing, 133
compile-time, 28
constructors, 141
detection, 133
dynamic checking, 28
handling, 133,145
identifying, 132
ignoring, dangers of, 140
internal assumptions, 130
invariants to test for. See

invariants
link-time, 28
policy for handling, 132
prefer compile- and

link-time to run-time,
27, 28

propagating, 140
propagation, 133
reporting, 133, 145
retrying, 138
run-time, 132
severity, 133
static checking, 28
translating, 144,145
vs. non-errors, 134

error-safety, 150
basic guarantee, 137
copy construction, 99
no-fail guarantee, 137
not penalizing code that

doesn't need stronger
guarantees, 137

strong guarantee, 137
evil

root of all, 11
exception

what, 147 exception classes.
See classes,

exception exception
handling. See also

errors; error-safety
catch by reference, 144
overuse, 142
throw by value, 144

warning against disabling,
143 exception safety.

See error
safety exception

specifications, 93,146
avoid, 146
static vs. dynamic checking,

147
exceptions

and callback functions, 114
and destructors, 115
and main, 114
and modules, 114
and slicing, 144
and threads, 114
not across module

boundaries, 114
translating to/from error

codes, 115
vs. error codes, 140

explicit, 70, 97 explicit
loops

fewer in STL-using
programs, 162 explicit

qualification, 77,110 expression
templates, 50, 53 external
locking, 22

facets
mistakes of, 121

factory
example use of, 89

Factory, 162 factory
functions, 19 fast

correct better than, 13
File, 72,136 find, 18,165
findjirst_of, 136,142
findjf, 165,169 FlagNth,
169 Fly, 67 fools, 11
for_each, 15,162

example use of, 161
formatting, 2

Fortran, 36 forward
declaration

vs. #include, 40
French

grauitous use of, 51
friend, 55 fudgeFactor, 112
full build, 7, See also build

system
Fuller, John, xv
function

to avoid uninitialized
variables, 37

unit of work, 134
function arguments

order of evaluation, 54
function objects, 162, See also

predicates
example use of, 164
vs. functions, 170
writing correctly, 172

function parameters, 45
and binders, 162
and compile-time

dependencies, 76
and const, 31, 46
and conversions, 48
and copying, 46
and null, 46
and preconditions, 134
and primitive types, 46
and smart pointers, 46
and

u nary _f unction / binary_f u
nction, 170

and user-defined types, 46
and varargs, 46
in constructors, 89
input, 46
output, 46
pass by value vs. pass by

reference, 46
unary and binary operators,

48 function
templates, 113

and not specialization, 126
and overload resolution, 126

functions

214 Index

compiler-generated, 85
deallocation, 92
length, 38
member vs. nonmember, 48,

79
nesting, 38

vs. function objects, 170
functions,compiler-generated.
See default constructor; copy
construction; copy assignment;
destructor

Gaffney, Bernard, xv
generic programming. See

templates
geniuses, 11
get/set, 73

and abstraction, 20, 72, 73
GetBuffer, 75 GetBuilding, 66
GetLastError, 140 getstr, 53
global data. See global variables
global state. See global

variables global
variables, 19, 39

and dependency
management, 11

initialization of, 19
limit parallelism, 19

Gordon, Peter, xv
greater

example use of, 164
grep, 181
Griffiths, Alan, xv
guarantees

for error safety. See
error-safety

H

handles
to internal data, 74

hash-based containers. See
containers, hash-based

Haskell, 28

header files
self-sufficient, 42
wrapping third-party

headers, 4 header guards.
See #include

guards
headers

and linkage, 112
and not unnamed

namespaces, 113
and static, 113
precompiled, 42 Henney,

Kevlin, xv Henning, Michi, xv
heterogeneous containers, 154
hide information. See

information hiding
hiding

names, 66, 82
hijacking

and macros, 32
Hinnant, Howard, xv
Hoare, C.A., 16
Hungarian notation, 3
hygiene

and not macros, 32
Hyslop, Jim, xv

I
implicit conversions, 70

benefits of, 71
dangers of, 71

implicit interface, 122
and customization, 122

implicit type conversions
avoided by overloading, 51

import this, xv incremental
build, 7, See also

build system
indentation, 2 index
containers, 154
indexing

vs. iterators, 128
information hiding, 72

and dependency
management, 11

inheritance

and dependency
management, 11

and reuse, 64
misuse of, 64
not from concrete base

classes, 60
public, 64
vs. composition, 58, 61

initialization
and constructors, 87
default, 87
of global variables, 19
of member variables, 86
of variables, 35, 36
static vs. dynamic, 39
variables. See variable, not

initialized
zero, 39

initialization dependencies, 39
inline, 17,113

and profiler, 17 in- XE
"new" \t "See also

operators, new" XE "delete"
\t "See also operators, delete"
place new. See new insects,

9,12, 28, 30, 35, 36, 39,
52, 81, 137 insert,

135,139,156
at a specific location, 150

inserter
example use of, 163

interface
implicit. See implicit

interface
Interface Principle, 104
interfaces

abstract, 62
intermittent crashes, 36
internal locking, 22
internals

exposing, 20 invalid iterators,
185 invariants, 18, 20, 28, 64, 72,
73,

74, 130, 131, 132,134, 135,
136,137,138,140,141,142

iostreams, 113 is_in_klingon,
61

Index 215

is-a. See substitutability, See
substitutability

IsHeavy, 170 iterator
ranges, 161
iterator_traits, 125
iterators, 151

comparing with != instead of
<, 128

invalid, 161, 185
ranges, 161
vs. indexing, 128

J

Java, 28, 147 Johnson,
Curt, xv Josuttis,
Nicolai, xv juggling,
152

K

K&R style. See brace placement
Kalb, Jon, xv Kanze, James, xv
Kernighan, Brian, 173 Khesin,
Max, xv KISS, 13
Knuth, Donald, 11,16
Koenig lookup. See ADL

Lafferty, Debbie, xv
Lambda library. See Boost,

Lambda library
land mines, 27
Last Word

not this book, xii
Latin

gratuitous use of, 59, 141
LaunchSatellite, 139 Law of
Second Chances, 63 leak

memory, 81
leaks, 137
Leary-Coutu, Chanda, xv
Leddy, Charles, xv length

of lines, 2
less

example use of, 164
libraries

shared, 103
lifetime. See object lifetime line
length, 2 link time

and errors, 27, 28
linkage

and headers, 112
external, 19 Lippman, Stan,

xv Liskov Substitution
Principle.

See substitutability Lisp,
28 list. See also containers

vs. vector, 151
literals

and magic numbers. See
magic numbers

livelock, 21
locality of reference, 151
localized_string, 61
locking

external, 22
in increasing address order,

23
internal, 22
lock-free designs, 23
not needed for immutable

objects, 23
using callback functions

instead of, 23
logic_error

example of, 5
prefer assertions instead of,

131
lookup

two-phase, 125
loops

fewer explicit loops in
STL-using programs,
162

vs. algorithms, 162
lower_bound, 165

M

macros, 27, 32
and conditional compilation,

33
interfering with template

instantiations, 33
to enable/disable threading

support, 23 magic
numbers, 34 main

and exceptions, 114 make, 7,
See also build system malloc, 131
managing dependencies, 103,

See dependency
management Marcus,

Matt, xv Marginean, Petru,
xv Martin, Robert C, xv
Matrix, 57, 72 MAX_PATH,
37 McConnell, Steve,
13,130 mem_fun, 170
mem_fun_ref, 170 member
variables

public vs. private, 72
member vs. nonmember

functions, 79
memcmp, 182 memcpy,
182 memory leaks, 81
memory management

and containers, 152
memory-bound, 17
MemoryPool, 82 Meyers, Scott,
xv Ming vases, 152 minimal vs.
monolithic, 55, 57 missing
return. See return,

missing
mixin classes. See classes, mixin
ML, 28 modules

allocating and deallocating
memory in same, 111

and error handling, 133
and exceptions, 114

216 Index

and not exceptions, 114
defined, 103
interdependence between, 40
interfaces use only

sufficiently portable types,
116

monolithic classes, 79
monolithic vs. minimal, 55, 57
Moore's Law, 14 Mullane,
Heather, xv mutable, 30

N

name hiding, 66, 82
name lookup, 77
two-phase, 125 named
variables

prefer as constructor
parameters, 13

names
dependent, 125
symbolic vs. magic numbers,

34
namespaces, 103 and using, 108

pollution of, 19,108,109, 110
type and its nonmember
functions in same, 104 type
and unrelated functions

in separate, 106
unnamed. See unnamed
namespace

using, 108 naming
and macros, 33 variables.
See Hungarian

notation
naming convention, 2 NDEBUG,
111, 130 Nefarious, 92, 93
nesting, 38 network-bound, 17
new, 141, See also operators, new
immediately giving result to

an owning object, 25
in-place, 82

never allocate more than
once per statement, 25

nothrow, 82
with delete, 80 nifty

counters, 113 Node,
73 nongeneric code

unintentionally, 128
Nonvirtual Interface pattern,

68, 69, 90, 98
notl, 170
nothrow new. See new
nth_element, 166

example use of, 167 NVI.
See Nonvirtual Interface

pattern

object lifetime
minimizing, 35

objects
temporary. See temporary

objects
Observer, 162 obsolete practices,
2, See C,

obsolete uses of
external #include guards, 43
Hungarian notation, 3
SESE. See single entry single

exit
Occam, William of, 51 ODR.
See one definition rule offsetof,
176 ointment

fly in the, 81 one
definition rule, 110
operator delete

never fails, 92
operator overloading

gratuitous, 13
preserve natural semantics,

47
operators, 45

&&, 52
(), 168
,,52
[], 135,136

[] vs. iterators, 128
11,52
++, 17,18, 50
and ADL, 105
and namespaces, 104,105
arithmetic, 48
assignment, 48, 78, 93
binary, 48
const char* (on strings), 71
copy assignment. See copy

assignment
decrement, 50 delete, 80,
82, 93, 111 increment, 50
member vs. nonmember, 48
new, 80, 82, 111, 141
overloaded, 47 preserve
natural semantics,

47, 48, 50
reporting errors from, 141

optimization. See also
temporary objects, See also
temporary objects, See also
temporary objects, See also
temporary objects and
exception specifications,

146
and inline, 17 and libraries,
17 by using STL, 18
compile-time evaluation, 121
copy-on-write outdated, 157
empty base class, 63
enabling compiler's, 49, 99
encapsulate where possible,

17
in STL implementations, 94
indexing vs. iteration, 128
must be based on

measurement, 16
prefer improving

algorithmic complexity
over micro-optimizations,
17 premature,

13,14,15,16,17,
18, 50, 51, 59, 87, 171

range vs. single-element
functions, 156

Index 217

self-assignment check, 138
static binding, 121

optional values
and map, 154 order

dependencies, 19, 23, 25,
39, 52, 53, 54, 69, 86,109,110,
124,169,176 Ostrich,

67 out_of_range, 136
overload resolution, 77
overloading

and conversions, 70
and function templates, 126
of operators, 13
to avoid implicit type

conversions, 51
overriding, 66

pair, 56
parameters

pass by value vs. pass by
reference, 18

unused. See unused
parameters partial

specialization. See
specialization, partial

partial_sort, 166
example use of, 167

partial_sort_copy, 166
partition, 162,166

example use of, 166
Pascal, 36 Peil, Jeff, xv
pejorative language

and macros, 32 performance,
28,141 Perlis, Alan, xi, xv, 11, 27,
45, 60,

103, 129,173
personal taste

matters of, 2 pessimization,
18 Pimpl, 30, 58, 69, 72, 76,
78,101,

172, See also encapsulation
and dependency
management
and shared_ptr, 78

pipelining, 16
Pirkelbauer, Peter, xv
placement

of braces. See brace
placement

plain old data. See POD
platform-dependent operations

wrapping, 21
Plauger, P.J., 173
plus, 162, 163

example use of, 163
POD, 176,183
pointer_to_unary_f unction, 170
pointers

and const, 30
and not static_cast, 178
dangling, 185 points of

customization. See
customization policy

classes. See classes,
policy

policy-based design, 63
pollution (of names and

namespaces), 19, 35, 108, 109,
110

polymorphism, 66
ad-hoc, 120
and delete, 91
and destruction, 90
and not arrays, 186
and slicing, 96
compile-time vs. run-time, 29
controlled, 59
dynamic, 128
dynamic, 64,120
inclusion, 120
static, 63,120
static and dynamic, 120, 175
static vs. dynamic, 65
vs. slicing, 144
vs. switch on type tag, 38
vs. switching on type, 174

Port, 24 portable types
and module interfaces, 116

postconditions, 66, 69,124,130,
131,134,135,136,138,140,
142
and virtual functions, 66

post-constructors, 88
Postlnitialize, 89 pragmatists,
11 Prasertsith, Chuti, xv
precompiled headers, 42
preconditions, 66, 69,132, 134,

135, 136,142
and virtual functions, 66

predicates. See also function
objects
pure functions, 168

premature optimization. See
optimization, premature

pressure
schedule pressure, xiii

priority_queue, 166
processes

multiple, 21
profiler

and inline, 17
using. See optimization

proverbs
Chinese, 8
German, 177
Latin, 16,156
level of indirection, 126
Romanian, 177 Prus,

Vladimir, xv ptrjoin,
170 public data, 20
push_back, 15, 155
Python, 28

qualification
explicit, 77

qualification, explicit, 110
qualified

vs. unqualified, 123

race conditions, 21

218 Index

RAII, 5, 24, 38, 56, 94, 95
and copy assignment, 25
and copy construction, 25

range checking, 135 ranges
of iterators, 161

realloc, 12 Rectangle,
64 recursive search

not reporting result using
exception, 142

reference counting, 157
registry

factory and, 19
reinterpret_cast, 177, 180, 181,

183, 184, 185
release

unit of. See module
reliability, 27
remove_copy_if, 169
removejf, 169 replace_if,
162 resource acquisition is

initialization. See RAII
resource management, 94, See

also RAH
and constructors, 87
and RAII, 24
and smart pointers, 24
never allocate more than

once per statement, 25
resources should be owned

by objects, 25
resources. See resource

management
responsibility

growth, 12
of an entity, 12

restricted values
of integers, 29

return
missing, 5

reuse
and inheritance, 64

reviews
of code. See code reviews

ripple effect, 20 root of all evil,
11

Ruby, 28
run time

and errors, 27, 28

safety, 27
Saks, Dan, xv
scalability

coding for, 14
schedule pressure, xiii
Schwarz counters, 113
Schwarz, Jerry, 113
Second Chances

Law of, 63
security, 15

and checked STL
implementation, 160

and exception handling
performance, 142

arrays and, 15
buffers, 152
pointers, 152
printf, 184
ssh,8
strcpy, 185

Security, 72
self-assignment, 99, 138
self-sufficient header files, 42
serialization

of access to shared objects,
21 SESE. See single entry

single
exit

shallow const, 30
Shape, 175 shared
libraries, 103 shared
state

and dependency
management, 11

shared_ptr, 111, 121, 149
and arrays, 186
and containers, 154
and modules, 111
and optional values in maps,

154
and overuse, 25
and Pimpl, 78

example use of, 24, 25, 76, 78,
89,182

throwing, 144 shared_ptr,
149 shared_ptr, 172 sheep's
clothing, 39 shrink-to-fit, 157
signed/unsigned mismatch, 6
simple

better than complex, 13
simplicity

prime importance of, 13
single entry single exit, 3
Singleton, 39 skins, 139
slicing, 61, 96

and polymorphism, 96
of exceptions, 144

Smalltalk, 28 smart
pointers, 98

and containers, 95
and function parameters, 46
and overuse, 25
for resource management, 24

Socket, 74 sort, 18,125,166
spaces

vs. tabs, 3 spaghetti, 17
special member functions. See

default constructor; copy
construction; copy
assignment; destructor

specialization
and not function templates,

126
of class templates, not

function templates, 127
partial, 126

speculative execution, 16
Spencer, Henry, 173, 177
Square, 64 ssh, 8
stable__partition, 166
stable_sort, 166 stack
unwinding, 92
standards, xi

advantages of, xii

Index 219

what not to include, 2
Star Trek

gratuitous reference to, 61
state

global. See global variables
static

misuse of, 112 static
type checking, 120
static_cast, 181

and not pointers, 178
downcasting with, 29

statically checked errors. See
errors, static checking

STL
algorithms. See algorithms
checked implementation

valuable, 160
containers. See containers
iterators. See iterators
searching, 165
sorting, 166
use leads to fewer explicit

loops, 162
using, 18 STL

containers
and thread safety, 21

string. See basic_string, See
basic_string String, 75

Stroustrup, Bjarne, xv, 32, 55,
119, 129,149, 159

strtok, 54 style
design vs. coding, 11

substitutability, 59, 64, 66
subsumption, 120
SummarizeFile, 116
super_string, 60
surprises

programmers hate, 53
Sussman, Gerald Jay, 13
swap, 93,100,125,126,127

never fails, 92
swap trick, 157
switch

default case, 5

tabs
vs. spaces, 3

taste
matters of personal, 2

tautologies
perfect for assertions, 131

template customization. See
customization Template

Method, 68, 90 templates
and implicit interface. See

implicit interface
and source-level

dependencies, 42
function. See function

templates
function templates not in

same namespace as a type,
106

macros interfering with, 33
unintentionally nongeneric

code, 128
temporaries

avoid as constructor
parameters, 13

temporary objects, 18, 51, 70, 9!
Tensor, 47 terminate, 146
testing, 20 tests

unit tests, 8 TeX
The Errors of TeX, 11 this
import, xv

thread safely, 21
thread safety, 21

"just enough", 23
and STL containers, 21

threads, 133
and exceptions, 114
multiple, 21
vast majority of objects not

shared across, 22
thrill sports, 152 time
pressure, xiii

traits classes. See classes, traits
transform, 162

example use of, 163
Translate, 117
Transmogrify, 54, 96
Transmogrify2, 97
Transubstantiate, 96
Tree, 25 TreeNode, 73
try, 38
two-phase lookup, 125
two's complement, 176
type checking

static, 120
type safety, 28,173,176
type switching

vs. polymorphism, 174
type system

and not macros, 32
and not memcpy/memcmp,

182
hole in, 179
making use of, 28, 29, 30,

131, 146, 173
type systems

static vs. dynamic, 28
typename

example use of, 122,123,125
types

vs. representations, 176

u

unary_function, 91, 170, 172
Uncle Bob, xv
undefined behavior, 19, 25, 27,

36, 39, 61, 71, 88, 90, 91, 93,
173, 179, 181, 182, 183,184,
185

unexpected_handler, 146
uninitialized variables, 36
unintentionally nongeneric

code, 128
unions, 183
unit of work. See function
unit tests, 8
UnknownException, 146
unnamed namespace

220 Index

and not headers, 113
unqualified

vs. qualified, 123
unsigned

mismatch with signed. See
signed / unsigned
mismatch

unused parameters, 5
unwinding

stack, 92
upper_bound, 15, 165
using, 83

avoiding need for, 105
is good, 108
not before an #include, 108

V

validation
of input data, 29 value-like

types. See classes,
value

Vandevoorde, Daveed, xv
varargs, 184 variable

defined but not used, 5
not initialized, 5

variable naming. See
Hungarian notation

variables
declaring, 35
global. See global variables
initialization of, 35
initializing, 36
uninitialized, 27 VCS. See

version control system vector.
See also containers

by default, 150
insert, 139
vs. list, 151

version control system, 8
versioning, 103, 138

and get/set, 72 viral
const, 30 virtual
constructors, 88 virtual
functions, 66

and constructors and
destructors, 88

destructors, 90
nonpublic preferred, 68

Visitor, 41,121, 162, See also
Acyclic Visitor

volatile, 37

w

Wagner, Luke, xv
warnings

compiler. See compiler
warnings

disabling, 6
none on successful build, 7
spurious, dealing with, 6

Weinberg, Gerald, 1 what, 147
Wilson, Matthew, xv
works-like-a. See

substitutability, See
substitutability

wrapping
header files. See header files,

wrapping third-party
headers

platform-dependent
operations, 21

Wysong, Lara, xv

zero initialization, 39
Zolman, Leor, xv

