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Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry 
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and 
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information 
Technology vendors, end users, government agencies, and academia. 

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s 
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach 
to enterprise integration that covers multiple operating systems, programming languages, middleware and networking 
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling 
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel); 
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A Specifications Catalog 
is available from the OMG website at:
http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

• UML
• MOF
• XMI
• CWM
• Profile specifications

OMG Middleware Specifications

• CORBA/IIOP
• IDL/Language Mappings
• Specialized CORBA specifications
• CORBA Component Model (CCM)

Platform Specific Model and Interface Specifications

• CORBAservices
• CORBAfacilities
• OMG Domain specifications
• OMG Embedded Intelligence specifications
• OMG Security specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG 
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format, 
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may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters

140 Kendrick Street

Building A, Suite 300

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions
The type styles shown below are used in this document to distinguish programming statements from ordinary English. 
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.:  Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold:  Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

NOTE:   Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, 
specification, or other publication.
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1 Scope
This document provides a number of BPMN 2.0 examples, which are non-executable BPMN 2.0 models conforming to 
the Process Modeling Conformance class as defined in the the OMG specification Business Process Model and 
Notation (BPMN) Version 2.0. It is a non-normative document and its main goal is to assist in interpreting and 
implementing various aspects of the BPMN 2.0 specification. The examples are provided in form of  Collaboration 
diagrams, Process diagrams, and Choreography diagrams as well as machine-readable files using the Extensible 
Markup Language (XML).

2 Conformance
As this is a non-normative document, an implementation, which claims conformance to any of the conformance classes 
defined in section 2 of the BPMN 2.0 specification, is NOT REQUIRED to comply to statements made in this document. 
Furthermore, if there are any inconsistencies between the BPMN 2.0 specification and this document, the statements of 
the BPMN 2.0 specification always have precedence.

3 Normative References
The following normative documents contain provisions which, through reference in this text, constitute provisions of this 
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. 

Business Process Model and Notation (BPMN) Version 2.0

• OMG, May 2010
http://www.omg.org/spec/BPMN/2.0

RFC-2119

• Key words for use in RFCs to Indicate Requirement Levels, S. Bradner, IETF RFC 2119, March 1997
http://www.ietf.org/rfc/rfc2119.txt
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4 Additional Information

4.1 Changes to Adopted OMG Specifications

If there are any inconsistencies between the BPMN 2.0 specification and this document, the statements of the BPMN 2.0 
specification are considered to be correct.

4.2 Acknowledgements
The following companies contributed to the content of this document:

• camunda services GmbH
• IBM Corp.
• PNA Group
• SAP AG
• Trisotech, Inc.

The following persons were members of the core teams that contributed to the content of this document:

• John Bulles (PNA Group)
• Jakob Freund (camunda services GmbH)
• Denis Gagné (Trisotech, Inc.)
• Falko Menge (camunda services GmbH)
• Matthias Kloppmann (IBM Corp.)
• Sjir Nijssen (PNA Group)
• Gerardo Navarro-Suarez (camunda services GmbH)
• Ivana Trickovic (SAP AG)
• Stephen A. White (IBM Corp.)

In addition, the following persons contributed valuable ideas and feedback that improved the content and the quality of 
this document:

• Joram Barrez (Alfresco)
• Mariano Benitez (Oracle)
• Conrad Bock (NIST)
• John Hall (Model Systems)
• Bernd Rücker (camunda services GmbH)
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5 Small Examples introducing Core Concepts
This chapter introduces the core concepts of process modeling with BPMN. We will not explain every single symbol you 
can find in the diagrams, but show how process modeling in BPMN is basically done, how we can use pools and message 
flows for explicitly modeling collaborations between participants, and how we can (de-)compose process models with 
sub-processes and call activities. Those examples do not contain executable process models, but represent process models 
focusing on organizational aspects of business processes. 

5.1 Shipment Process of a Hardware Retailer

 

In Figure 5.1 you can find the preparing steps a hardware retailer has to fulfill before the ordered goods can actually be 
shipped to the customer. 

In this example, we used only one pool and different lanes for the people involved in this process, which automatically 
means that we blank out the communication between those people: We just assume that they are communicating with 
each other somehow. If we had a process engine driving this process, that engine would assign user tasks and therefore 
be responsible for the communication between those people. If we do not have such a process engine, but want to model 
the communication between the people involved explicitly, we would have to use a collaboration diagram as in the next 
chapter.

The plain start event “goods to ship” indicates that this preparation should be done now. Right after the instantiation of 
the process, there are two things done in parallel, as the parallel gateway indicates: While the clerk has to decide whether 
this is a normal postal or a special shipment (we do not define the criteria how to decide this inside the process model), 
the warehouse worker can already start packaging the goods. This clerk's task, which is followed by the exclusive 
gateway “mode of delivery”, is a good example for clarifying the recommended usage of a gateway: The gateway is not 
responsible for the decision whether this is a special or a postal shipment. Instead, this decision is undertaken in the 
activity before.  The gateway only works as a router, which is based on the result of the previous task, and provides 
alternative paths. A task represents an actual unit of work, while a gateway is only routing the sequence flow. 

This gateway is called “exclusive”, because only one of the following two branches can be traversed: If we need a special 
shipment, the clerk requests quotes from different carriers, then assigns a carrier and prepares the paperwork. But if a 
normal post shipment is fine, the clerk needs to check if an extra insurance is necessary. If that extra insurance is 
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Figure 5.1: Shipment Process of a hardware retailer
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required, the logistics manager has to take out that insurance. In any case, the clerk has to fill in a postal label for the 
shipment. For this scenario, the shown inclusive gateway is helpful, because we can show that one branch is always 
taken, while the other one only if the extra insurance is required, but IF it is taken, this can happen in parallel to the first 
branch. Because of this parallelism, we need the synchronizing inclusive gateway right behind “Fill in a Post label” and 
“Take out extra insurance”. In this scenario, the inclusive gateway will always wait for “Fill in a Post label” to be 
completed, because that is always started. If an extra insurance was required, the inclusive gateway will also wait for 
“Take out extra insurance” to be finished. Furthermore, we also need the synchronizing parallel gateway before the last 
task “add paperwork and move package to pick area”, because we want to make sure that everything has been fulfilled 
before the last task is executed.

5.2 The Pizza Collaboration

This example is about Business-To-Business-Collaboration. Because we want to model the interaction between a pizza 
customer and the vendor explicitly, we have classified them as “participants”, therefore providing them with dedicated 
pools. Please note that there is no default semantics in this type of modeling, which means you can model collaboration 
diagrams to show the interaction between business partners, but also zoom into one company, modeling the interaction 
between different departments, teams or even single workers and software systems in collaboration diagrams. It is totally 
up to the purpose of the model and therefore a decision the modeler has to make, whether a collaboration diagram with 
different pools is useful, or whether one should stick to one pool with different lanes, as shown in the previous chapter. 

If we step through the diagram, we should start with the pizza customer, who has noticed her stomach growling. The 
customer therefore selects a pizza and orders it. After that, the customer waits for the pizza to be delivered. The event 
based gateway after the task “order a pizza” indicates that the customer actually waits for two different events that could 
happen next: Either the pizza is delivered, as indicated with the following message event, or there is no delivery for 60 
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Figure 5.2: Ordering and delivering pizza
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minutes, i.e., after one hour the customer skips waiting and calls the vendor, asking for the pizza. We now assume that 
the clerk promises the pizza to be delivered soon, and the customers waits for the pizza again, asking again after the next 
60 minutes, and so on. Let's have a closer look at the vendor process now. It is triggered by the order of the customer, as 
shown with the message start event and the message flow going from “order a pizza” to that event. After baking the 
pizza, the delivery boy will deliver the pizza and receive the payment, which includes giving a receipt to the customer.

In this example, we use message objects not only for informational objects, as the pizza order, but also for physical 
objects, like the pizza or the money. We can do this, because those physical objects actually act as informational objects 
inherently: When the pizza arrives at the customer's door, she will recognize this arrival and therefore know that the pizza 
has arrived, which is exactly the purpose of the accordant message event in the customer's pool. Of course, we can only 
use the model in that way because this example is not meant to be executed by a process engine.

5.3 Order Fulfillment and Procurement

This order fulfillment process starts after receiving an order message and continues to check whether the ordered article 
is available or not. An available article is shipped to the customer followed by a financial settlement, which is a collapsed 
sub-process in this diagram. In case that an article is not available, it has to be procured by calling the procurement sub-
process. Please note that the shape of this collapsed sub-process is thickly bordered which means that it is a call activity. 
It is like a wrapper for a globally defined task or, like in this case, sub-process.

Another characteristic of the procurement sub-process are the two attached events. By using attached events it is possible 
to handle events that can spontaneously occur during the execution of a task or sub-process. Thereby we have to 
distinguish between interrupting and non-interrupting attached events. Both of them catch and handle the occurring 
events, but only the non-interrupting type (here it is the escalation event “late delivery”) does not abort the activity it is 
attached to. When the interrupting event type triggers, the execution of the current activity stops immediately.
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Figure 5.3: Order Fulfillment
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The process for the stock maintenance is triggered by a conditional start event. It means that the process is instantiated in 
case that the condition became true, so in this example when the stock level goes below a certain minimum. In order to 
increase the stock level an article has to be procured. Therefore we use the same Procurement process as in the order 
fulfillment and refer to it by the call activity "Procurement", indicated by the thick border. Similar to the  order 
fulfillment process  this process handles the error exception by removing the article from the catalog. But in this stock 
maintenance process there appears to be no need for the handling of a "late delivery" escalation event. That's why it is 
left out and not handled. If the procurement sub-process finishes normally, the stock level is above minimum and the 
Stock Maintenance process ends with the end event “article procured”.

We now zoom into the global sub-process “procurement” that is used by both order fulfillment and stock maintenance. 
Because this is a sub-process, the start event is plain, indicating that this process is not triggered by any external event but 
the referencing top-level-process.  

The first task in this sub-process is the check whether the article to procured is available at the supplier. If not, this sub-
process will throw the “not deliverable”-exception that is caught by both order fulfillment and stock maintenance, as we 
already discussed.

In case that the delivery in the Procurement process lasts more than 2 days an escalation event is thrown by the sub-
process telling the referencing top-level-process that the delivery will be late. Similar to the error event, the escalation 
event has also an escalationCode which is necessary for the connection between throwing and catching escalation events. 
Contrary to the throwing error event,  currently active threads are neither terminated nor affected by the throwing 
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Figure 5.4: Stock maintenance process
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intermediate escalation event. Furthermore, the Procurement process continues its execution by waiting for the delivery. 
But the thrown event is handled by the nearest parent activity with an attached intermediate escalation event which has 
the same escalationCode as the thrown escalation event. In the order fulfillment process, the "late delivery" escalation 
event attached to the Procurement sub-process catches the thrown "late delivery" event. But now, the event is a non-
interrupting event. Because of that a new token is produced, follows the path of the escalation handling and triggers the 
task that informs the customer that the ordered article will be shipped later. When the procurement sub-process finishes, 
the Order Fulfillment process continues with the shipment of the article and the financial settlement.
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6 Incident management
In this chapter we want to show the different perspectives you can take on the same business process, using BPMN. In 
the first step we will provide a rather simple, easy to read diagram that shows an incident process from a high level point 
of view. Later on we refine this model by moving from orchestration to collaboration and choreography. In the last step 
we take the organizational collaboration and imagine how a process engine could drive part of the process by user task 
assignments. The main purpose of this chapter is to demonstrate how you can use BPMN for creating simple and rather 
abstract diagrams, but also detailed views on human collaboration and finally for technical specifications for process 
execution. 

6.1 High level model for quick understanding

The shown incident management process of a software manufacturer is triggered by a customer requesting help from her 
account manager because of a problem in the purchased product. First of all, the account manager should try to handle 
that request on his own and explain the solution to the customer, if possible. If not, the account manager will hand over 
the issue to a 1st level support agent, who will hand over to 2nd level support, if necessary. The 2nd level support agent 
should figure out if the customer can fix the problem on her own, but if the agent is not sure about this he can also ask a 
software developer for his opinion. In any case, at the end the account manager will explain the solution to the customer. 

This diagram is really simple and somehow a “happy path”, because we assume that we always find a solution we can 
finally explain to the customer. The model lacks all details of collaboration between the involved employees, and the 
abstract tasks indicate that we do not have any information about whether the process or parts of it are executable by a 
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Figure 6.1: Incident management from high level point of view
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process engine. This diagram is useful, if you want to scope the process, get a basic understanding of the flow, and talk 
about the main steps, but not if you want to dig into the details for discussing process improvements or even software 
driven support of the process. 

6.2 Detailed Collaboration and Choreography

We can take a closer look at the ping-pong-game of account manager, support agents and software developer by 
switching from a single-pool-model to a collaboration diagram, as shown above. We can now see some more details 
about the particular processes each participant fulfills, e.g., the dialogue between the account manager and the customer 
for clarifying the customer's problem, or the fact that the 2nd level support agent will insert a request for a feature in the 
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Figure 6.2: Incident Management as detailed collaboration
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product backlog, if the current release of the software product cannot cover the customer's demand satisfactorily. We 
have also specified each task as manual, which means that we still think of the processes as completely human-driven 
with no process engine involved. This could hypothetically be the As-Is-state of the incident management before the 
introduction of a process engine. The next step could be to define whether we want to drive the complete collaboration by 
a process engine, or only parts of it. But before we discuss that matter, we can have a look at an other way of modeling 
such a ping-pong-game, the choreography diagram shown below. This diagram only shows the tasks that are dedicated to 
the communication between the different process participants, hiding all internal steps, e.g., the task that inserts a new 
entry into the product backlog. Note that the diagrams shown in Figure 6.1 and 6.2 have no formal connection between 
each other, whereas the Figure 6.2 and 6.3 have the exact same semantic model behind them and just provide different 
views on it. See also Annex A for an XML serialization of the underlying semantic model.
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Figure 6.3: Incident Management as choreography
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6.3 Human-driven vs. system-driven control flows

If we imagine we are realizing a project for automating the incident management process, we could now decide which 
parts of it should be actually executed in a process engine, and which parts should remain human-driven.  In this scenario 
we decided that the account manager should not be bothered with web forms or task lists, he should just send an email if 
he wants to report a customer's problem, and receive an email when the process has completed. The same idea applies for 
the software developer: Let us assume the 2nd level support agent sits in the same room as the developers. Maybe it is 
more efficient if the support agent just walks over to the developer and talks about the issue, rather than playing some 
time consuming ping-pong-game with task assignments. Therefore, we want to keep this part of the incident management 
human driven as well: no process engine driving the collaboration between 2nd level support and software developers. But 
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Figure 6.4: Incident Management with human-driven and system-driven pools
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we do want the assignment of tickets to 1st and 2nd level support agents by a trouble ticket system, which now takes the 
role of the process engine and therefore is modeled in a dedicated pool. That system can actually receive and parse emails 
sent by the account manager and opens a ticket for it. If the 1st level support agent decides that this is a 2nd level issue, he 
does so by documenting his decision and completing the assigned task “edit 1st level ticket”. The trouble ticket system 
then routes the ticket to the 2nd level support agent. When that agent has finished, he maybe declared the issue to be fixed 
in the next software release. Then the trouble ticket system makes a service call on the product backlog system, a new 
feature we have introduced with our process engine: The entry does not have to be inserted manually any more. In the 
end, the trouble ticket system will send an email to the account manager, containing the results of the incident 
management, and close the ticket. The account manager can then explain the solution to the customer based on the 
information in the ticket. 

Of course, this way of modeling both human-driven and system-driven control flows in one diagram is just a proposal, 
that should give an idea of useful modeling approaches based on collaboration diagrams.  It should demonstrate how 
BPMN could support Business-IT-Alignment in process modeling: We can hand over the modeled process engine pool to 
an actual process engine for execution, while we can show the other pools separately to our process participants, the 
support agents or the account manager, and discuss their involvement in the collaboration based on those simplified 
views on the same, consistent collaboration model. This gives us the opportunity to talk with both Business people and IT 
people about the same process model, without overburdening business people with too complex diagrams or IT people 
with too inaccurate process models.
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Figure 6.5: This rather simple diagram is all we have to show to the account manager
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Figure 6.6: This is the only part of the whole collaboration we will execute in a process engine
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Figure 6.7: XML serialization for process engine pool.



Table 6.1: Process engine pool enriched with execution details. This is what a process engine would execute.

<?xml version="1.0" encoding="ISO-8859-1" standalone="yes"?>
<definitions name="Incident Management" id="_98a0678d9e194de9b3d9284886c3"
    targetNamespace="http://fox.camunda.com/model/98a0678d9e194de9b3d9284886c3"
    xmlns:tns="http://fox.camunda.com/model/98a0678d9e194de9b3d9284886c3"
    xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"
    xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/DI"
    xmlns:di="http://www.omg.org/spec/DD/20100524/DI"
    xmlns:dc="http://www.omg.org/spec/DD/20100524/DC"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xmlns:java="http://jcp.org/en/jsr/detail?id=270"
    typeLanguage="http://jcp.org/en/jsr/detail?id=270"
    expressionLanguage="http://www.jcp.org/en/jsr/detail?id=245">
    <!--
        Java SE 6 is used as type language for the model whereas the Java
        Unified Expression Language serves as language for Expressions.
    -->

    <collaboration id="C1275940773964">
        <participant name="Trouble Ticket System" processRef="tns:WFP-1-1"
            id="_1-1" />
    </collaboration>

    <process isExecutable="true" id="WFP-1-1">

        <ioSpecification>
            <dataInput itemSubjectRef="tns:IssueItem" id="IssueDataInputOfProcess" />
            <inputSet>
                <dataInputRefs>IssueDataInputOfProcess</dataInputRefs>
            </inputSet>
            <outputSet></outputSet>
        </ioSpecification>

        <!--
            This Lane Set partitions the Flow Nodes of the Process according to
            the Resources that are responsible for them. However, this does not
            affect the actual assignment of Resources to Activities as meaning
            of the Lanes is up to the modeler and not specified in BPMN.
        -->
        <laneSet id="ls_1-1">
            <lane name="1st level support"
                partitionElementRef="tns:FirstLevelSupportResource" id="_1-9">
                <flowNodeRef>_1-13</flowNodeRef>
                <flowNodeRef>_1-26</flowNodeRef>
                <flowNodeRef>_1-77</flowNodeRef>
                <flowNodeRef>_1-128</flowNodeRef>
                <flowNodeRef>_1-150</flowNodeRef>
                <flowNodeRef>_1-201</flowNodeRef>
                <flowNodeRef>_1-376</flowNodeRef>
            </lane>
            <lane name="2nd level support"
                partitionElementRef="tns:SecondLevelSupportResource" id="_1-11">
                <flowNodeRef>_1-252</flowNodeRef>
                <flowNodeRef>_1-303</flowNodeRef>
                <flowNodeRef>_1-325</flowNodeRef>
            </lane>
        </laneSet>

        <startEvent name="Issue received" id="_1-13">
            <dataOutput itemSubjectRef="tns:IssueItem"
                id="IssueDataOutputOfStartEvent" />
            <dataOutputAssociation>
                <sourceRef>IssueDataOutputOfStartEvent</sourceRef>
                <targetRef>IssueDataInputOfProcess</targetRef>
            </dataOutputAssociation>
            <messageEventDefinition messageRef="tns:IssueMessage" />

  14                                                                                                                                    BPMN 2.0 by Example, Version 1.0 



        </startEvent>

        <sequenceFlow sourceRef="_1-13" targetRef="_1-26" id="_1-390" />

        <!--
            This script task uses the Groovy programming language to create a
            Data Object and fill it with data of the Item received in the
            Message that started the Process.
        -->
        <scriptTask name="Open ticket" scriptFormat="text/x-groovy" id="_1-26">
            <ioSpecification>
                <dataInput itemSubjectRef="tns:IssueItem"
                    id="IssueDataInputOfScriptTask" />
                <dataOutput itemSubjectRef="tns:TicketItem" id="TicketDataOutputOfScriptTask"/>
                <inputSet>
                    <dataInputRefs>IssueDataInputOfScriptTask</dataInputRefs>
                </inputSet>
                <outputSet>
                    <dataOutputRefs>TicketDataOutputOfScriptTask</dataOutputRefs>
                </outputSet>
            </ioSpecification>
            <dataInputAssociation>
                <sourceRef>IssueDataInputOfProcess</sourceRef>
                <targetRef>IssueDataInputOfScriptTask</targetRef>
            </dataInputAssociation>
            <dataOutputAssociation>
                <sourceRef>TicketDataOutputOfScriptTask</sourceRef>
                <targetRef>TicketDataObject</targetRef>
            </dataOutputAssociation>
            <script><![CDATA[
                issueReport = getDataInput("IssueDataInputOfScriptTask") 

                ticket = new TroubleTicket()
                ticket.setDate = new Date()
                ticket.setState = "Open"
                ticket.setReporter = issueReport.getAuthor()
                ticket.setDesctiption = issueReport.getText()

                setDataOutput("TicketDataOutputOfScriptTask", ticket)
            ]]></script>
        </scriptTask>

        <dataObject id="TicketDataObject" itemSubjectRef="tns:TicketItem" />

        <sequenceFlow sourceRef="_1-26" targetRef="_1-77" id="_1-392" />

        <userTask name="edit 1st level ticket" id="_1-77">
            <ioSpecification>
                <dataInput itemSubjectRef="tns:TicketItem" id="TicketDataInputOf_1-77" />
                <dataOutput itemSubjectRef="tns:TicketItem" id="TicketDataOutputOf_1-77" />
                <inputSet>
                    <dataInputRefs>TicketDataInputOf_1-77</dataInputRefs>
                </inputSet>
                <outputSet>
                    <dataOutputRefs>TicketDataOutputOf_1-77</dataOutputRefs>
                </outputSet>
            </ioSpecification>
            <dataInputAssociation>
                <sourceRef>TicketDataObject</sourceRef>
                <targetRef>TicketDataInputOf_1-77</targetRef>
            </dataInputAssociation>
            <dataOutputAssociation>
                <sourceRef>TicketDataOutputOf_1-77</sourceRef>
                <targetRef>TicketDataObject</targetRef>
            </dataOutputAssociation>
            <potentialOwner>
                <resourceRef>tns:FirstLevelSupportResource</resourceRef>
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            </potentialOwner>
        </userTask>

        <sequenceFlow sourceRef="_1-77" targetRef="_1-128" id="_1-394" />

        <exclusiveGateway name="Result?" gatewayDirection="Diverging"
            id="_1-128" />

        <sequenceFlow sourceRef="_1-128" targetRef="_1-252"
            name="2nd level issue" id="_1-402">
            <conditionExpression xsi:type="tFormalExpression">
                ${getDataObject("TicketDataObject").status == "Open"}
            </conditionExpression>
        </sequenceFlow>
        <sequenceFlow sourceRef="_1-128" targetRef="_1-150"
            name="Issue resolved" id="_1-396">
            <conditionExpression xsi:type="tFormalExpression">
                ${getDataObject("TicketDataObject").status == "Resolved"}
            </conditionExpression>
        </sequenceFlow>

        <userTask name="edit 2nd level ticket" id="_1-252">
            <ioSpecification>
                <dataInput itemSubjectRef="tns:TicketItem" id="TicketDataInputOf_1-252" />
                <dataOutput itemSubjectRef="tns:TicketItem" id="TicketDataOutputOf_1-252" />
                <inputSet>
                    <dataInputRefs>TicketDataInputOf_1-252</dataInputRefs>
                </inputSet>
                <outputSet>
                    <dataOutputRefs>TicketDataOutputOf_1-252</dataOutputRefs>
                </outputSet>
            </ioSpecification>
            <dataInputAssociation>
                <sourceRef>TicketDataObject</sourceRef>
                <targetRef>TicketDataInputOf_1-252</targetRef>
            </dataInputAssociation>
            <dataOutputAssociation>
                <sourceRef>TicketDataOutputOf_1-252</sourceRef>
                <targetRef>TicketDataObject</targetRef>
            </dataOutputAssociation>
            <potentialOwner>
                <resourceRef>tns:SecondLevelSupportResource</resourceRef>
            </potentialOwner>
        </userTask>

        <sequenceFlow sourceRef="_1-252" targetRef="_1-303" id="_1-404" />

        <exclusiveGateway name="Result?" gatewayDirection="Diverging"
            id="_1-303" />

        <sequenceFlow sourceRef="_1-303" targetRef="_1-325"
            name="Fix in Next release" id="_1-410">
            <conditionExpression xsi:type="tFormalExpression">
                ${getDataObject("TicketDataObject").status == "Deferred"}
            </conditionExpression>
        </sequenceFlow>

        <sequenceFlow sourceRef="_1-303" targetRef="_1-150"
            name="Issue resolved" id="_1-406">
            <conditionExpression xsi:type="tFormalExpression">
                ${getDataObject("TicketDataObject").status == "Resolved"}
            </conditionExpression>
        </sequenceFlow>

        <serviceTask name="Insert issue into product backlog"
            operationRef="tns:addTicketOperation" id="_1-325">
            <ioSpecification>
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                <dataInput itemSubjectRef="tns:TicketItem" id="TicketDataInputOf_1-325" />
                <inputSet>
                    <dataInputRefs>TicketDataInputOf_1-325</dataInputRefs>
                </inputSet>
                <outputSet />
            </ioSpecification>
            <dataInputAssociation>
                <sourceRef>TicketDataObject</sourceRef>
                <targetRef>TicketDataInputOf_1-325</targetRef>
            </dataInputAssociation>
        </serviceTask>

        <sequenceFlow sourceRef="_1-325" targetRef="_1-150" id="_1-408" />

        <sendTask name="Send mail to account manager" messageRef="tns:AnswerMessage"
            operationRef="tns:sendMailToIssueReporterOperation" id="_1-150">
            <ioSpecification>
                <dataInput itemSubjectRef="tns:AnswerItem" id="AnswerDataInputOfSendTask" />
                <inputSet>
                    <dataInputRefs>AnswerDataInputOfSendTask</dataInputRefs>
                </inputSet>
                <outputSet />
            </ioSpecification>
            <dataInputAssociation>
                <sourceRef>TicketDataObject</sourceRef>
                <targetRef>AnswerDataInputOfSendTask</targetRef>
                <assignment>
                    <from>${getDataObject("TicketDataObject").reporter}</from>
                    <to>${getDataInput("AnswerDataInputOfSendTask").recipient</to>
                </assignment>
                <assignment>
                    <from>
                        A ticket has been created for your issue, which is now in
                        status ${getDataObject("TicketDataObject").status}.
                    </from>
                    <to>${getDataInput("AnswerDataInputOfSendTask").body}</to>
                </assignment>
            </dataInputAssociation>
        </sendTask>

        <sequenceFlow sourceRef="_1-150" targetRef="_1-201" id="_1-398" />

        <scriptTask name="Close ticket" scriptFormat="text/x-groovy"
            id="_1-201">
            <ioSpecification>
                <dataInput itemSubjectRef="tns:TicketItem" id="TicketDataInputOf_1-398" />
                <inputSet>
                    <dataInputRefs>TicketDataInputOf_1-398</dataInputRefs>
                </inputSet>
                <outputSet />
            </ioSpecification>
            <dataInputAssociation>
                <sourceRef>TicketDataObject</sourceRef>
                <targetRef>TicketDataInputOf_1-398</targetRef>
            </dataInputAssociation>
            <script><![CDATA[
                ticket = getDataInput("TicketDataInputOf_1-398")
                ticket.close()
            ]]></script>
        </scriptTask>

        <sequenceFlow sourceRef="_1-201" targetRef="_1-376" id="_1-400" />

        <endEvent id="_1-376" />

    </process>
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    <resource id="FirstLevelSupportResource" name="1st Level Support" />

    <resource id="SecondLevelSupportResource" name="2nd Level Support" />

    <interface name="Product Backlog Interface"
        implementationRef="java:com.camunda.examples.incidentmanagement.ProductBacklog">
        <operation name="addTicketOperation" implementationRef="addTicket"
            id="addTicketOperation">
            <inMessageRef>tns:AddTicketMessage</inMessageRef>
        </operation>
    </interface>

    <interface name="Mail Interface"
        implementationRef="java:com.camunda.examples.incidentmanagement.Mail">
        <operation name="sendMailToIssueReporterOperation" implementationRef="sendMail"
            id="sendMailToIssueReporterOperation">
            <inMessageRef>tns:AnswerMessage</inMessageRef>
        </operation>
    </interface>

    <message id="IssueMessage" name="Issue Message" itemRef="tns:IssueItem" />

    <message id="AddTicketMessage" name="addTicket Message"
        itemRef="tns:TicketItem" />

    <message id="AnswerMessage" name="Answer Message" itemRef="tns:AnswerItem" />

    <itemDefinition id="IssueItem" isCollection="false" itemKind="Information"
        structureRef="com.camunda.examples.incidentmanagement.IssueReport" />

    <itemDefinition id="TicketItem" isCollection="false" itemKind="Information"
        structureRef="com.camunda.examples.incidentmanagement.TroubleTicket" />

    <itemDefinition id="AnswerItem" isCollection="false" itemKind="Information"
        structureRef="com.camunda.examples.incidentmanagement.Answer" />

</definitions>
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7 Models and Diagrams
The purpose of this chapter is to demonstrate via examples some of the interrelations between models and diagrams. We 
explore how different BPMN diagrams of the same scenario lead to different serializations of the model.  

The process scenario used in the examples from this chapter is inspired from figure 10.24 of the BPMN 2.0 Specification 
document.

7.1 Lane and Pool
In this section, we explore the use of lanes and pools in a BPMN diagram and their corresponding serializations.

7.1.1 Lane
A process can be depicted in a Process Diagram with or without lanes.  Both these depictions lead to one process in the 
model and one diagram of that process.  The main difference in the two serializations is that one does not have a Laneset 
with a lane in it, while the other does.
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7.1.2 Pool
Pools are only present in Collaboration Diagrams (Collaborations, Choreographies, Conversations). Thus, when 
depicting the same scenario using a pool, we are producing a Collaboration Diagram.   The introduction of a pool in our 
depiction implies that we are producing a Collaboration Diagram. In fact, this is a diagram of an incomplete 
Collaboration, as a Collaboration should be between two or more participants.
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7.2 Sub Process and Call Activity
In this section, we explore the use of Sub Processes (expanded and collapsed) along with Call Activities and show how 
their content can be depicted in separate diagrams.

7.2.1 Expanded Sub Process Example
In this example our “Order Process” is depicted with an expanded “Approve Order” Sub Process.  The activities within 
the “Approve Order” Sub Process are part of the parent process.  This is a single process  depicted in a single diagram. 
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7.2.2 Collapsed Sub Process Example
In this example our “Order Process” is depicted with a collapsed  “Approve Order” Sub Process. 

While the content (or details) of the “Approve Order” Sub Process is depicted on a separate diagram.
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This is a single process depicted into two diagrams: one diagram for the parent process and one diagram for the sub 
process.  

Note that both expanded and collapsed depictions are visual variations of the same single “Order Process”.

7.2.3 Call Activity Example
In this example our “Order Process” is depicted with a collapsed Call Activity  “Approve Order”.  This diagram is quite 
different than the previous example, as here we are introducing the notion of Process re-use.  In this case, the “Approve 
Order” is not a Sub Process of “Order Process” but separate independent process that is called (re-used) within the 
“Order Process”.
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The “Approve Order” Process 

We thus have two processes each in their own diagrams (2 processes, 2 diagrams)
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8 Nobel Prize Example
8.1 The Nobel Prize Process Scenario

The selection of a Nobel Prize Laureate is a lengthy and carefully executed process. The processes slightly differ for each 
of the six prizes; the results are the same for each of the six categories. 
Following is the description for the Nobel Prize in Medicine. The main actors in the processes for Nomination, Selection 
and Accepting and Receiving the award are the:

• Nobel Committee for Medicine,
• Nominators,
• Specially appointed experts,
• Nobel Assembly and
• Nobel Laureates.

Each year in September, in the year preceding the year the Prize is awarded, around 3000 invitations or confidential 
nomination forms are sent out by the Nobel Committee for Medicine to selected Nominators. 

The Nominators are given the opportunity to nominate one or more Nominees. The completed forms must be made 
available to the Nobel Committee for Medicine for the selection of the preliminary candidates. 

The Nobel Committee for Medicine performs a first screening and selects the preliminary candidates.

Following this selection, the Nobel Committee for Medicine may request the assistance of experts. If so, it sends the list 
with the preliminary candidates to these specially appointed experts with the request to assess the preliminary candidates’ 
work.

From this, the recommended final candidate laureates and associated recommended final works are selected and the 
Nobel Committee for Medicine writes the reports with recommendations.

The Nobel Committee for Medicine submits the report with recommendations to the Nobel Assembly. This report 
contains the list of final candidates and associated works.

The Nobel Assembly chooses the Nobel Laureates in Medicine and associated through a majority vote and the names of 
the Nobel Laureates and associated works are announced. The Nobel Assembly meets twice for this selection.  In the first 
meeting of the Nobel Assembly the report is discussed. In the second meeting the Nobel Laureates in Medicine and 
associated works are chosen.

The Nobel Prize Award Ceremony is held in Stockholm.
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8.2 The Nobel Prize Process Diagram
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9 Travel Booking Example
The purpose of this chapter is to provide an example of in-line event handling via event sub-process constructs. 

The process scenario is inspired from figure 10.100 of the BPMN 2.0 Specification document.

9.1 The Travel Booking Scenario
The Travel Agency receives a travel reservation request, including airline transportation and hotel reservation, from a 
Client.

Following research and evaluation of both flights’ and hotel rooms’ availability, selected alternatives are packaged and 
offered to the Client.

The Client has 24 hours to either select a proposed alternative or cancel the request. In case of a cancellation, or after this 
delay, the Agency updates the Client record to reflect the request cancellation and the Client is notified.

When a selection is made, the Client is asked to provide the Credit Card information. Again, the Client has 24 hours to 
provide this information or the request is canceled via the same activities stated before (update and notification).

Having received the Credit Card information, the booking activities take place:

The flight and the hotel room are booked. Measures are taken to insure reservations reversals if problems occur in the 
booking and payment activities. The Client is also entitled to provide the Agency with Credit Card Information 
modifications before the booking is completed. Such information will be saved in its record.

If an error arises during the booking activities, the flight and hotel room reservations are reversed and the Client record is 
updated. The booking is tried again as long as the booking retry limit is not exceeded. 

Following successful booking the Reservations are charged on the Client’s Credit Card and the process stops following 
successful confirmation. If an error occurs during this activity the flight and hotel room reservation are reversed. The 
Client is asked again for the Credit Card Information and the booking is tried again as long as the payment processing 
retry limit is not exceeded.

In both cases, following the error, when the retry limit is exceeded, the Client is notified and the process stops. 
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9.2 The Travel Booking Diagram
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10 Examples from Diagram Interchange Chapter
The purpose of this chapter is to provide a subset of the diagrams used into the Notation and Diagrams 
chapter of the BPMN 2.0 specification along with their serializations.  The complete serializations of the 
herein provided diagrams can be found in the accompanying machine-readable files.

10.1 Expanded Sub Process Example

10.2 Collapsed Sub Process Example

10.2.1 Process Diagram

10.2.2 Sub Process Diagram

10.3 Multiple Lanes and Nested Lanes Example
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10.4 Vertical Collaboration Example

10.5 Conversation Example

10.6 Choreography Example
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11 Correlation Example 
 This example illustrates the usage of two concepts, namely correlations and definitional collaborations. It introduces a 
collaboration between three participants - Seller, Buyer and Shipper - and the Seller process that interacts with the two 
other participants. The SellerCollab collaboration is defined as definitional collaboration for the Seller process, as it 
specifies all Participants the Process interacts with. It is used to derive which individual service, Send Task or Receive 
Task, is connected to which Participant through Message Flow and associated correlation information. Moreover, this 
example illustrates definition of key-based correlations. See Annex A for the according XML Schema and WSDL 
description.

<?xml version="1.0" encoding="UTF-8"?> 
<definitions id="def"

targetNamespace="http://www.example.org/Processes/sellerProcess" 
typeLanguage="http://www.w3.org/2001/XMLSchema" 
expressionLanguage="http://www.w3.org/1999/XPath" 
xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:myData="http://www.example.org/Messages" 
xmlns:tns="http://www.example.org/Processes/sellerProcess" >

   <!--    Structures and Messages -->
   <import importType="http://www.w3.org/2001/XMLSchema" 

location="DataDefinitions.xsd" 
namespace="http://www.example.org/Messages"/>

   <import importType="http://schemas.xmlsoap.org/wsdl/" 
location="Interfaces.wsdl" 
namespace="http://www.example.org/Messages"/>

   <itemDefinition id="itemRFQMessage" structureRef="myData:rfqRequest">
      <!-- Single part message -->
   </itemDefinition>
   <itemDefinition id="itemQuoteMessage" structureRef="myData:rfqResponse">
      <!-- Single part message -->
   </itemDefinition>
   <itemDefinition id="itemFaultMessage" structureRef="myData:rfqFault">
      <!-- Single part message -->
   </itemDefinition>
   <itemDefinition id="itemOrderRequest" structureRef="myData:orderRequest">
      <!-- Multi part message -->
   </itemDefinition>
   <itemDefinition id="itemOrderResponse" structureRef="myData:orderResponse">
      <!-- Multi part message -->
   </itemDefinition>
   
   <itemDefinition id="itemShippingRequest" structureRef="myData:shippingRequest">
      <!-- Multi part message -->
   </itemDefinition>
   
   <itemDefinition id="itemShippingResponse" structureRef="myData:shippingResponse">
      <!-- Multi part message -->
   </itemDefinition>

   <message id="msgRFQ" name="RFQ Message" itemRef="tns:itemRFQMessage"/>
   <message id="msgQuote" name="Quote Message" itemRef="tns:itemQuoteMessage"/>
   <message id="msgFault" name="Fault Message" itemRef="tns:itemFaultMessage"/>
   <message id="msgOrderData" name="Order Data Message" itemRef="tns:itemOrderRequest"/>
   <message id="msgOrderConfirmation" name="Order Confirmation Message" itemRef="tns:itemOrderResponse"/>
   <message id="msgShippingData" name="Shipping Data Message" itemRef="tns:itemShippingRequest"/>
   <message id="msgShippingConfirmation" name="Shipping Confirmation Message" itemRef="tns:itemShippingResponse"/>

   <partnerEntity id="theSeller" name="The Seller">
    <participantRef>tns:seller</participantRef>
   </partnerEntity>
   <partnerRole id="aBuyer" name="A Buyer">

   <participantRef>tns:buyer</participantRef>
   </partnerRole>
   <partnerRole id="aShipper" name="A Shipper">

   <participantRef>tns:shipper</participantRef>
   </partnerRole>
     
   <correlationProperty id="propQuoteID" name="Property Quote ID" type="xsd:string">
      <correlationPropertyRetrievalExpression messageRef="tns:msgRFQ">
         <messagePath>/request/quoteID</messagePath>
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      </correlationPropertyRetrievalExpression>
      <correlationPropertyRetrievalExpression messageRef="tns:msgQuote">
         <messagePath>/response/quoteID</messagePath>
      </correlationPropertyRetrievalExpression>
      <correlationPropertyRetrievalExpression messageRef="tns:msgFault">
         <messagePath>/fault/quoteID</messagePath>
      </correlationPropertyRetrievalExpression>
      <correlationPropertyRetrievalExpression messageRef="tns:msgOrderData">
         <messagePath>/priceQuotationRef</messagePath>
      </correlationPropertyRetrievalExpression>
   </correlationProperty>
   <correlationProperty id="propCustomerID" name="Property Customer ID" type="xsd:string">
      <correlationPropertyRetrievalExpression messageRef="tns:msgOrderData">
         <messagePath>/customer/id</messagePath>
      </correlationPropertyRetrievalExpression>
      <correlationPropertyRetrievalExpression messageRef="tns:msgOrderConfirmation">
         <messagePath>/customerID</messagePath>
      </correlationPropertyRetrievalExpression>
   </correlationProperty>
   <correlationProperty id="propOrderID" name="Property Order ID" type="xsd:string">
      <correlationPropertyRetrievalExpression messageRef="tns:msgOrderData">
         <messagePath>/order/orderID</messagePath>
      </correlationPropertyRetrievalExpression>
      <correlationPropertyRetrievalExpression messageRef="tns:msgOrderConfirmation">
         <messagePath>/order/orderID</messagePath>
      </correlationPropertyRetrievalExpression>
      <correlationPropertyRetrievalExpression messageRef="tns:msgShippingData">
         <messagePath>/order/orderID</messagePath>
      </correlationPropertyRetrievalExpression>
      <correlationPropertyRetrievalExpression messageRef="tns:msgShippingConfirmation">
         <messagePath>/order/orderID</messagePath>
      </correlationPropertyRetrievalExpression>
   </correlationProperty>
   
   <collaboration id="sellerCollab">
      <participant id="seller" name="Seller" processRef="tns:sellerProcess">
         <interfaceRef>tns:sellerServiceInterface</interfaceRef>
      </participant>
      <participant id="buyer" name="Buyer"/>
      <participant id="shipper" name="Shipper">
         <interfaceRef>tns:shipperServiceInterface</interfaceRef>
      </participant>
      <messageFlow id="mf1" messageRef="tns:msgRFQ" sourceRef="tns:buyer" targetRef="tns:receiveQuoteRequest"/>
      <messageFlow id="mf2" messageRef="tns:msgQuote" sourceRef="tns:sendQuote" targetRef="tns:buyer"/>
      <messageFlow id="mf3" messageRef="tns:msgFault" sourceRef="tns:sendFault" targetRef="tns:buyer"/>
      <messageFlow id="mf4" messageRef="tns:msgOrderData" sourceRef="tns:buyer"

targetRef="tns:receiveOrderRequest"/>
      <messageFlow id="mf5" messageRef="tns:msgOrderConfirmation" sourceRef="tns:sendOrderResponse"

targetRef="tns:buyer"/>
      <messageFlow id="mf6" messageRef="tns:msgShippingData" sourceRef="tns:sendShippingRequest"

targetRef="tns:shipper"/>
      <messageFlow id="mf7" messageRef="tns:msgShippingConfirmation" sourceRef="tns:shipper"

targetRef="tns:receiveShippingConfirmation"/>

      <!--   Conversations -->
      <conversation id="conversationQuoteRequest">
         <messageFlowRef>tns:mf1</messageFlowRef>
         <messageFlowRef>tns:mf2</messageFlowRef>
         <messageFlowRef>tns:mf3</messageFlowRef>
         <messageFlowRef>tns:mf4</messageFlowRef>
         <correlationKey id="correlQuote" name="Quote Correlation Key">
            <correlationPropertyRef>tns:propQuoteID</correlationPropertyRef>
         </correlationKey>
      </conversation>
      <conversation id="conversationOrderHandling">
         <messageFlowRef>tns:mf4</messageFlowRef>
         <messageFlowRef>tns:mf5</messageFlowRef>
         <correlationKey id="correlOrder" name="Order Correlation Key">
            <correlationPropertyRef>tns:propCustomerID</correlationPropertyRef>
            <correlationPropertyRef>tns:propOrderID</correlationPropertyRef>
         </correlationKey>
      </conversation>
      <conversation id="conversationShipmentRequest">
         <messageFlowRef>tns:mf6</messageFlowRef>
         <messageFlowRef>tns:mf7</messageFlowRef>
         <correlationKey id="correlShipment" name="Shipment Correlation Key">
            <correlationPropertyRef>tns:propOrderID</correlationPropertyRef>
         </correlationKey>
      </conversation>
   </collaboration>

   <!--    Interfaces -->
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   <!-- The interface of the Seller Process -->
   <interface id="sellerServiceInterface" name="Seller Service Interface">
      <operation id="requestQuoteOp" name="Request Quote Operation">
         <inMessageRef>tns:msgRFQ</inMessageRef>
         <outMessageRef>tns:msgQuote</outMessageRef>
         <errorRef>tns:msgFault</errorRef>
      </operation>
      <operation id="orderOp" name="Order Operation">
         <inMessageRef>tns:msgOrderData</inMessageRef>
         <outMessageRef>tns:msgOrderConfirmation</outMessageRef>
      </operation>
   </interface>
   <interface id="shipperServiceInterface" name="Shipper Service Interface">
      <operation id="requestShippingOp" name="Request Shipping Operation">
         <inMessageRef>tns:msgShippingData</inMessageRef>
         <outMessageRef>tns:msgShippingConfirmation</outMessageRef>
      </operation>
   </interface>
  
   <!--    Process Definition -->

   <process id="sellerProcess" name="Seller process" 
definitionalCollaborationRef="tns:sellerCollab">

 
      <!--Receive quote request message from caller.-->
      <receiveTask id="receiveQuoteRequest" name="Receive Quote Request"

instantiate="true" 
messageRef="tns:msgRFQ" 
operationRef="tns:requestQuoteOp"/>

      
      <sequenceFlow targetRef="decision1" sourceRef="receiveQuoteRequest"/>
      <!--Decide whether quote is available and can be returned, or not.

The actual processing logic is omitted from the example. -->

      <exclusiveGateway id="decision1" gatewayDirection="Mixed"
default="noQuote"/>

      <sequenceFlow id="quote" targetRef="sendQuote" sourceRef="decision1">
         <conditionExpression>Quote available and okay.</conditionExpression>
      </sequenceFlow>
      <sequenceFlow id="noQuote" targetRef="sendFault" sourceRef="decision1"/>

      <!-- Respond successful quote back to caller. -->
      <sendTask id="sendQuote" name="Send Quote" 
      messageRef="tns:msgQuote"

operationRef="tns:requestQuoteOp"/>
      
      <sequenceFlow targetRef="eventWait" sourceRef="sendQuote"/>
      
      <!-- This is a reply, so use same service reference and operation as in associated receive. -->
      <sendTask id="sendFault" name="Send Fault" 
      messageRef="tns:msgFault"

operationRef="tns:requestQuoteOp"/>

  <receiveTask id="receiveNewQuoteRequest" name="Receive New Quote" 
messageRef="tns:msgRFQ" 
operationRef="tns:requestQuoteOp"/>

      <sequenceFlow targetRef="decision1" sourceRef="receiveNewQuoteRequest"/>
      
      <!-- Respond error back to caller -->
      
      <sequenceFlow targetRef="eventWait" sourceRef="sendFault"/>

      <!-- Wait for another quote request, an order, or a timeout -->
      <eventBasedGateway id="eventWait" gatewayDirection="Mixed"/>
      <sequenceFlow targetRef="receiveNewQuoteRequest" sourceRef="eventWait"/>
      <sequenceFlow targetRef="receiveOrderRequest" sourceRef="eventWait"/>
      <sequenceFlow targetRef="timeout" sourceRef="eventWait"/>
      <!-- Timeout and end -->
      <intermediateCatchEvent id="timeout">
         <timerEventDefinition>
            <timeDate>PD4h</timeDate>
         </timerEventDefinition>
      </intermediateCatchEvent>
      <sequenceFlow targetRef="end1" sourceRef="timeout"/>
      <endEvent id="end1"/>

      <!-- Receive an order message-->
      <receiveTask id="receiveOrderRequest" name="Receive Order Request" 
       messageRef="tns:msgOrderData"
       operationRef="tns:orderOp" />
      
      <sequenceFlow targetRef="fork" sourceRef="receiveOrderRequest"/>
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      <parallelGateway id="fork" gatewayDirection="Diverging"/>
      <sequenceFlow targetRef="sendOrderResponse" sourceRef="fork"/>
      <sequenceFlow targetRef="sendShippingRequest" sourceRef="fork"/>

      <!-- Send order confirmation -->
      <sendTask id="sendOrderResponse" name="Send Order Response" 
      messageRef="tns:msgOrderConfirmation"
      operationRef="tns:orderOp" />
      
      <sequenceFlow targetRef="join" sourceRef="sendOrderResponse"/>
      
      <!-- Trigger Shipping -->
      <sendTask id="sendShippingRequest" name="Send Shipping Request" 
      messageRef="tns:msgShippingData"
       operationRef="tns:requestShippingOp"/>
      
      <sequenceFlow targetRef="receiveShippingConfirmation" 
      sourceRef="sendShippingRequest"/>
      <!-- Receive Shipment Notification -->
      
      <receiveTask id="receiveShippingConfirmation" name="Receive Shipping Confirmation"

messageRef="tns:msgShippingConfirmation"
operationRef="tns:requestShippingOp" />

      
      <sequenceFlow targetRef="join" sourceRef="receiveShippingConfirmation"/>
      <parallelGateway id="join" gatewayDirection="Converging"/>
      <sequenceFlow targetRef="end2" sourceRef="join"/>
      <endEvent id="end2"/>
   </process>
</definitions>
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12 E-Mail Voting Example
This chapter will provide an example of a business process modeled with BPMN. This example was presented in the 
BPMN 1.0 specification, but has been updated for BPMN 2.0. The process that will be described is a process used to help 
develop this notation. It is a process for resolving issues through e-mail votes (see Figure). This Process is small, but 
fairly complex and will provide examples for many of the features of BPMN, and it will help illustrate that BPMN can 
handle simple and unusual business processes and still be easily understandable for readers of the Diagram. The sections 
below will isolate segments of the Process and highlight the modeling features as the workings of the Process is 
described. 
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The Process has a point of view that is from the perspective of the manager of the Issues List and the discussion around 
this list. From that point of view, the voting members of the working group are considered as external Participants who 
will be communicated with by messages (shown as Message Flow). 

The Issue List Manager will review the list and determine if there are any issues that are ready for going through the 
discussion and voting cycle. Then a Decision must be made. If there are no issues ready, then the Process is over for that 
week--to be taken up again the following week. If there are issues ready, then the Process will continue with the 
discussion cycle. The “Discussion Cycle” Sub-Process is the first activity after the “Any issues ready?” Decision and this 
Sub-Process has two incoming Sequence Flow, one of which originates from a downstream Decision and is thus part of a 
loop. It is one of a set of four (4) complex loops that exist in the Process. The contents of the “Discussion Cycle” Sub-
Process and the activities that follow will be described below. 

12.1 The First Sub-Process 
The “Discussion Cycle” Sub-Process starts with a Task for the Issue List Manager to send an e-mail to the working group 
that a set of Issues are now open for discussion through the working group’s message board. Since this Task sends a 
message to an outside Participant (the working group members), an outgoing Message Flow is seen from the “Discussion 
Cycle” Sub-Process to the “Voting Members” Pool in the Figure. Basically, the working group will be discussing the 
issues for one week and proposing additional solutions to the issues. After the first Task, three separate parallel paths are 
followed, which are synchronized downstream. This is shown by the three outgoing Sequence Flow for that activity. 

The top parallel path in the figure starts with a long-running Task, “Moderate E-mail Discussion,” that has a Timer 
Intermediate Event attached to its boundary. The “Moderate E-Mail Discussion” Task will never actually be completed 
normally in this model, but will be interrupted by the Timer Intermediate Event. 

The middle parallel path of the fork contains an Intermediate Event and a Task. A Timer Intermediate Event used in the 
middle of the Process flow (not attached to the boundary of an activity) will cause a delay. This delay is set to 6 days. 
The “E-Mail Discussion Deadline Warning” Task will follow. Again, since this Task sends a message to an outside 
Participant, an outgoing Message Flow is seen from the “Discussion Cycle” Sub-Process to the “Voting Members” Pool 
in the Figure. 

The bottom parallel path of the fork contains more than one object, first of which is Task where the issue list manager 
checks the calendar to see if there is a conference call this week. The output of the Task will be an update to the variable 
“ConCall” (not seen), which will be true or false. After the Task, an Exclusive Gateway with its two Gates follows. The 
“default” Flow connects directly to an merging Exclusive Gateway. A merging Exclusive Gateway is used in this 
situation because the next object is a joining Parallel Gateway (the diamond with the cross in the center) that is used to 
synchronize the three (3) parallel paths. If the merging Gateway was not used and both Sequence Flow connected to the 
Parallel Gateway, the Process would have been stuck at the Parallel Gateway that would wait for a Token to arrive from 
each of the incoming Sequence Flow. The “Yes” Sequence Flow will have a condition that checks the value of the 
“ConCall” variable (set in the previous Task) to see if there will be a conference call during the week. If so, the Timer 
Intermediate Event indicates delay, since all conference calls for the working group start at 9am PDT on Thursdays. The 
Task for moderating the conference call follows the delay, which is followed by the merging Gateway. 

The merging Gateway in bottom path, the “Moderate E-mail Discussion” Task, and the “E-Mail Discussion Deadline 
Warning” Task all flow into a synchronizing Parallel Gateway. This Gateway waits for all three paths to complete before 
the Process will continue to the next Task, “Evaluate Discussion Progress.” The Issue List Manager will review the status 
of the issues and the discussions during the past week and decide if the discussions are over. The “DiscussionOver” 
variable (not seen) will be set to TRUE or FALSE, depending on this evaluation. If the variable is set to FALSE, then the 
whole Sub-Process will be repeated, since it has looping set and the loop condition that will test the “DiscussionOver” 
variable. 

12.2 The Second Sub-Process 
The “Collect Votes” Sub-Process is preceded by a Task for the issue list manager to send out an e-mail to announce to 
the working group, and the voting members in particular, which lets them know that the issues are now ready for voting. 
Since this Task sends a message to an outside Participant (the working group members), an outgoing Message Flow is 
seen from the “Announce Issues” Task to the “Voting Members” Pool in the Figure above. This Task is also a target for 
one of the complex loops in the Process. 
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The “Collect Votes” Sub-Process follows the Task, and is also a target of one of the looping Sequence Flow. This Sub- 
Process is basically a set of three (3) parallel paths that extend from the beginning to the end of the Sub-Process. In 
addition, there is a non-interrupting Event Sub-Process that is used to receive the votes from the voting members as they 
come in. 

The first branch of the fork leads to a Decision that determines whether or not a conference call will occur during the 
upcoming week, after the Working Group’s schedule has been checked. Basically, if there was a call last week, then there 
will not be a call this week and vice versa. If there is no call, then there is a Timer Intermediate Event that is set to wait 
until the next Monday, then the path loops back. The appropriate variable that was updated in the “Discussion Cycle” 
Process will be used again. 

The second and third branches of the forks work the same way as the similar activities in the “Discussion Cycle” Sub- 
Process, except that it will last two weeks. However, since the branches lead to an End Event instead of a Parallel 
Gateway, a merging Exclusive Gateway is not needed (the necessary synchronization will be done by the End Event). 

The Event Sub-Process will accept votes from the voting members throughout the two weeks that the “Collect Votes” 
Sub-Process runs. The policy of the working group is that voting members can vote more than once on an issue; that is, 
they can change their mind as many times as they want throughout the entire two weeks. The Message Start Event 
triggers the performance of the Event Sub-Process. It is of the non-interrupting type so that multiple votes can be 
collected during the two weeks. As part of this, an incoming Message Flow is seen from the “Voting Members” Pool to 
the “Receive Vote” Start Event. Within the Event Sub-Process are Two Tasks that follow the start. First, a Task will 
prepare all the voting results, then a Task will send the results to the voting members. 

12.3 The End of the Process 
The last section of the Process includes a complex set of Decisions and loops. First a set of Tasks will prepare the voting 
results, email them to the voting members, and post them on a web site. The first Decision, “Did Enough Members 
Vote?,” is necessary since two-thirds of the voting members are required to approve any solution to an issue. If less than 
two-thirds of the voting members cast votes, which sometimes happens, the issues can’t be resolved. This Decision is 
followed by another Decision for both of its Alternatives. The “No” Alternative is followed by the “Have the Members 
been Warned?” Decision. If a voting member misses a vote, they are warned. If they miss a second vote, they lose their 
status as a voting member and the voting percentages are recalculate through a Task (“Reduce number of Voting 
Members and Recalculate Vote”). If they haven’t yet been warned, then a warning is sent and the voting cycle is 
repeated. If all issues are resolved, then the Process is done. If not, then another Decision is required. The voting is given 
two chances before it goes back to another cycle of discussion. The first time will see a reduction of the number of 
solutions to the two most popular based on the vote (more if there are ties). Some voting members will have to change 
their votes just because their selected solution is no longer valid. These two activities are placed in a Sub-Process to show 
how a Sub-Process without Start and End Events can be used to create a simple set of parallel activities. Informally, this 
is called a “parallel box.” It is not a special object, but another use of Sub-Processes. For simple situations, it can be used 
to show a set of parallel activities without the extra clutter of a lot of Sequence Flow. In actuality, these two Tasks cannot 
actually be done in parallel, but they are modeled this way to highlight the optional use of Start and End Events. After the 
parallel box, the flow loops back to the “Collect Votes” Sub-Process. If there already has been two cycles of voting, then 
the process Flow back to the “Decision Cycle” Sub-Process. 
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Annex A:  XML Serializations for all presented 
Models

(informative)

A.1  Machine-readable XML Serializations
The XML serializations for all models are provided in machine-readable form as a separate zip file, which has the OMG 
Document Number dtc/2010-06-03 and is available for download at http://www.omg.org/spec/BPMN/2.0/examples/ZIP.
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