Performance of Fractal-Tree Databases

Michael A. Bender

The Problem

Problem: maintain a dynamic dictionary on disk.

Motivation: file systems, databases, etc.

The Problem

Problem: maintain a dynamic dictionary on disk. Motivation: file systems, databases, etc.

State of the art (algorithmic perspective):

- B-tree [Bayer, McCreight 72]
- cache-oblivious B-tree [Bender, Demaine, Farach-Colton 00]
- buffer tree [Arge 95]
- buffered-repository tree[Buchsbaum, Goldwasser, Venkatasubramanian, Westbrook 00]
- B^ɛ tree [Brodal, Fagerberg 03]
- log-structured merge tree [O'Neil, Cheng, Gawlick, O'Neil 96]
- string B-tree [Ferragina, Grossi 99]
- etc, etc!

The Problem

Problem: maintain a dynamic dictionary on disk.

Motivation: file systems, databases, etc.

Motivation: file systems, databases, etc.

State of the art (algorithmic perspective):

- B-tree [Bayer, McCreight 72]
- cache-oblivious B-tree [Bender, Demaine, Farach-Colton 00]
- buffer tree [Arge 95]
- buffered-repository tree[Buchsbaum, Goldwasser, Venkatasubramanian, Westbrook 00]
- B^ɛ tree [Brodal, Fagerberg 03]
- log-structured merge tree [O'Neil, Cheng, Gawlick, O'Neil 96]
- string B-tree [Ferragina, Grossi 99]
- etc, etc!

State of the practice:

B-trees + industrial-strength features/optimizations

B-trees are Fast at Sequential Inserts

B-trees are Fast at Sequential Inserts

Sequential inserts in B-trees have near-optimal data locality

- One disk I/O per leaf (which contains many inserts).
- Sequential disk I/O.
- Performance is disk-bandwidth limited.

B-Trees Are Slow at Ad Hoc Inserts

High entropy inserts (e.g., random) in B-trees have poor data locality

- Most nodes are not in main memory.
- Most insertions require a random disk I/O.
- Performance is disk-seek limited.
- \leq 100 inserts/sec/disk (\leq 0.05% of disk bandwidth).

B-trees Have a Similar Story for Range Queries

Range queries in newly built B-trees have good locality

B-trees Have a Similar Story for Range Queries

Range queries in newly built B-trees have good locality

Range queries in aged B-trees have poor locality

- Leaf blocks are scattered across disk.
- For page-sized nodes, as low as 1% disk bandwidth.

Results

Cache-Oblivious Streaming B-tree [Bender, Farach-

Colton, Fineman, Fogel, Kuszmaul, Nelson 07]

- Replacement for Traditional B-tree
- High entropy inserts/deletes run up to 100x faster
- No aging --> always fast range queries
- Streaming B-tree is cache-oblivious
 - ▶ Good data locality without memory-specific parameterization.

Results (cont)

Fractal TreeTM database

- TokuDB is a storage engine for MySQL
 - ▶ A storage engine is a structure that stores on-disk data.
 - ▶ Traditionally a storage engine is a B-tree.
- MySQL is an open-source database
 - Most installations of any database
- Built in context of our startup Tokutek.

Performance

- 10x-100x faster index inserts
- No aging
- Faster queries in important cases

Creative Fundraising for Startup

Algorithmic Performance Model

Minimize # of block transfers per operation

Disk-Access Machine (DAM) [Aggrawal, Vitter 88]

- Two-levels of memory.
- Two parameters:

block-size **B**, memory-size **M**.

Algorithmic Performance Model

Minimize # of block transfers per operation

Disk-Access Machine (DAM) [Aggrawal, Vitter 88]

- Two-levels of memory.
- Two parameters:

block-size **B**, memory-size **M**.

Cache-Oblivious Model (CO) [Frigo,

Leiserson, Prokop, Ramachandran 99]

- Parameters B and M are unknown to the algorithm or coder.
- (Of course, used in proofs.)

Fractal Tree Inserts (and Deletes)

	B-tree	Streaming B-tree
Insert	$O(\log_B N) = O(\frac{\log N}{\log B})$	$O(\frac{\log N}{B})$

Example: *N*=1 billion, *B*=4096

- 1 billion 128-byte rows (128 gigabytes)
 - \log_2 (1 billion) = 30
- Half-megabyte blocks that hold 4096 rows each
 - $\log_2(4096) = 12$

Fractal Tree Inserts (and Deletes)

	B-tree	Streaming B-tree
Insert	$O(\log_B N) = O(\frac{\log N}{\log B})$	$O(\frac{\log N}{B})$

Example: N=1 billion, B=4096

- 1 billion 128-byte rows (128 gigabytes)
 - \log_2 (1 billion) = 30
- Half-megabyte blocks that hold 4096 rows each
 - $\log_2(4096) = 12$
- B-trees require $\frac{\log N}{\log B}$ = 30/12 = 3 disk seeks (modulo caching, insertion pattern)
- Streaming B-trees require $\frac{\log N}{B} = 30/4096 = 0.007$ disk seeks

Inserts into Prototype Fractal Tree

Random Inserts into Fractal Tree ("streaming B-tree") and B-tree (Berkeley DB)

Searches in Prototype Fractal Tree

Point searches \sim 3.5x slower (N=2³⁰)

 Searches/sec improves as more of data structure fits in cache)

Small specification changes affect complexity E.g., duplicate keys

- Slow: Return an error when a duplicate key is inserted
 - Hidden search
- Fast: Overwrite duplicates or maintain all versions
 - No hidden search

Small specification changes affect complexity

E.g., duplicate keys

- Slow: Return an error when a duplicate key is inserted
 - Hidden search
- Fast: Overwrite duplicates or maintain all versions
 - No hidden search

E.g. deletes

- Slow: Return number of elements deleted
 - Hidden search
- Fast: Delete without feedback
 - No hidden search

Small specification changes affect complexity

E.g., duplicate keys

- Slow: Return an error when a duplicate key is inserted
 - Hidden search
- Fast: Overwrite duplicates or maintain all versions
 - No hidden search

E.g. deletes

- Slow: Return number of elements deleted
 - Hidden search
- Fast: Delete without feedback
 - No hidden search

Next slide: extra difficulty of key searches

Extra Difficulty of Key Searches

Inserts/point query asymmetry has impact on

- **System design.** How to redesign standard mechanisms (e.g., concurrency-control mechanism).
- **System use.** How to take advantage of faster inserts (e.g., to enable faster queries).

Overview of Talk

Overview

External-memory dictionaries

Performance limitations of B-trees

Fractal-Tree data structure (Streaming B-tree)

Search/point-query asymmetry

Impact of search/point-query asymmetry on database use

How to build a streaming B-tree

Impact of search/point-query asymmetry on system design

Scaling into the future

Search/point-query asymmetry affecting database use

How B-trees Are Used in Databases

Data maintained in rows and stored in B-trees.

How B-trees Are Used in Databases

Select via Index

select d where $270 \le a \le 538$

Select via Table Scan

select d where $270 \le e \le 538$

Data maintained in rows and stored in B-trees.

How B-trees Are Used in Databases (Cont.)

Selecting via an index can be slow, if it is coupled with point queries.

select d where $270 \le b \le 538$

How B-trees Are Used in Databases (Cont.)

Covering index can speed up selects

Key contains all columns necessary to answer query.

select d where $270 \le b \le 538$

Insertion Pain Can Masquerade as Query Pain

People often don't use these indexes. They use simplistic schema.

Sequential inserts via autoincrement key

Then insertions are fast but queries are slow.

Insertion Pain Can Masquerade as Query Pain

People often don't use these indexes. They use simplistic schema.

- Sequential inserts via autoincrement key
- Few indexes, few covering indexes

Then insertions are fast but queries are slow.

Adding sophisticated indexes helps queries

B-trees cannot afford to maintain them.
 Fractal Trees can.

How to Build a Fractal Tree and How it Performs

Simplified (Cache-Oblivious) Fractal Tree

O((logN)/B) insert cost & O(log2N) search cost

- Sorted arrays of exponentially increasing size.
- Arrays are completely full or completely empty (depends on the bit representation of # of elmts).
- Insert into the smallest array.
 Merge arrays to make room.

Simplified (Cache-Oblivious) Fractal Tree (Cont.)

Analysis of Simplified Fractal Tree

17 5 10 13 41 57 90 3 6 8 12 17 23 26 30

Insert Cost:

- cost to flush buffer of size X = O(X/B)
- cost per element to flush buffer = O(1/B)
- max # of times each element is flushed = log N
- insert cost = O((log N))/B) amortized memory transfers

Search Cost

- Binary search at each level
- log(N/B) + log(N/B) 1 + log(N/B) 2 + ... + 2 + 1= $O(log^2(N/B))$

Idea of Faster Key Searches in Fractal Tree

O(log (N/B)) search cost

- Some redundancy of elements between levels
- Arrays can be partially full
- Horizontal and vertical pointers to redundant elements
- (Fractional Cascading)

Why The Previous Data Structure is a Simplification

- Need concurrency-control mechanisms
- Need crash safety
- Need transactions, logging+recovery
- Need better search cost
- Need to store variable-size elements
- Need better amortization
- Need to be good for random and sequential inserts
- Need to support multithreading.
- Need compression

iiBench Insertion Benchmark

Fractal Trees scale with disk bandwidth not seek time.

• In fact, now we are compute bound, so cannot yet take full advantage of more cores or disks. (This will change.)

BROWK

iiBench Deletions

Search/point query asymmetry when building Fractal-Tree Database

Building TokuDB Storage Engine for MySQL

Engineering to do list

- Need concurrency-control mechanisms
- Need crash safety
- Need transactions, logging+recovery
- Need better search cost
- Need to store variable-size elements
- Need better amortization
- Need to be good for random and sequential inserts
- Need to support multithreading.
- Need compression

Building TokuDB Storage Engine for MySQL

Engineering to do list

- Need concurrency-control mechanisms
- Need crash safety
- Need transactions, logging+recovery
- Need better search cost
- Need to store variable-size elements
- Need better amortization
- Need to be good for random and sequential inserts
- Need to support multithreading.
- Need compression

Concurrency Control for Transactions

Transactions

- Sequence of durable operations.
- Happen atomically.

Atomicity in TokuDB via pessimistic locking

- readers lock: A and B can both read row x of database.
- writers lock: if A writes to row x, B cannot read x until A completes.

Concurrency Control for Transactions (cont)

B-tree implementation: maintain locks in leaves

- Insert row t
- Search for row u
- Search for row v and put a cursor
- Increment cursor. Now cursor points to row w.

Doesn't work for Fractal Trees: maintaining locks involves implicit searches on writes.

Scaling Fractal Trees into the Future

iiBench on SSD

B-trees are slow on SSDs, probably b/c they waste bandwidth.

• When inserting one row, a whole block (much larger) is written.

B-tree Inserts Are Slow on SSDs

Inserting an element of size x into a B-tree dirties a leaf block of size B.

We can write keys of size x into a B-tree using at most a O(x/B) fraction of disk bandwidth.

B-tree Inserts Are Slow on SSDs

Inserting an element of size x into a B-tree dirties a leaf block of size B.

We can write keys of size x into a B-tree using at most a O(x/B) fraction of disk bandwidth.

Fractal trees do efficient inserts on SSDs because they transform random I/O into sequential I/O.

Disk Hardware Trends

Disk capacity will continue to grow quickly

Year	Capacity	Bandwidth
2008	2 TB	100MB/s
2012	4.5 TB	150MB/s
2017	67 TB	500MB/s

but seek times will change slowly.

Bandwidth scales as square root of capacity.

Source: http://blocksandfiles.com/article/4501

Fractal Trees Enable Compact Systems

B-trees require capacity, bandwidth, and random I/O

 B-tree based systems achieve large random I/O rates by using more spindles and lower capacity disks.

Fractal Trees require only capacity & bandwidth

Fractal Trees enable the use of high-capacity disks.

Fractal Trees Enable Big Disks

B-trees require capacity, bandwidth, and seeks.

Fractal trees require only capacity and bandwidth.

Today, for a 50TB database,

- Fractal tree with 25 2TB disks gives 500K ins/s.
- B-tree with 25 2TB disks gives 2.5K ins/s.
- B-tree with 500 100GB disks gives 50K ins/s but costs \$, racks, and power.

In 2017, for a 1500TB database:

- Fractal tree with 25 67TB disks gives 2500K ins/s.
- B-tree with 25 67TB disks gives 2.5K ins/s.

B-trees need spindles, and spindle density increases slowly.

Using Big Disks Also Saves Energy

Power consumption of disks

- Enterprise 80 to 160 GB disk runs at 4W (idle power).
- Enterprise 1-2 TB disk runs at 8W (idle power).

Data centers/server farms use 80-160 GB disks

Use many small-capacity disks, not large ones.

Using large disks may save factor >10 in Storage Costs

- Other considerations modify this factor
 - e.g., CPUs necessary to drive disks, scale-out infrastructure, cooling, etc.
 - Metric: e.g., Watts/MB versus Inserts/Joule

