Performance of Fractal-Iree
Databases

Michael A. Bender

STONY :
BROSK Iokutek

TTTTTTTTTTTTTTTTTTTTTTTT " \ W 4 - ney

The Problem

Problem: maintain a dynamic dictionary on disk.
Motivation: file systems, databases, etc.

STEONY .
BR‘\\\\‘I{ Michael Bender -- Performance of Fractal-Tree Databases TOkUin

The Problem

Problem: maintain a dynamic dictionary on disk.
Motivation: file systems, databases, etc.

State of the art (algorithmic perspective):
e B-tree [Bayer, McCreight 72]
e cache-oblivious B-tree [Bender, Demaine, Farach-Colton 00]
e buffer tree [Arge 95]
L buffered-repository treeBuchsbaum,Goldwasser,Venkatasubramanian, Westbrook 00]
® BE tree [Brodal, Fagerberg 03]
¢ |og-structured merge tree [0'Neil, Cheng, Gawlick, O'Neil 96]
L string B-tree [Ferragina, Grossi 99]
* etc, etc!

STEONY .
BR‘\\\\‘I{ Michael Bender -- Performance of Fractal-Tree Databases TOkUin

The Problem

Problem: maintain a dynamic dictionary on disk.
Motivation: file systems, databases, etc.

State of the art (algorithmic perspective):
e B-tree [Bayer, McCreight 72]
e cache-oblivious B-tree [Bender, Demaine, Farach-Colton 00]
e buffer tree [Arge 95]
L buffered-repository treeBuchsbaum,Goldwasser,Venkatasubramanian, Westbrook 00]
® BE tree [Brodal, Fagerberg 03]
¢ |og-structured merge tree [0'Neil, Cheng, Gawlick, O'Neil 96]
L string B-tree [Ferragina, Grossi 99]
* etc, etc!

State of the practice:
e B-trees + industrial-strength features/optimizations

STEONY .
BR‘\\\\‘I{ Michael Bender -- Performance of Fractal-Tree Databases TOkUin

B-trees are Fast at Sequential Inserts

==V NS

S cof Ze
—

— =

STONY .
BR‘\\\\‘I{ Michael Bender -- Performance of Fractal-Tree Databases TOkl.Iiek

B-trees are Fast at Sequential Inserts

Sequential inserts in B-trees have near-optimal
data locality

- 1~ . 0~ .] |
P s e e A QO S
.. [] g
These B-tree nodes reside \ Insertions are into /\\Q/\
in memory this leaf node

e One disk I/O per leaf (which contains many inserts).
e Sequential disk I/0.
¢ Performance is disk-bandwidth limited.

STEONY .
BR‘\\\\‘I{ Michael Bender -- Performance of Fractal-Tree Databases TOkUin

B-Trees Are Slow at Ad Hoc Inserts

High entropy inserts (e.g., random) in B-trees
have poor data locality

¢ These B-tree nodes reside

—— B in memory

¢ Most nodes are not in main memory.
e Most insertions require a random disk |/O.
e Performance is disk-seek limited.

e < 100 inserts/sec/disk (< 0.05% of disk bandwidth).

STEONY .
BR‘\\\\‘I{ Michael Bender -- Performance of Fractal-Tree Databases TOkUin

B-trees Have a Similar Story for Range Queries

——_ .,
L ||I . 1||I |

N T B S I

B

Range queries in newly built B-trees have good
locality

STEONY .
BR‘\\\\‘I{ Michael Bender -- Performance of Fractal-Tree Databases TOkUin

B-trees Have a Similar Story for Range Queries

B
1 il\ i—B—i

P

| | Leaf nodes are scattered
| across disk in aged B-tree.

S

Range queries in newly built B-trees have good
locality

Range queries in aged B-trees have poor locality
¢ | eaf blocks are scattered across disk.
¢ For page-sized nodes, as low as 1% disk bandwidth.

STEONY .
BR‘\\\\‘I{ Michael Bender -- Performance of Fractal-Tree Databases TOkUin

Results

Cache-Oblivious Streaming B-tree [Bender, Farach-
Colton, Fineman, Fogel, Kuszmaul, Nelson 07]

¢ Replacement for Traditional B-tree

e High entropy inserts/deletes run up to 100x faster
e No aging --> always fast range queries

e Streaming B-tree is cache-oblivious

» Good data locality without memory-specific parameterization.

STEONY .
BR‘\\\\‘I{ Michael Bender -- Performance of Fractal-Tree Databases TOkUin

10

Results (cont)

Fractal Tree™ database
e TokuDB is a storage engine for MySQL

» A storage engine is a structure that stores on-disk data.

Database » Traditionally a storage engine is a B-tree.
| e MySQL is an open-source database
SQL Processing,
Query Optimization... » Most installations of any database

e Built in context of our startup Tokutek.

MySQL Performance

e 10x-100x faster index inserts
e No aging
e Faster queries In important cases

STEONY .
BR‘\\\\‘I{ Michael Bender -- Performance of Fractal-Tree Databases TOkUin

1

Creative Fundraising for Startup

STONY
_ BROSK

Algorithmic Performance Model

Minimize # of block transfers per operation

DiSk-ACCGSS MaChine (DAM) [Aggrawal, Vitter 88]

¢ Two-levels of memory.
¢ Two parameters:

block-size B, memory-size M.

STEONY .
BR‘\\\\‘I{ Michael Bender -- Performance of Fractal-Tree Databases TOkUin

Algorithmic Performance Model

Minimize # of block transfers per operation

DiSk-ACCGSS MaChine (DAM) [Aggrawal, Vitter 88]

¢ Two-levels of memory.
¢ Two parameters:

block-size B, memory-size M.

Cache-Oblivious Model (CO) o,

Leiserson, Prokop, Ramachandran 99]

e Parameters B and M are unknown
to the algorithm or coder.

e (Of course, used in proofs.)

STEONY .
BR‘\\\\‘I{ Michael Bender -- Performance of Fractal-Tree Databases TOkUin

Fractal Tree Inserts (and Deletes)

Streaming B-tree

O(logsN)=0(1g)

Example: N=1 billion, B=4096
¢ 1 billion 128-byte rows (128 gigabytes)
» logz (1 billion) = 30
¢ Half-megabyte blocks that hold 4096 rows each
» loge (4096) = 12

STEONY .
BR‘\\\\‘I{ Michael Bender -- Performance of Fractal-Tree Databases TOkUin

Fractal Tree Inserts (and Deletes)

Streaming B-tree

Example: N=1 billion, B=4096
¢ 1 billion 128-byte rows (128 gigabytes)
» logz (1 billion) = 30
¢ Half-megabyte blocks that hold 4096 rows each
» loge (4096) = 12

* B-trees require 'Ogg = 30/12 = 3 disk seeks (modulo caching,
iInsertion pa’ctern5og

e Streaming B-trees require logN = 30/4096 = 0.007 disk seeks
B

STEONY .
BR‘\\\\‘I{ Michael Bender -- Performance of Fractal-Tree Databases TOkUin

Inserts into Prototype Fractal Tree

Random Inserts into Fractal Tree (“streaming B-
tree”) and B-tree (Berkeley DB)

107 " T 1 T T 1 T T T
— 2 Mins
10° | \vaﬁ/ﬁ 14 Mins
'D P — ..//.1 ' .
S et 161 Min
8 18 Mins L
210° F | .
2] l
T
(4] |
w \
E '
4 .
8)10 2 \ E
E \
0>) \
<] \
10° F N :
L p
Fractal Tree ~14 Days
B-Tree — — — - |
102 1 1 1 1

a 1 1 1 1
020 521 522 523 524 525 526 527 528 529 530
Number of Inserts (N)

STEONY .
BR‘\\\\‘I{ Michael Bender -- Performance of Fractal-Tree Databases TOkUin

17

18

Searches in Prototype Fractal Tree

Point searches ~3.5x slower (N=239)

e Searches/sec improves as more of data structure fits in
cache)

1('.)2 —7r T - T T T T T T 1

Fractal Tree

B-Tree = e ——

Average Searches / second

100 : 1 : 1 N 1 " 1 : 1 N 1 . 1
20 22 24 26 28 210 212 214
Number of Searches

STEONY .
BR‘\\\\‘I{ Michael Bender -- Performance of Fractal-Tree Databases TOkUin

Asymmetry Between Inserts and Key Searches

Small specification changes affect complexity

E.g., duplicate keys
e Slow: Return an error when a duplicate key is inserted

» Hidden search

e Fast: Overwrite duplicates or maintain all versions

» No hidden search

STONY W
BREOSK Iokutek

Asymmetry Between Inserts and Key Searches

Small specification changes affect complexity

E.g., duplicate keys
e Slow: Return an error when a duplicate key is inserted

» Hidden search

e Fast: Overwrite duplicates or maintain all versions

» No hidden search

E.g. deletes
e Slow: Return number of elements deleted

» Hidden search

e Fast: Delete without feedback

» No hidden search

STONY W
BREOSK Iokutek

Asymmetry Between Inserts and Key Searches

Small specification changes affect complexity

E.g., duplicate keys
e Slow: Return an error when a duplicate key is inserted

» Hidden search

e Fast: Overwrite duplicates or maintain all versions

» No hidden search

E.g. deletes
e Slow: Return number of elements deleted

» Hidden search

e Fast: Delete without feedback

» No hidden search

Next slide: extra difficulty of key searches
BRO SR Tokutek

Extra Difficulty of Key Searches

. Lag t',,. 77 LY D "f
4 /"'. / A ‘ O\ =

Vi, S\ AN
5’ it T AN
AL « LA

()

Asymmetry Between Inserts and Key Searches

Inserts/point query asymmetry has impact on

e System design. How to redesign standard mechanisms
(e.g., concurrency-control mechanism).

e System use. How to take advantage of faster inserts
(e.g., to enable faster queries).

STEONY .
BR‘\\\\‘I{ Michael Bender -- Performance of Fractal-Tree Databases TOkUin

Overview of Talk

[-

£
Qﬂgﬁcz
- 004

590000
Qoo d

oo oc
s

Overview

External-memory dictionaries

Performance limitations of B-trees
Fractal-Tree data structure (Streaming B-tree)
Search/point-query asymmetry

Impact of search/point-query asymmetry on
database use

How to build a streaming B-tree

Impact of search/point-query asymmetry on system
design

Scaling into the future

STEONY .
BR‘\\\\‘I{ Michael Bender -- Performance of Fractal-Tree Databases TOkUin

Search/point-query asymmetry affecting
database use

STONY
s

How B-trees Are Used in Databases

key | value key | value

a bcde a bcde

Data maintained in rows and stored in B-trees.

How B-trees Are Used in Databases

Select via Index Select via Table Scan

select d where 270 = a = 538 select d where 270 < e =< 538

key | value key | value
a bcde a bcde

Data maintained in rows and stored in B-trees.

How B-trees Are Used Iin Databases (Cont.)

Selecting via an index can be slow, if it is
coupled with point queries.

select d where 270 < b = 538

(main table < index
key | value key | value key | value
bcde b a Cc a

\\&\#

STONY .
BR‘\\\\‘I{ Michael Bender -- Performance of Fractal-Tree Databases TOklIIlek

How B-trees Are Used Iin Databases (Cont.)

Covering index can speed up selects
e Key contains all columns necessary to answer query.

select d where 270 < b = 538

(main table — covering index
key | value key | value key | value
a bcde bd a C a

STEONY .
BR‘\\\\‘I{ Michael Bender -- Performance of Fractal-Tree Databases TOkUin

30

Insertion Pain Can Masquerade as Query Pain

People often don’t use these indexes.
They use simplistic schema.

e Seqguential inserts via autoincrement key
® Few indexes, few covering indexes

key | value

Autoincrement key
(effectively a timestanp) =——3 | t abcde

Then insertions are fast but queries are slow.

STEONY .
BR‘\\\\‘I{ Michael Bender -- Performance of Fractal-Tree Databases TOkUin

Insertion Pain Can Masquerade as Query Pain

People often don’t use these indexes.
They use simplistic schema.

e Seqguential inserts via autoincrement key
® Few indexes, few covering indexes

key | value

Autoincrement key
(effectively a timestanp) =——3 | t abcde

Then insertions are fast but queries are slow.

Adding sophisticated indexes helps queries

e B-trees cannot afford to maintain them.
Fractal Trees can.

STONY .
BR‘\\\\‘I{ Michael Bender -- Performance of Fractal-Tree Databases TOklIIlek

How to Build a Fractal Tree and How It

Performs

nd How it
Performs

How to Build a Fractal Tree a

Simplified (Cache-Oblivious) Fractal Tree

5 |10 316 |8 |12|17]23]|26] 30

20 2 2? 23

O((logN)/B) insert cost & O(log?N) search cost

e Sorted arrays of exponentially increasing size.

e Arrays are completely full or completely empty
(depends on the bit representation of # of elmts).

¢ |[nsert into the smallest array.
Merge arrays to make room.

STEONY .
BR‘\\\\‘I{ Michael Bender -- Performance of Fractal-Tree Databases TOkUin

Simplified (Cache-Oblivious) Fractal Tree (Cont.)

INSERT 17 = |

INSERT 12 |17 |

MERGE 1112 17 [

INSERT 23 = |||12 [17 |

INSERT30 |23 (|12 |17 [

MERGE I {12 [17 |23 |30 |

INSERT26 | 3 ||| 6 | 8 [l|12 [17 |23 |30 |

MERGE I I |31 6|8 [12[1723]26(30 [

STEONY .
BR‘\\\\‘I{ Michael Bender -- Performance of Fractal-Tree Databases TOkUin

35

Analysis of Simplified Fractal Tree

1705 |10 | |13 {41 |57 |90 316 |8 |12|17(23|26| 30

Insert Cost:
e cost to flush buffer of size X = O(X/B)
e cost per element to flush buffer = O(1/B)
e max # of times each element is flushed = log N
e insert cost = O((log N))/B) amortized memory transfers

Search Cost

¢ Binary search at each level

¢ l[0og(N/B) + logiN/B) - 1 + logiN/B) -2 +... + 2 + 1
= O(log?(\/B))

STEONY .
BR‘\\\\‘I{ Michael Bender -- Performance of Fractal-Tree Databases TOkUin

|dea of Faster Key Searches in Fractal Tree

o [12]90 |9}

o [15[]m] % >‘

AN ~.

49\27 o

3/21273533§ : 4596287192%6

"o T8 0] a0]ar | e (a2 a3 |57 | e [¥ [70 [72] & 73 [7% [93

O(log (N/B)) search cost

e Some redundancy of elements between levels

e Arrays can be partially full

e Horizontal and vertical pointers to redundant elements
e (Fractional Cascading)

STONY W
BREOSK Iokutek

Why The Previous Data Structure is a Simplification

e Need concurrency-control mechanisms

® Need crash safety

¢ Need transactions, logging+recovery

e Need better search cost

e Need to store variable-size elements

e Need better amortization

¢ Need to be good for random and sequential inserts
¢ Need to support multithreading.

e Need compression

STEONY .
BR‘\\\\‘I{ Michael Bender -- Performance of Fractal-Tree Databases TOkUin

IBench Insertion Benchmark

iiBench - 1B Row Insert Test
50,000

45,000

40,000
35,000 \\‘
30,000

25,000

—=|nnoDB

20,000 - ! —TokuDB
15,000 “1 M
10,000

5,000

Rows/Second

VP T

0 200,000,000 400,000,000 600,000,000 800,000,000 1,000,000,000

Rows Inserted

Fractal Trees scale with disk bandwidth not seek time.

¢ |n fact, now we are compute bound, so cannot yet take full advantage of more

cores or disks. (This will change.)
STONY

BREOSK Iokutek

39

IBench Deletions

iiBench - 500M Row Insert/Delete Test
40,000

s5,000 ——Insertions-only -here —Insertions + deletions-here

30,000 J{AKV\
25,000 f\

e
c
=]
(3]
Q
@ 20,000 -
g A —TokuDB
(=]
& 15,000 - v VA M i InnoDB
10,000 VAV'I
L R —
5,000 W
0 T T T 1
0 100,000,000 200,000,000 300,000,000 400,000,000 500,000,000

Rows Inserted

STENY

_ BROSK Iokutek

Search/point query asymmetry when
building Fractal-Tree Database

Building the TokuDB
Storage Engine for MySQL

STONY
Lo

Building TokuDB Storage Engine for MySQL

Engineering to do list
e Need concurrency-control mechanisms
® Need crash safety
¢ Need transactions, logging+recovery
e Need better search cost
e Need to store variable-size elements
e Need better amortization
¢ Need to be good for random and sequential inserts
¢ Need to support multithreading.
e Need compression

STEONY .
BR‘\\\\‘I{ Michael Bender -- Performance of Fractal-Tree Databases TOkUin

Building TokuDB Storage Engine for MySQL

Engineering to do list
e Need concurrency-control mechanisms
e Need crash safety
¢ Need transactions, logging+recovery
e Need better search cost
e Need to store variable-size elements
e Need better amortization
¢ Need to be good for random and sequential inserts
¢ Need to support multithreading.
e Need compression

STEONY .
BR‘\\\\‘I{ Michael Bender -- Performance of Fractal-Tree Databases TOkUin

Concurrency Control for Transactions

Transactions
e Sequence of durable operations.
e Happen atomically.

Atomicity in TokuDB via pessimistic locking
¢ readers lock: A and B can both read row x of database.

e writers lock: if A writes to row x, B cannot read x until A
completes.

STEONY .
BR‘\\\\‘I{ Michael Bender -- Performance of Fractal-Tree Databases TOkUin

Concurrency Control for Transactions (cont)

B-tree implementation: maintain locks in leaves
¢ Insert row t
e Search for row u
e Search for row v and put a cursor
¢ Increment cursor. Now cursor points to row w.

| reader lock | I reader range lock I

Doesn’t work for Fractal Trees: maintaining locks
involves implicit searches on writes.

writer lock

STEONY .
BR‘\\\\‘I{ Michael Bender -- Performance of Fractal-Tree Databases TOkUin

Scaling Fractal Trees into the Future

Scaling Fractal Trees into the Future

IBench on SSD

35000 | | 1

30000 r -

25000 _
A TokuDB

M\-"WWWWM bl oo

15000 - ” RAID10

Insertion Rate

10000 -
5000 | InnoDB .
FusionlO
X25-E
0 | | | RAID10
0 5e+07 1e+08 1.5e+08

Cummulative Insertions

B-trees are slow on SSDs, probably b/c they waste bandwidth.
e \When inserting one row, a whole block (much larger) is written.

STONY W
BREOSK Iokutek

47

B-tree Inserts Are Slow on SSDs

Inserting an element of size x into a B-tree dirties a
leaf block of size B.

T E—

e NGO s
!
O
—

S —

X
— B —«

We can write keys of size x into a B-tree using at
most a O(x/B) fraction of disk bandwidth.

STONY W
BREOSK Iokutek

B-tree Inserts Are Slow on SSDs

Inserting an element of size x into a B-tree dirties a
leaf block of size B.

T E—

e
P e

R
D

!

AN
|
. o
X
— B —«
We can write keys of size x into a B-tree using at
most a O(x/B) fraction of disk bandwidth.

Fractal trees do efficient inserts on SSDs because
they transform random I/0 into sequential 1/0.

STONY

BRESK Iokutek

Disk capacity will continue to grow quickly

Disk Hardware Trends

Year Capacity Bandwidth
2008 2 1B 100MB/s
2012 4.5TB 150MB/s
2017 67 1B 500MB/s

but seek times will change slowly.

e Bandwidth scales as square root of capacity.

Source: http://blocksandfiles.com/article/4501

Tokutek

Fractal Trees Enable Compact Systems

B-trees require capacity, bandwidth, and
random /O

e B-tree based systems achieve large random 1|/O rates by
using more spindles and lower capacity disks.

Fractal Trees require only capacity & bandwidth
¢ Fractal Trees enable the use of high-capacity disks.

STONY W
BREOSK Iokutek

Fractal Trees Enable Big Disks

B-trees require capacity, bandwidth, and seeks.
Fractal trees require only capacity and bandwidth.

Today, for a 50TB database,
e Fractal tree with 25 2TB disks gives 500K ins/s.
e B-tree with 25 2TB disks gives 2.5K ins/s.
e B-tree with 500 100GB disks gives 50K ins/s but costs $, racks, and
power.

In 2017, for a 1500TB database:
e Fractal tree with 25 67TB disks gives 2500K ins/s.
e B-tree with 25 67TB disks gives 2.5K ins/s.

B-trees need spindles, and spindle density increases
slowly.

Tokutek

Using Big Disks Also Saves Energy

Power consumption of disks
e Enterprise 80 to 160 GB disk runs at 4W (idle power).
e Enterprise 1-2 TB disk runs at 8W (idle power).

Data centers/server farms use 80-160 GB disks
¢ Use many small-capacity disks, not large ones.

Using large disks may save factor >10 in
Storage Costs

e Other considerations modify this factor

» e.g., CPUs necessary to drive disks, scale-out infrastructure, cooling, etc.
» Metric: e.g., Watts/MB versus Inserts/Joule

STEONY .
BR‘\\\\‘I{ Michael Bender -- Performance of Fractal-Tree Databases TOkUin

