

Apache Solr Cookbook i

Apache Solr Cookbook

Apache Solr Cookbook ii

Contents

1 Apache Solr Tutorial for Beginners 1

1.1 Why Apache Solr . 1

1.2 Installing Apache Solr . 1

1.3 Configuring Apache Solr . 3

1.3.1 Creating a Core . 3

1.3.2 Modify the schema.xml file . 5

1.4 Indexing the Data . 5

1.5 Access the Indexed documents . 7

1.5.1 Search by name . 7

1.5.2 Search by starting letter . 8

1.5.3 Search using wildcard . 9

1.5.4 Search using a condition . 10

1.6 Solr Client API’s . 11

1.7 Download the Schema file . 12

2 How to Install Solr on Ubuntu 13

2.1 Install Apache Solr . 13

2.2 Configure Apache Solr . 15

2.3 Indexing the Data . 16

2.4 Download the Schema file . 17

3 Solr query syntax examples 18

3.1 Installing Apache Solr . 18

3.2 Start Solr Server . 19

3.3 Solr basic query . 20

3.4 Solr query parameters . 21

3.5 Solr advanced queries . 22

3.5.1 Solr query - selective fields . 22

3.5.2 Solr query - filter . 23

3.5.3 Solr query - faceted Search . 25

Apache Solr Cookbook iii

4 Solr autocomplete example 27

4.1 Install Apache Solr . 27

4.2 Configuring Apache Solr . 29

4.2.1 Creating a Core . 29

4.2.2 Modify the schema.xml file . 31

4.3 Indexing the Data . 31

4.4 Setting up the webproject . 32

4.5 Indexing using NGramFilterFactory . 39

4.6 Modify search.html . 40

4.7 Download the Eclipse Project . 42

5 Solr replication example 43

5.1 Install Apache Solr . 43

5.2 Configuring Solr - master . 45

5.2.1 Creating master Core . 45

5.2.2 Modify solrconfig . 47

5.3 Configuring Solr - slave . 48

5.4 Indexing and Replication . 50

5.5 Add new record . 52

5.6 Download the Configuration . 54

6 Solr Synonyms Example 55

6.1 Install Apache Solr . 55

6.2 Configuring Apache Solr . 57

6.3 Indexing the Data . 58

6.4 Configure synonym . 59

6.4.1 With symbol "⇒" . 59

6.4.2 Comma-separated list . 60

6.5 Schema configuration . 61

6.6 Download the Configuration . 62

7 Solr Faceted Search Example 63

7.1 Installing Apache Solr . 63

7.2 Start Solr Server . 64

7.3 Facet Search . 65

7.3.1 Field-Value Faceting . 65

7.3.2 Range Faceting . 66

7.3.3 Interval Faceting . 68

7.4 Download the Configuration . 69

Apache Solr Cookbook iv

8 Solr Filter Query Example 70

8.1 Install Apache Solr . 70

8.2 Configuring Apache Solr . 72

8.2.1 Creating a Core . 72

8.2.2 Modify the schema.xml file . 74

8.3 Indexing the Data . 74

8.4 Filter queries . 75

8.4.1 Single filter query . 75

8.4.2 Multiple filters . 77

8.5 Download the source code . 78

Apache Solr Cookbook v

Copyright (c) Exelixis Media P.C., 2017

All rights reserved. Without limiting the rights under
copyright reserved above, no part of this publication
may be reproduced, stored or introduced into a retrieval system, or
transmitted, in any form or by any means (electronic, mechanical,
photocopying, recording or otherwise), without the prior written
permission of the copyright owner.

Apache Solr Cookbook vi

Preface

Solr (pronounced "solar") is an open source enterprise search platform, written in Java, from the Apache Lucene project. Its major
features include full-text search, hit highlighting, faceted search, real-time indexing, dynamic clustering, database integration,
NoSQL features and rich document (e.g., Word, PDF) handling. Providing distributed search and index replication, Solr is
designed for scalability and fault tolerance. Solr is the second-most popular enterprise search engine after Elasticsearch. (Source:
https://en.wikipedia.org/wiki/Apache_Solr)

Solr is highly reliable, scalable and fault tolerant, providing distributed indexing, replication and load-balanced querying, auto-
mated failover and recovery, centralized configuration and more. Solr powers the search and navigation features of many of the
world’s largest internet sites. (Source: https://lucene.apache.org/solr/)

In this ebook, we provide a compilation of Apache Solr tutorials that will help you kick-start your own programming projects. We
cover a wide range of topics, from basic usage and installation, to query syntax and synonyms search. With our straightforward
tutorials, you will be able to get your own projects up and running in minimum time.

https://en.wikipedia.org/wiki/Apache_Solr
https://lucene.apache.org/solr/

Apache Solr Cookbook vii

About the Author

Veera is a Software Architect working in telecom domain with rich experience in Java Middleware Technologies. He is a OOAD
practitioner and interested in Performance Engineering.

Apache Solr Cookbook 1 / 78

Chapter 1

Apache Solr Tutorial for Beginners

In this example of Apache Solr Tutorial for Beginners, we will discuss about how to install the latest version of Apache Solr and
show you how to configure it. Also we will show you how to perform the index using a sample data file. Apache Solr supports
indexing from different source formats including various databases, PDF files, XML files, CSV files etc. For this example we
will look into how to index data from a CSV file.

Our preferred environment for this example is Windows. Before you begin the Solr installation make sure you have JDK installed
and Java_Home is set appropriately.

1.1 Why Apache Solr

Apache Solr is a powerful search server, which supports REST like API. Solr is powered by Lucene which enables powerful
matching capabilities like phrases, wildcards, joins, grouping and many more across various data types. It is highly optimized for
high traffic using Apache Zookeeper. Apache Solr comes with a wide set of features and we have listed a subset of high impact
features.

• Advanced Full-Text search capabilities.

• Standards based on Open Interfaces - XML, JSON and Http.

• Highly scalable and fault tolerant.

• Supports both Schema and Schemaless configuration.

• Faceted Search and Filtering.

• Support major languages like English, German, Chinese, Japanese, French and many more

• Rich Document Parsing.

1.2 Installing Apache Solr

To begin with lets download the latest version of Apache Solr from the following location:

https://lucene.apache.org/solr/downloads.html

As of this writing, the stable version available is 5.0.0. Apache Solr has gone through various changes from 4.x.x to 5.0.0, so if
you have different version of Solr you need to download the 5.x.x. version to follow this example.

Once the Solr zip file is downloaded unzip it into a folder. The extracted folder will look like the below.

Apache Solr Cookbook 2 / 78

Figure 1.1: Solr folders

The bin folder contains the scripts to start and stop the server. The example folder contains few example files. We will be
using one of them to demonstrate how Solr indexes the data. The server folder contains the logs folder where all the Solr
logs are written. It will be helpful to check the logs for any error during indexing. The solr folder under server holds different
collection or core. The configuration and data for each of the core/ collection are stored in the respective core/ collection folder.

Apache Solr comes with an inbuilt Jetty server. But before we start the solr instance we must validate the JAVA_HOME is set on
the machine.

We can start the server using the command line script. Lets go to the bin directory from the command prompt and issue the
following command

solr start

This will start the Solr server under the default port 8983.

We can now open the following URL in the browser and validate that our Solr instance is running. The specifics of solr admin
tool is beyond the scope of the example.

https://localhost:8983/solr/

Apache Solr Cookbook 3 / 78

Figure 1.2: Solr admin console

1.3 Configuring Apache Solr

In this section, we will show you how to configure the core/collection for a solr instance and how to define the fields. Apache Solr
ships with an option called Schemaless mode. This option allow users to construct effective schema without manually editing
the schema file. But for this example we will use the Schema configuration for understanding the internals of the Solr.

1.3.1 Creating a Core

When the Solr server is started in Standalone mode the configuration is called core and when it is started in SolrCloud mode
the configuration is called Collection. In this example we will discuss about the standalone server and core. We will park the
SolrCloud discussion for later time.

First, we need to create a Core for indexing the data. The Solr create command has the following options:

• -c <name> - Name of the core or collection to create (required).

• -d <confdir> - The configuration directory, useful in the SolrCloud mode.

• -n <configName> - The configuration name. This defaults to the same name as the core or collection.

• -p - Port of a local Solr instance to send the create command to; by default the script tries to detect the port by looking for
running Solr instances.

Apache Solr Cookbook 4 / 78

• -s <shards> - Number of shards to split a collection into, default is 1.

• -rf <replicas> - Number of copies of each document in the collection. The default is 1.

In this example we will use the -c parameter for core name and -d parameter for the configuration directory. For all other
parameters we make use of default settings.

Now navigate the solr-5.0.0bin folder in the command window and issue the following command.

solr create -c jcg -d basic_configs

We can see the following output in the command window.

Creating new core ’jcg’ using command:
https://localhost:8983/solr/admin/cores?action=CREATE&name=jcg&instanceDir=jcg

{
"responseHeader":{
"status":0,
"QTime":663},
"core":"jcg"}

Now we navigate to the following URL and we can see jcg core being populated in the core selector. You can also see the
statistics of the core.

https://localhost:8983/solr

Figure 1.3: Solr JCG core

Apache Solr Cookbook 5 / 78

1.3.2 Modify the schema.xml file

We need to modify the schema.xml file under the folder serversolrjcgconf to include the fields. We will use one of
the example file "books.csv" shipped along with Solr installation for indexing. The file is located under the folder solr-5.0.
0exampleexampledocs

Now we navigate to the folder serversolr directory. You will see a folder called jcg created. The sub-folders namely conf
and data have the core’s configuration and indexed data respectively.

Now edit the schema.xml file in the serversolrjcgconf folder and add the following contents after the uniqueKey
element.

schema.xml

<uniqueKey>id</uniqueKey>
<!-- Fields added for books.csv load-->
<field name="cat" type="text_general" indexed="true" stored="true"/>
<field name="name" type="text_general" indexed="true" stored="true"/>
<field name="price" type="tdouble" indexed="true" stored="true"/>
<field name="inStock" type="boolean" indexed="true" stored="true"/>
<field name="author" type="text_general" indexed="true" stored="true"/>

We have set the attribute indexed to true. This specifies the field is used for indexing and the record can be retrieved using the
index. Setting the value to false will make the field only stored but can’t be queried with.

Also note we have another attribute called stored and set it to true. This specifies the field is stored and can be returned in the
output. Setting this field to false will make the field only indexed and can’t be retrieved in output.

We have assigned the type for the fields present in the "books.csv" file here. The first field in the CSV file "id" is automatically
taken care by the uniqueKey element of schema.xml file for indexing. If you note, we have missed the fields series_t, sequence_i
and genre_s without making any entry. But, when we perform indexing all these fields are also indexed without any issue. If you
wonder how that happens take a closer look at the dynamicField section in schema.xml file.

schema.xml

<dynamicField name="*_i" type="int" indexed="true" stored="true"/>
<dynamicField name="*_is" type="ints" indexed="true" stored="true"/>
<dynamicField name="*_s" type="string" indexed="true" stored="true" />
<dynamicField name="*_ss" type="strings" indexed="true" stored="true"/>
<dynamicField name="*_l" type="long" indexed="true" stored="true"/>
<dynamicField name="*_ls" type="longs" indexed="true" stored="true"/>
<dynamicField name="*_t" type="text_general" indexed="true" stored="true"/>
<dynamicField name="*_txt" type="text_general" indexed="true" stored="true"/>
<dynamicField name="*_b" type="boolean" indexed="true" stored="true"/>
<dynamicField name="*_bs" type="booleans" indexed="true" stored="true"/>
<dynamicField name="*_f" type="float" indexed="true" stored="true"/>
<dynamicField name="*_fs" type="floats" indexed="true" stored="true"/>
<dynamicField name="*_d" type="double" indexed="true" stored="true"/>
<dynamicField name="*_ds" type="doubles" indexed="true" stored="true"/>

Since we have modified the configuration we have to stop and start the server. To do so, we need to issue the following command
from bin directory through command line.

solr stop -all

The server will be stopped now. Now to start the server issue the following command from bin directory through command line.

solr start

1.4 Indexing the Data

Apache Solr comes with a Standalone Java program called the SimplePostTool. This program is packaged into JAR and available
with the installation under the folder exampleexampledocs.

Apache Solr Cookbook 6 / 78

Now we navigate to the exampleexampledocs folder in the command prompt and type the following command. You will
see a bunch of options to use the tool.

java -jar post.jar -h

The usage format in general is as follows

Usage:java [SystemProperties] -jar post.jar [-h|-] [<file|folder|url|arg> [<file|folde
r|url|arg>...]]

As we said earlier, we will index the data present in the "books.csv" file shipped with Solr installation. We will navigate to the
solr-5.0.0exampleexampledocs in the command prompt and issue the following command.

java -Dtype=text/csv -Durl=https://localhost:8983/solr/jcg/update -jar post.jar books.
csv

The SystemProperties used here are:

• -Dtype - the type of the data file.

• -Durl - URL for the jcg core.

The file "books.csv" will now be indexed and the command prompt will display the following output.

SimplePostTool version 5.0.0
Posting files to [base] url https://localhost:8983/solr/jcg/update using content-
type text/csv...
POSTing file books.csv to [base]
1 files indexed.
COMMITting Solr index changes to https://localhost:8983/solr/jcg/update...
Time spent: 0:00:00.647

Now we navigate to the following URL and select the core jcg.

https://localhost:8983/solr

Apache Solr Cookbook 7 / 78

Figure 1.4: Solr JCG core data

Take a closer look at the statistics section, the Num Docs parameter will show the count of the rows indexed.

1.5 Access the Indexed documents

Apache Solr provides a REST based API to access the data and also provides different parameters to retrieve the data. We will
show you few scenario based queries.

1.5.1 Search by name

We will retrieve the details of the book by its name. To do so, we will use the following syntax. The parameter "q" in the URL is
the query event.

Open the following URL in a browser.

https://localhost:8983/solr/jcg/select?q=name:"A Clash of Kings"

The output will be as shown below.

Apache Solr Cookbook 8 / 78

Figure 1.5: Solr by name

1.5.2 Search by starting letter

Now we will show you how to search for the record if we know only the starting letter or word and don’t remember the full title.
We can use the following query to retrieve the result.

https://localhost:8983/solr/jcg/select?q=name:"A"

The output will list all the books staring with letter A.

Apache Solr Cookbook 9 / 78

Figure 1.6: Solr starting letter

1.5.3 Search using wildcard

Solr supports wildcard search. We will show in the following query how to retrieve all the books which contains the word "of"
in the name.

https://localhost:8983/solr/jcg/select?q=name:"*of"

The output will list all the books with the word "of" present in it.

Apache Solr Cookbook 10 / 78

Figure 1.7: Solr wildcard search

1.5.4 Search using a condition

Solr supports conditional search. It provides "fq" parameter using which, we can set condition to our query. We will show you
how to find books which are priced less than $6 in the following query.

https://localhost:8983/solr/jcg/select?q=*&fq=price:[0 TO 6]

The output will list only the books which are less than $6.

Apache Solr Cookbook 11 / 78

Figure 1.8: Solr search condition

1.6 Solr Client API’s

There are different client API’s available to connect to the Solr server. We have listed a few widely used Solr client API’s.

• SolRuby - To connect from Ruby

• SolPHP - To connect from PHP

• PySolr - To connect from Python

• SolPerl - To connect from Perl

• SolrJ - To connect from Java

• SolrSharp - To connect from C#

Also Solr provides the REST based API which can be directly consumed using the JavaScript.

Apache Solr Cookbook 12 / 78

1.7 Download the Schema file

This was a tutorial on Apache Solr for beginners.

Download

You can download the schema file here : Solr schema file

https://examples.javacodegeeks.com/wp-content/uploads/2015/04/schema.zip

Apache Solr Cookbook 13 / 78

Chapter 2

How to Install Solr on Ubuntu

In this example of "how to install Solr on Ubuntu" we will discuss about how to download and install Solr in Ubuntu operating
system. Ubuntu desktop operating system powers millions of PCs and laptops around the world. So this example is dedicated to
users who are on Ubuntu and want to install Solr on Ubuntu.

Along with Solr installation, we will also show you how to create a Solr core and index an example file shipped along with Solr.
Our preferred environment for this example is Ubuntu 14.x and solr-5.x. Before you begin the Solr installation make sure you
have JDK installed and Java_Home is set appropriately.

2.1 Install Apache Solr

To begin with, lets download the latest version of Apache Solr from the following location:

https://www.eu.apache.org/dist/lucene/solr/5.3.1/

File: solr-5.3.1.tgz

Once the file is downloaded, create a directory called solr under /opt and move the downloaded file. Now navigate to the directory
/opt/solr and unzip the file using the following command.

sudo tar -xvf solr-5.3.1.tgz

The Solr commands has to be executed from the bin directory, so navigate to the following path.

/opt/solr/solr-5.3.1/bin

The extracted directory will look like the below.

Apache Solr Cookbook 14 / 78

Figure 2.1: Solr Ubuntu folders

The bin folder contains the scripts to start and stop the server. The example folder contains few example files. We will be
using one of them to demonstrate how Solr indexes the data. The server folder contains the logs folder where all the Solr
logs are written. It will be helpful to check the logs for any error during indexing. The solr folder under server holds different
collection or core. The configuration and data for each of the core/ collection are stored in the respective core/ collection folder.

Apache Solr comes with an inbuilt Jetty server. But before we start the solr instance we must validate the JAVA_HOME is set on
the machine.

Now use the following command to start the Solr server.

sudo ./solr start

This will start the Solr server under the default port 8983. We can now open the following URL in the browser and validate that
our Solr instance is running.

https://localhost:8983/solr/#/

Apache Solr Cookbook 15 / 78

Figure 2.2: Solr Ubuntu Console

2.2 Configure Apache Solr

When the Solr server is started in Standalone mode, the configuration is called core and when it is started in SolrCloud mode,
the configuration is called Collection. In this example we will discuss about the standalone server and core. We will park the
SolrCloud discussion for later time.

First, we need to create a Core for indexing the data. The Solr create command has the following options:

• -c <name> - Name of the core or collection to create (required).

• -d <confdir> - The configuration directory, useful in the SolrCloud mode.

• -n <configName> - The configuration name. This defaults to the same name as the core or collection.

• -p <port> - Port of a local Solr instance to send the create command to; by default the script tries to detect the port by looking
for running Solr instances.

• -s <shards> - Number of shards to split a collection into, default is 1.

• -rf <replicas> - Number of copies of each document in the collection. The default is 1.

In this example we will use the -c parameter for core name and -d parameter for the configuration directory. For all other
parameters we make use of default settings.

Now navigate the solr-5.3.1/bin directory and issue the following command

sudo ./solr create -c jcg -d basic_configs

We can see the following output in the command window.

Apache Solr Cookbook 16 / 78

Setup new core instance directory:
/opt/solr/solr-5.3.1/server/solr/jcg
Creating new core ’jcg’ using command:
https://localhost:8983/solr/admin/cores?action=CREATE&name=jcg&instanceDir=jcg

{
"responseHeader":{
"status":0,
"QTime":5862},
"core":"jcg"}

Now edit the schema.xml file in the /server/solr/jcg/conf folder and add the following contents after the uniqueKey
element.

schema.xml

<uniqueKey>id</uniqueKey>
<!-- Fields added for books.csv load-->
<field name="cat" type="text_general" indexed="true" stored="true"/>
<field name="name" type="text_general" indexed="true" stored="true"/>
<field name="price" type="tdouble" indexed="true" stored="true"/>
<field name="inStock" type="boolean" indexed="true" stored="true"/>
<field name="author" type="text_general" indexed="true" stored="true"/>

Since we have modified the configuration, we have to stop and start the server. To do so, we need to issue the following command
from bin directory through command line:

sudo ./solr stop -all

The server will be stopped now. Now to start the server issue the following command from bin directory through command line:

sudo ./solr start

2.3 Indexing the Data

Apache Solr comes with a Standalone Java program called the SimplePostTool. This program is packaged into JAR and available
with the installation under the folder example/exampledocs.

Now we navigate to the /example/exampledocs folder in the command prompt and type the following command. You will see a
bunch of options to use the tool.

java -jar post.jar -h

The usage format in general is as follows:

Usage:java [SystemProperties] -jar post.jar [-h|-] [<file|folder|url|arg> [<file|folde
r|url|arg>...]]

As we said earlier, we will index the data present in the “books.csv” file shipped with Solr installation. We will navigate to the
/example/exampledocs in the command prompt and issue the following command.

java -Dtype=text/csv -Durl=https://localhost:8983/solr/jcg/update -jar post.jar books.
csv

The SystemProperties used here are:

• -Dtype - the type of the data file.

• -Durl - URL for the jcg core.

Apache Solr Cookbook 17 / 78

SimplePostTool version 5.0.0
Posting files to [base] url https://localhost:8983/solr/jcg/update using content-type text/ ←↩

csv...
POSTing file books.csv to [base]
1 files indexed.
COMMITting Solr index changes to https://localhost:8983/solr/jcg/update...
Time spent: 0:00:01.149

Now, the data from the example file is indexed and stored. Let’s open the following URL. We can see the number of documents
matching the data count in the example file.

https://localhost:8983/solr/#/jcg

Figure 2.3: Solr Ubuntu Data

2.4 Download the Schema file

Download

You can download the schema file used in this example here: schema.xml

https://examples.javacodegeeks.com/wp-content/uploads/2015/11/schema.xml_.zip

Apache Solr Cookbook 18 / 78

Chapter 3

Solr query syntax examples

In this example of Solr query syntax we will discuss about different query formats in Solr. For our discussion, we will be using
one of the collection example (techproducts) that comes along with Solr Installation. We will show you, how to use the REST
based API’s exposed by Solr and show you how to use various querying parameters .

Our preferred environment for this example is Windows. Before you begin the Solr installation make sure you have JDK installed
and Java_Home is set appropriately.

3.1 Installing Apache Solr

To begin with, lets download the latest version of Apache Solr from the following location:

https://lucene.apache.org/solr/downloads.html

As of this writing, the stable version available is 5.0.0. Apache Solr has gone through various changes from 4.x.x to 5.0.0, so if
you have different version of Solr you need to download the 5.x.x. version to follow this example.

Once the Solr zip file is downloaded unzip it into a folder. The extracted folder will look like the below.

Apache Solr Cookbook 19 / 78

Figure 3.1: Solr folders

The bin folder contains the scripts to start and stop the server. The example folder contains few example files. We will be
using one of them to demonstrate how Solr indexes the data. The server folder contains the logs folder where all the Solr
logs are written. It will be helpful to check the logs for any error during indexing. The solr folder under server holds different
collection or core. The configuration and data for each of the core/ collection are stored in the respective core/ collection folder.

Apache Solr comes with an inbuilt Jetty server. But before we start the solr instance we must validate the JAVA_HOME is set on
the machine.

3.2 Start Solr Server

Solr provides few useful collection example to learn about the key features. We will use the techproducts collection bundled with
Solr for our discussion. To start the Solr server with the techproducts collection let’s open a command prompt, navigate to bin
folder and issue the following syntax.

solr -e techproducts

This will start the Solr server under the default port 8983.

We can now open the following URL in the browser and validate that our Solr instance is running. You can also notice the
collection techproducts being populated.

https://localhost:8983/solr/

Apache Solr Cookbook 20 / 78

Figure 3.2: Solr admin console

3.3 Solr basic query

Solr provides a simple REST based select query to search on indexed data. We have to provide the context path of the collection
(techproducts in our case) and use select in the URL indicating this is a select query. The parameter q is used to specify the
search string.

The following query will look for video in all the indexed fields of the techproducts collection. If you notice the video is present
in name field of result 1 and present in one of the features for result 2. This type of query can be used for free text searching on
documents. Open the following URL in the browser.

https://localhost:8983/solr/techproducts/select?q=video

Apache Solr Cookbook 21 / 78

Figure 3.3: Solr query - basic

3.4 Solr query parameters

Solr provides a list of parameters that can be used with queries. The below section explains the available parameters and the
purpose.

• qt - Query handler for the request. Standard query handler is used if not specified.

• q - It is used to specify the query event.

• fq - Used to specify filter queries.

• sort - Used to sort the results in ascending or descending order.

• start, rows - start specifies the staring number of the result set. By default it is zero. rows specify the number of records to
return.

Apache Solr Cookbook 22 / 78

• fl - Used to return selective fields.

• wt - Specifies the response format. Default is XML.

• indent - Setting to true makes the response more readable.

• debugQuery - Setting the parameter to true gives the debugging information as part of response.

• dismax - To specify the dismax parser.

• edismax - To specify the edismax parser.

• facet - Setting to true enables the faceting.

• spatial - Used for geospatial searches.

• spellcheck - Setting to true help in searching similar terms.

3.5 Solr advanced queries

We can use one or more parameters provided by Solr to construct the query. In this section we will show you few combinations.

3.5.1 Solr query - selective fields

As we stated earlier, fl parameter can be used to select limited set of fields in the response. This will help to limit the volume of
data that pass through system and reduce I/O cost.

We will modify the basic query to return limited set of fields. We have chosen to return id, name and price in the following query.

Open the following URL in the browser. You can notice the result set contains only the selected fields and the size of the response
is reduced when measured in bytes.

https://localhost:8983/solr/techproducts/select?q=video&fl=id,name,price

Apache Solr Cookbook 23 / 78

Figure 3.4: Solr query - selected fields

3.5.2 Solr query - filter

We can modify the basic query to add filter. In the basic query, we haven’t specified any field to search for the string video and it
returned values from name, features etc. But now we will specify where to look for the search string.

Open the following URL in browser. You can notice the result contains only the records that contain video in the name field.

https://localhost:8983/solr/techproducts/select?q=name:video

Apache Solr Cookbook 24 / 78

Figure 3.5: Solr query - filter name

Similarly, we can modify the query to select all the products with category as electronics. Open the following URL in browser.
You can notice the result set contains only the electronics products. Also, we have combined the fl parameter to select only id,
name and price fields.

https://localhost:8983/solr/techproducts/select?q=cat:electronics&fl=id,name,price

Apache Solr Cookbook 25 / 78

Figure 3.6: Solr query - filter category

3.5.3 Solr query - faceted Search

Faceting is a special type of search used for arranging the search results into categories. Searches are presented with indexed
terms along with count of matching documents. Faceting makes it easy for users to explore search results, narrowing in on
exactly the results they are looking for.

Open the following query in browser. You will see at the bottom of the response contains facet_counts for each of the category.
Also you can notice we have applied filter on price and selected only specified fields.

https://localhost:8983/solr/techproducts/select?q=price:[0 TO 400]&fl=id,name,price&fa
cet=true&facet.field=cat

Apache Solr Cookbook 26 / 78

Figure 3.7: Solr query - facet

Apache Solr Cookbook 27 / 78

Chapter 4

Solr autocomplete example

In this example of Solr autocomplete example, we will discuss about how to implement autocomplete functionality for any UI
component. We will be using jQuery autocomplete feature along with Solr indexing data to achieve the autocomplete function-
ality.

Our preferred environment for this example is solr-5.0.0, Eclipse Luna, JDK 8u25, and Tomcat 8 application server. Having said
that, we have tested the code against JDK 1.7 and Tomcat 7 as well.

Before you begin the Solr installation make sure you have JDK installed and Java_Home is set appropriately.

4.1 Install Apache Solr

To begin with lets download the latest version of Apache Solr from the following location.

https://lucene.apache.org/solr/downloads.html

As of this writing, the stable version available is 5.0.0. Apache Solr has gone through various changes from 4.x.x to 5.0.0, so if
you have different version of Solr you need to download the 5.x.x. version to follow this example.

Once the Solr zip file is downloaded unzip it into a folder. The extracted folder will look like the below.

Apache Solr Cookbook 28 / 78

Figure 4.1: Solr folders

The bin folder contains the scripts to start and stop the server. The example folder contains few example files. We will be
using one of them to demonstrate how Solr indexes the data. The server folder contains the logs folder where all the Solr
logs are written. It will be helpful to check the logs for any error during indexing. The solr folder under server holds different
collection or core. The configuration and data for each of the core/ collection are stored in the respective core/ collection folder.

Apache Solr comes with an inbuilt Jetty server. But before we start the solr instance we must validate the JAVA_HOME is set on
the machine.

We can start the server using the command line script. Lets go to the bin directory from the command prompt and issue the
following command

solr start

This will start the Solr server under the default port 8983.

We can now open the following URL in the browser and validate that our Solr instance is running. The specifics of solr admin
tool is beyond the scope of the example.

https://localhost:8983/solr/

Apache Solr Cookbook 29 / 78

Figure 4.2: Solr admin console

4.2 Configuring Apache Solr

In this section, we will show you how to configure the core/collection for a solr instance and how to define the fields. Apache Solr
ships with an option called Schemaless mode. This option allow users to construct effective schema without manually editing
the schema file. But for this example we will use the Schema configuration for understanding the internals of the Solr.

4.2.1 Creating a Core

When the Solr server is started in Standalone mode the configuration is called core and when it is started in SolrCloud mode
the configuration is called Collection. In this example we will discuss about the standalone server and core. We will park the
SolrCloud discussion for later time.

First, we need to create a Core for indexing the data. The Solr create command has the following options:

• -c <name> - Name of the core or collection to create (required).

• -d <confdir> - The configuration directory, useful in the SolrCloud mode.

• -n <configName> - The configuration name. This defaults to the same name as the core or collection.

• -p <port> - Port of a local Solr instance to send the create command to; by default the script tries to detect the port by looking
for running Solr instances.

Apache Solr Cookbook 30 / 78

• -s <shards> - Number of shards to split a collection into, default is 1.

• -rf <replicas> - Number of copies of each document in the collection. The default is 1.

In this example we will use the -c parameter for core name and -d parameter for the configuration directory. For all other
parameters we make use of default settings.

Now navigate the solr-5.0.0bin folder in the command window and issue the following command.

solr create -c jcg -d basic_configs

We can see the following output in the command window.

Creating new core ’jcg’ using command:
https://localhost:8983/solr/admin/cores?action=CREATE&name=jcg&instanceDir=jcg

{
"responseHeader":{
"status":0,
"QTime":663},
"core":"jcg"}

Now we navigate to the following URL and we can see jcg core being populated in the core selector. You can also see the
statistics of the core.

https://localhost:8983/solr

Figure 4.3: Solr jcg core

Apache Solr Cookbook 31 / 78

4.2.2 Modify the schema.xml file

We need to modify the schema.xml file under the folder serversolrjcgconf to include the fields. We will use one of
the example file “books.csv” shipped along with Solr installation for indexing. The file is located under the folder solr-5.0.
0exampleexampledocs

Now we navigate to the folder serversolr directory. You will see a folder called jcg created. The sub-folders namely`conf`
and data have the core’s configuration and indexed data respectively.

Now edit the schema.xml file in the serversolrjcgconf folder and add the following contents after the uniqueKey
element.

schema.xml

<uniqueKey>id</uniqueKey>
<!-- Fields added for books.csv load-->
<field name="cat" type="text_general" indexed="true" stored="true"/>
<field name="name" type="text_general" indexed="true" stored="true"/>
<field name="price" type="tdouble" indexed="true" stored="true"/>
<field name="inStock" type="boolean" indexed="true" stored="true"/>
<field name="author" type="text_general" indexed="true" stored="true"/>

We have set the attribute indexed to true. This specifies the field is used for indexing and the record can be retrieved using the
index. Setting the value to false will make the field only stored but can’t be queried with.

Also note we have another attribute called stored and set it to true. This specifies the field is stored and can be returned in the
output. Setting this field to false will make the field only indexed and can’t be retrieved in output.

We have assigned the type for the fields present in the “books.csv” file here. The first field in the CSV file “id” is automatically
taken care by the uniqueKey element of schema.xml file for indexing.

Since we have modified the configuration we have to stop and start the server. To do so, we need to issue the following command
from bin directory through command line.

solr stop -all

The server will be stopped now. Now to start the server issue the following command from bin directory through command line.

solr start

4.3 Indexing the Data

Apache Solr comes with a Standalone Java program called the SimplePostTool. This program is packaged into JAR and available
with the installation under the folder exampleexampledocs.

Now we navigate to the exampleexampledocs folder in the command prompt and type the following command. You will
see a bunch of options to use the tool.

java -jar post.jar -h

The usage format in general is as follows

Usage: java [SystemProperties] -jar post.jar [-h|-] [<file|folder|url|arg> [<file|folder| ←↩
url|arg>...]]

As we said earlier, we will index the data present in the “books.csv” file shipped with Solr installation. We will navigate to the
solr-5.0.0exampleexampledocs in the command prompt and issue the following command.

java -Dtype=text/csv -Durl=https://localhost:8983/solr/jcg/update -jar post.jar books.
csv

The SystemProperties used here are:

• -Dtype - the type of the data file.

Apache Solr Cookbook 32 / 78

• -Durl - URL for the jcg core.

The file "books.csv" will now be indexed and the command prompt will display the following output.

SimplePostTool version 5.0.0
Posting files to [base] url https://localhost:8983/solr/jcg/update using content-
type text/csv...
POSTing file books.csv to [base]
1 files indexed.
COMMITting Solr index changes to https://localhost:8983/solr/jcg/update...
Time spent: 0:00:00.647

4.4 Setting up the webproject

We will use the jQuery autocomplete widget to consume the data from Solr. First, we will set up the maven project for a simple
web application.

In eclipse go to File→ New→Other→Maven Project.

Figure 4.4: Maven - step 1

In the “Select project name and location” page of the wizard, make sure that “Create a simple project (skip archetype selection)”
option is unchecked, hit “Next” to continue with default values.

Apache Solr Cookbook 33 / 78

Figure 4.5: Maven - step 2

Here choose “maven-archetype-webapp” and click on Next.

Apache Solr Cookbook 34 / 78

Figure 4.6: Maven - step 3

In the “Enter an artifact id” page of the wizard, you can define the name and main package of your project. Set the “Group
Id” variable to "com.javacodegeeks.snippets.enterprise" and the “Artifact Id” variable to "solrautocompl
ete". For package enter "com.javacodegreeks.solrautocomplete" and hit “Finish” to exit the wizard and to create
your project.

Apache Solr Cookbook 35 / 78

Figure 4.7: Maven - step 4

If you see any errors in the index.jsp , set target runtime for the project.

Apache Solr Cookbook 36 / 78

Figure 4.8: Maven - step 5

Now create a file called search.html in webapp folder. We are using the jQuery hosted on the cloud. We will use the jQuery
AJAX to fetch the data from Solr and bind to the source of the autocomplete function.

search.html

<!DOCTYPE html>
<html>
<head>
<meta charset="ISO-8859-1">
<title>Solr auto complete</title>
<link
href="https://code.jquery.com/ui/1.10.4/themes/ui-lightness/jquery-ui.css"
rel="stylesheet"></link>

<script src="https://code.jquery.com/jquery-1.10.2.js"></script>
<script src="https://code.jquery.com/ui/1.10.4/jquery-ui.js"></script>
<script>
$(function() {
var URL_PREFIX = "https://localhost:8983/solr/jcg/select?q=name:";

Apache Solr Cookbook 37 / 78

var URL_SUFFIX = "&wt=json";
$("#searchBox").autocomplete({
source : function(request, response) {
var URL = URL_PREFIX + $("#searchBox").val() + URL_SUFFIX;
$.ajax({
url : URL,
success : function(data) {
var docs = JSON.stringify(data.response.docs);
var jsonData = JSON.parse(docs);
response($.map(jsonData, function(value, key) {
return {
label : value.name
}
}));
},
dataType : ’jsonp’,
jsonp : ’json.wrf’
});
},
minLength : 1
})
});

</script>
</head>
<body>

<p>Type The or A
<label for="searchBox">Tags: </label> <input id="searchBox"></input>

</body>
</html>

Since Solr runs on a different port and the request (webpage) is initiated from another port, we might end up with cross domain
issue. To overcome this we have to use jsonp. The minLength parameter specify after how many characters typed the search
has to begin. Over here we have specified the value as 1 which means when a single character is typed the results are bound.

Now we can create the deployment package using Run as→ Maven clean and then Run as→ Maven install. This will create a
war file in the target folder. The war file produced must be placed in webapps folder of tomcat. Now we can start the server.

Open the following URL and type A . This will bring results with books having title A ..

https://localhost:8080/solrautocomplete/search.html

Apache Solr Cookbook 38 / 78

Figure 4.9: Output 1

Now type The in the search box. This will return the books having word The.

Apache Solr Cookbook 39 / 78

Figure 4.10: Output 2

The problem with the above indexing technique is we could not able to get results based on phrases. Say if we type The black it
doesn’t fetch any result. Also when we type bla no results are bound. To overcome this issue we will use NGramFilterFactory
and re-index the data.

4.5 Indexing using NGramFilterFactory

We will copy the field name to a new field called name_ngram. The copyField command copy one field to another at the time
a document is added to the index. It’s used either to index the same field differently, or to add multiple fields to the same field for
easier/faster searching.

Now modify the schema.xml file in the serversolrjcgconf folder and add the following highlighted content.

schema.xml

<!--
<copyField source="title" dest="text"/>
<copyField source="body" dest="text"/>
-->
<copyField source="name" dest="name_ngram"/>

In the same file, we need to add a field called name_ngram and mark it for indexing. For it, we need to add the highlighted line.

schema.xml

<uniqueKey>id</uniqueKey>
<!-- Fields added for books.csv load-->
<field name="cat" type="text_general" indexed="true" stored="true"/>
<field name="name" type="text_general" indexed="true" stored="true"/>

Apache Solr Cookbook 40 / 78

<field name="price" type="tdouble" indexed="true" stored="true"/>
<field name="inStock" type="boolean" indexed="true" stored="true"/>
<field name="author" type="text_general" indexed="true" stored="true"/>
<field name="name_ngram" type="text_ngram" indexed="true" stored="true"/>

Take a note we have changed the type of the new field as text_ngram. We will define the type text_ngram subsequently.

Now we add the definition for the field text_ngram in the schema.xml file. We have set the minimum ngram size as 2 and
maximum ngram size as 10.

schema.xml

<!-- Added for NGram field-->
<fieldType name="text_ngram" class="solr.TextField" positionIncrementGap="100">
<analyzer type="index">
<tokenizer class="solr.NGramTokenizerFactory" minGramSize="2" maxGramSize="10"/>
<filter class="solr.LowerCaseFilterFactory"/>
</analyzer>
<analyzer type="query">
<tokenizer class="solr.EdgeNGramTokenizerFactory" minGramSize="2" maxGramSize="10"/>
<filter class="solr.LowerCaseFilterFactory"/>
</analyzer>
</fieldType>

We have combined the features of NGramTokenizerFactory and EdgeNGramTokenizerFactory to achieve the best
of indexing. Since we have modified the configuration we have to stop and start the server. To do so, we need to issue the
following command from bin directory through command line.

solr stop -all

The server will be stopped now. Now to start the server issue the following command from bin directory through command line.

solr start

We will re-index the data present in the books.csv file. We will navigate to the solr-5.0.0exampleexampledocs in
the command prompt and issue the following command.

java -Dtype=text/csv -Durl=https://localhost:8983/solr/jcg/update -jar post.jar books.
csv

The file books.csv will now be re-indexed and the command prompt will display the following output.

SimplePostTool version 5.0.0
Posting files to [base] url https://localhost:8983/solr/jcg/update using content-type text/ ←↩

csv...
POSTing file books.csv to [base]
1 files indexed.
COMMITting Solr index changes to https://localhost:8983/solr/jcg/update...
Time spent: 0:00:02.325

4.6 Modify search.html

Now we will modify the search.html to include another search box to test the NGram indexing. We will create search box
with id ngrambox and write another javascript function for the new search box.

search.html

<!DOCTYPE html>
<html>
<head>
<meta charset="ISO-8859-1">
<title>Solr auto complete</title>

Apache Solr Cookbook 41 / 78

<link
href="https://code.jquery.com/ui/1.10.4/themes/ui-lightness/jquery-ui.css"
rel="stylesheet"></link>

<script src="https://code.jquery.com/jquery-1.10.2.js"></script>
<script src="https://code.jquery.com/ui/1.10.4/jquery-ui.js"></script>
<script>
$(function() {
var URL_PREFIX = "https://localhost:8983/solr/jcg/select?q=name:";
var URL_SUFFIX = "&wt=json";
$("#searchBox").autocomplete({
source : function(request, response) {
var URL = URL_PREFIX + $("#searchBox").val() + URL_SUFFIX;
$.ajax({
url : URL,
success : function(data) {
var docs = JSON.stringify(data.response.docs);
var jsonData = JSON.parse(docs);
response($.map(jsonData, function(value, key) {
return {
label : value.name
}
}));
},
dataType : ’jsonp’,
jsonp : ’json.wrf’
});
},
minLength : 1
})
});
$(function() {
var URL_PREFIX = "https://localhost:8983/solr/jcg/select?q=name:";
var URL_MIDDLE = "OR name_ngram:";
var URL_SUFFIX = "&wt=json";
$("#ngramBox").autocomplete(
{
source : function(request, response) {
var searchString = "\"" + $("#ngramBox").val() + "\"";
var URL = URL_PREFIX + searchString + URL_MIDDLE
+ searchString + URL_SUFFIX;
$.ajax({
url : URL,
success : function(data) {
var docs = JSON.stringify(data.response.docs);
var jsonData = JSON.parse(docs);
response($.map(jsonData, function(value, key) {
return {
label : value.name
}
}));
},
dataType : ’jsonp’,
jsonp : ’json.wrf’
});
},
minLength : 1
})
});

</script>
</head>
<body>

Apache Solr Cookbook 42 / 78

Type ’A’ or ’The’
<label for="searchBox">Tags: </label> <input id="searchBox"></input>

Type ’Th’ or ’Bla’ or ’The Black’
<label for="ngramBox">Tags: </label> <input id="ngramBox"></input>

</body>
</html>

Now again package using maven and copy the war to the apache tomcat webapps folder. Open the following URL in the
browser and type Bla.

https://localhost:8080/solrautocomplete/search.html

Figure 4.11: Output 3

4.7 Download the Eclipse Project

This was an example of Solr autocomplete.

Download

You can download the full source code of this example here: solr autocomplete and download the schema file here: schema file.

https://examples.javacodegeeks.com/wp-content/uploads/2015/05/solrautocomplete.zip
https://examples.javacodegeeks.com/wp-content/uploads/2015/05/schema.zip

Apache Solr Cookbook 43 / 78

Chapter 5

Solr replication example

In this example of Solr replication example, we will show you how to set up replication in Apache Solr and demonstrate how
a new record gets replicated from master to slave cores. For this example we will consider one master and two slave servers.
In production environment we will use different machines for hosting the master and slave servers. Over here we will run both
master and slave Solr servers on the same machine by using different ports.

Our preferred environment for this example is Windows. Before you begin the Solr installation make sure you have JDK installed
and Java_Home is set appropriately.

5.1 Install Apache Solr

To begin with lets download the latest version of Apache Solr from the following location.

https://lucene.apache.org/solr/downloads.html

Apache Solr has gone through various changes from 4.x.x to 5.0.0, so if you have different version of Solr you need to download
the 5.x.x. version to follow this example. Once the Solr zip file is downloaded unzip it into a folder. The extracted folder will
look like the below.

Apache Solr Cookbook 44 / 78

Figure 5.1: Solr folders

The bin folder contains the scripts to start and stop the server. The example folder contains few example files. We will be
using one of them to demonstrate how replication works. The server folder contains the logs folder where all the Solr logs
are written. It will be helpful to check the logs for any error during indexing. The solr folder under server holds different
collection or core. The configuration and data for each of the core/ collection are stored in the respective core/ collection folder.

Apache Solr comes with an inbuilt Jetty server. But before we start the solr instance we must validate the JAVA_HOME is set on
the machine.

We can start the server using the command line script. Lets go to the bin directory from the command prompt and issue the
following command

solr start

This will start the Solr server under the default port 8983.

We can now open the following URL in the browser and validate that our Solr instance is running. The specifics of solr admin
tool is beyond the scope of the example.

https://localhost:8983/solr/

Apache Solr Cookbook 45 / 78

Figure 5.2: Solr admin console

5.2 Configuring Solr - master

In this section, we will show you how to configure the master core for a Solr instance. Apache Solr ships with an option called
Schemaless mode. This option allow users to construct effective schema without manually editing the schema file. For this
example we will use the reference configset sample_techproducts_configs.

5.2.1 Creating master Core

First, we need to create a core for indexing the data. The Solr create command has the following options:

• -c <name> - Name of the core or collection to create (required).

• -d <confdir> - The configuration directory, useful in the SolrCloud mode.

• -n <configName> - The configuration name. This defaults to the same name as the core or collection.

• -p <port> - Port of a local Solr instance to send the create command to; by default the script tries to detect the port by looking
for running Solr instances.

• -s <shards> - Number of shards to split a collection into, default is 1.

• -rf <replicas> - Number of copies of each document in the collection. The default is 1.

Apache Solr Cookbook 46 / 78

In this example we will use the -c parameter for core name, -rf parameter for replciation and -d parameter for the configuration
directory.

Now navigate the solr-5.0.0bin folder in the command window and issue the following command.

solr create -c master -d sample_techproducts_configs -p 8983 -rf 3

We can see the following output in the command window.

Creating new core ’master’ using command:
https://localhost:8983/solr/admin/cores?action=CREATE&name=master&instanceDi
r=master

{
"responseHeader":{
"status":0,
"QTime":1563},
"core":"master"}

Now we can navigate to the following URL and see master core being populated in the core selector. You can also see the
statistics of the core.

https://localhost:8983/solr/#/master

Apache Solr Cookbook 47 / 78

Figure 5.3: master console

5.2.2 Modify solrconfig

Open the file solrconfig.xml under the folder serversolrmasterconf and add the configuration for the master under
the requestHandler tag. We will set the values for replicateAfter and backAfter to optimize. The confFiles
parameter value is set according to the slave collection name we are going to create.

solrconfig.xml

<!-- Replication Handler -->
<requestHandler name="/replication" class="solr.ReplicationHandler" >

<lst name="master">
<str name="replicateAfter">optimize</str>
<str name="backupAfter">optimize</str>
<str name="confFiles">solrconfig_slave.xml:solrconfig.xml,x.xml,y.xml</str>
<str name="commitReserveDuration">00:00:10</str>

Apache Solr Cookbook 48 / 78

</lst>
<int name="maxNumberOfBackups">2</int>
<lst name="invariants">

<str name="maxWriteMBPerSec">16</str>
</lst>

</requestHandler>

Since we have modified the solrconfig we have to restart the solr server. Issue the following commands in the command
window navigating to solr-5.0.0bin.

solr stop -all

solr start

5.3 Configuring Solr - slave

For this example, we will create two slave cores. The data from the master core will get replicated into both slaves. We will run
the two slaves on the same machine with different ports along with the master core. To do so, extract another copy of solr server
to a folder called solr1. Navigate to the solr-5.0.0bin folder of solr1 in the command window and issue the following
command.

solr start -p 9000

The -p option will start the solr server in a different port. For the first slave we will use port 9000. Now navigate to the solr-
5.0.0bin folder of the slave in the command window and issue the following command.

solr create -c slave -d sample_techproducts_configs -p 9000

We can see the following output in the command window.

Creating new core ’slave’ using command:
https://localhost:9000/solr/admin/cores?action=CREATE&name=slave&instanceDir=slave

{
"responseHeader":{
"status":0,
"QTime":1778},
"core":"slave"}

Now open the file solrconfig.xml under the folder serversolrslaveconf and add the configuration for the slave
under the requestHandler tag. In the configuration we will point the slave to the masterUrl for replication. The pollInter
val is set to 20 seconds. It is the time difference between two poll requests made by the slave.

solrconfig.xml

<!-- Replication Handler -->
<requestHandler name="/replication" class="solr.ReplicationHandler" >

<lst name="slave">
<!--fully qualified url for the replication handler of master. It is ←↩

possible
to pass on this as
a request param for the fetchindex command-->
<str name="masterUrl">https://localhost:8983/solr/master/replication</str>
<!--Interval in which the slave should poll master .Format is HH:mm:ss . If
this is absent slave does not
poll automatically.
But a fetchindex can be triggered from the admin or the http API -->
<str name="pollInterval">00:00:20</str>

</lst>
</requestHandler>

Apache Solr Cookbook 49 / 78

Since we have modified the solrconfig we have to restart the solr server. Issue the following commands in the command window
navigating to solr-5.0.0bin.

solr stop -all

solr start -p 9000

Now open the slave console using the following URL. The replication section will show the configuration reflecting the configu-
ration we made in the solrconfig.

https://localhost:9000/solr/#/slave/replication

Figure 5.4: slave-1 replication console

To create another slave server, follow the same steps and configure the server in port 9001. We can now open the console using
the following URL and validate the configuration in the replication section.

https://localhost:9001/solr/#/slave/replication

Apache Solr Cookbook 50 / 78

Figure 5.5: slave-2 replication console

5.4 Indexing and Replication

Now we will index the example data pointing to the master core. Apache Solr comes with a Standalone Java program called the
SimplePostTool. This program is packaged into JAR and available with the installation under the folder exampleexampled
ocs.

Now we navigate to the exampleexampledocs folder in the command prompt and type the following command. You will
see a bunch of options to use the tool.

java -jar post.jar -h

The usage format in general is as follows

Usage:java [SystemProperties] -jar post.jar [-h|-] [<file|folder|url|arg> [<file|folde
r|url|arg>...]]

Apache Solr Cookbook 51 / 78

As we said earlier, we will index the data present in the “books.csv” file shipped with Solr installation. We will navigate to the
solr-5.0.0exampleexampledocs in the command prompt and issue the following command.

java -Dtype=text/csv -Durl=https://localhost:8983/solr/master/update -jar post.jar books. ←↩
csv

The SystemProperties used here are:

• -Dtype - the type of the data file.

• -Durl - URL for the jcg core.

The file “books.csv” will now be indexed and the command prompt will display the following output.

SimplePostTool version 5.0.0
Posting files to [base] url https://localhost:8983/solr/master/update using content-type ←↩

text/csv...
POSTing file books.csv to [base]
1 files indexed.
COMMITting Solr index changes to https://localhost:8983/solr/master/update...
Time spent: 0:00:00.604

Now open the console of the slave cores and we can see the data replicated automatically.

https://localhost:9000/solr/#/slave

Apache Solr Cookbook 52 / 78

Figure 5.6: slave console - data replicated

5.5 Add new record

Now we validate the replication further by adding a record to the master core. To do it, lets open the master console URL.

https://localhost:8983/solr/#/master/documents

Navigate to the documents section and choose the document type as CSV and input the following content into the document text
area and click on Submit.

id,cat,name,price,inStock,author,series_t,sequence_i,genre_s
123,book,Apache Solr,6.99,TRUE,Veera,JCG,1,Technical

Apache Solr Cookbook 53 / 78

Figure 5.7: master console - add new record

The data will be added to master core and get replicated to the slave servers. To validate it lets navigate to the slave core. We can
find the count of documents getting increased to 11. We can also use the query section in the slave admin console to validate it.
Open the following URL.

https://localhost:9000/solr/#/slave/query

Input the values name:apache in the q text area and click on Execute Query. The new record we inserted on the master core
will get reflected in the slave core.

Apache Solr Cookbook 54 / 78

Figure 5.8: slave console - query

5.6 Download the Configuration

This was an example of Apache Solr replication.

Download

You can download the master configuration here: solrconfig master and slave configuration here: solrconfig slave

https://examples.javacodegeeks.com/wp-content/uploads/2015/07/solrconfig_master.zip
https://examples.javacodegeeks.com/wp-content/uploads/2015/07/solrconfig_slave.zip

Apache Solr Cookbook 55 / 78

Chapter 6

Solr Synonyms Example

In this example of Solr Synonyms we will show you how to use the Solr synonym feature to substitute words with the relevant
words of the data we index. This feature helps in providing better user experience by identifying different usage for a word in
the given data context.

Solr ships with a filter factory called SynonymFilterFactory to achieve this functionality. Also, it provides a configuration
file called synonyms.txt to add our synonyms. In this example, we will discuss how to configure the synonyms for our books
data.

Our preferred environment for this example is solr-5.0.0. Before you begin the Solr installation make sure you have JDK installed
and`Java_Home` is set appropriately.

6.1 Install Apache Solr

To begin with lets download the latest version of Apache Solr from the following location.

https://lucene.apache.org/solr/downloads.html

Apache Solr has gone through various changes from 4.x.x to 5.0.0, so if you have different version of Solr you need to download
the 5.x.x. version to follow this example.

Once the Solr zip file is downloaded unzip it into a folder. The extracted folder will look like the below.

Apache Solr Cookbook 56 / 78

Figure 6.1: Solr folders

The bin folder contains the scripts to start and stop the server. The example folder contains few example files. We will be
using one of them to demonstrate how Solr indexes the data. The server folder contains the logs folder where all the Solr
logs are written. It will be helpful to check the logs for any error during indexing. The solr folder under server holds different
collection or core. The configuration and data for each of the core/ collection are stored in the respective core/ collection folder.

Apache Solr comes with an inbuilt Jetty server. But before we start the solr instance we must validate the JAVA_HOME is set on
the machine.

We can start the server using the command line script. Lets go to the bin directory from the command prompt and issue the
following command:

solr start

This will start the Solr server under the default port 8983.

We can now open the following URL in the browser and validate that our Solr instance is running. The specifics of solr admin
tool is beyond the scope of the example.

https://localhost:8983/solr/

Apache Solr Cookbook 57 / 78

Figure 6.2: Solr admin console

6.2 Configuring Apache Solr

In this section, we will show you how to configure the core/collection for a solr instance and how to define the fields. Apache Solr
ships with an option called Schemaless mode. This option allow users to construct effective schema without manually editing
the schema file. For this example we will use the reference configset sample_techproducts_configs.

First, we need to create a Core for indexing the data. The Solr create command has the following options:

• -c <name> - Name of the core or collection to create (required).

• -d <confdir> - The configuration directory, useful in the SolrCloud mode.

• -n <configName> - The configuration name. This defaults to the same name as the core or collection.

• -p <port> - Port of a local Solr instance to send the create command to; by default the script tries to detect the port by looking
for running Solr instances.

• -s <shards> - Number of shards to split a collection into, default is 1.

• -rf <replicas> - Number of copies of each document in the collection. The default is 1.

In this example we will use the -c parameter for core name and -d parameter for the configuration directory. For all other
parameters we make use of default settings.

Apache Solr Cookbook 58 / 78

Now navigate the solr-5.0.0bin folder in the command window and issue the following command.

solr create -c jcg -d sample_techproducts_configs

We can see the following output in the command window.

Creating new core ’jcg’ using command:
https://localhost:8983/solr/admin/cores?action=CREATE&name=jcg&instanceDir=jcg{
"responseHeader":{
"status":0,
"QTime":1377},
"core":"jcg"}

Now we navigate to the following URL and we can see jcg core being populated in the core selector. You can also see the
statistics of the core.

https://localhost:8983/solr

Figure 6.3: Solr jcg core

6.3 Indexing the Data

Apache Solr comes with a Standalone Java program called the SimplePostTool. This program is packaged into JAR and available
with the installation under the folder exampleexampledocs.

Apache Solr Cookbook 59 / 78

Now we navigate to the exampleexampledocs folder in the command prompt and type the following command. You will
see a bunch of options to use the tool.

java -jar post.jar -h

The usage format in general is as follows:

Usage:java [SystemProperties] -jar post.jar [-h|-] [<file|folder|url|arg> [<file|folde
r|url|arg>...]]

As we said earlier, we will index the data present in the “books.csv” file shipped with Solr installation. We will navigate to the
solr-5.0.0exampleexampledocs in the command prompt and issue the following command.

java -Dtype=text/csv -Durl=https://localhost:8983/solr/jcg/update -jar post.jar books.csv

The SystemProperties used here are:

• -Dtype - the type of the data file.

• -Durl - URL for the jcg core.

The file “books.csv” will now be indexed and the command prompt will display the following output.

SimplePostTool version 5.0.0
Posting files to [base] url https://localhost:8983/solr/jcg/update using content-type text ←↩

/csv...
POSTing file books.csv to [base]
1 files indexed.
COMMITting Solr index changes to https://localhost:8983/solr/jcg/update...
Time spent: 0:00:00.604

6.4 Configure synonym

Now we modify the synonyms.txt file located under the folder serversolrjcgconf to add the synonym for our data.
There are two ways to specify synonym mappings as listed below. We will discuss both the options with example.

• Two comma-separated lists of words with the symbol "⇒" between them. If the token matches any word on the left, then the
list on the right is substituted. The original token will not be included unless it is also in the list on the right.

• A comma-separated list of words. If the token matches any of the words, then all the words in the list are substituted, which
will include the original token.

6.4.1 With symbol "⇒"

We will first set up the synonym for correcting the spelling. Open the synonyms.txt file and add common spelling mistakes
happens to the context of the data. In this example we will take the word the.

synonyms.txt

Synonym mappings can be used for spelling correction too
pixima => pixma
teh => the

Since we have modified the configuration we have to restart the Solr server. To do so, issue the following commands:

solr stop -all

solr start

Now we query the books with wrong spelling as teh. Open the following URL:

Apache Solr Cookbook 60 / 78

https://localhost:8983/solr/jcg/select?q=name:"teh"

Figure 6.4: Solr Synonym - Output 1

6.4.2 Comma-separated list

Now let’s implement another feature of Solr synonym. We will provide list of synonym for a word (clash in our case). When the
user types any of the relevant word, the book with title clash will be returned. Similarly, we can add MB for MegaByte, GB
for GigaByte etc depending on the context of the data we need to index.

When we perform the Solr query, each token is looked up in the list of synonyms and if a match is found then the synonym is
emitted in place of the token. The position value of the new tokens are set such that they all occur at the same position as the
original token.

synonyms.txt

Some synonym groups specific to this example

Apache Solr Cookbook 61 / 78

GB,gib,gigabyte,gigabytes
MB,mib,megabyte,megabytes
Television, Televisions, TV, TVs

clash, battle, fight

Since we have modified the configuration we have to do a restart. Issue the following commands:

solr stop -all

solr start

Now query the books for title fight or battle, it would fetch the book "A Clash of Kings".

https://localhost:8983/solr/jcg/select?q=name:"A fight"

Figure 6.5: Solr Synonym - Output 2

6.5 Schema configuration

The configuration to use synonym is located in the file called schema.xml in the Solr server. To view the configuration let’s
open the file from the location serversolrjcgconf and take a look at the following section. You can notice we have used
SynonymFilterFactory filter for the fieldType text_general. Also we can notice it is only used during the query time.

schema.xml

Apache Solr Cookbook 62 / 78

<!-- A general text field that has reasonable, generic
cross-language defaults: it tokenizes with StandardTokenizer,
removes stop words from case-insensitive "stopwords.txt"
(empty by default), and down cases. At query time only, it
also applies synonyms. -->
<fieldType name="text_general" class="solr.TextField" positionIncrementGap="100">
<analyzer type="index">
<tokenizer class="solr.StandardTokenizerFactory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true" words="stopwords.txt" />
<!-- in this example, we will only use synonyms at query time
<filter class="solr.SynonymFilterFactory" synonyms="index_synonyms.txt" ignoreCase="true" ←↩

expand="false"/>
-->
<filter class="solr.LowerCaseFilterFactory"/>
</analyzer>
<analyzer type="query">
<tokenizer class="solr.StandardTokenizerFactory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true" words="stopwords.txt" />
<filter class="solr.SynonymFilterFactory" synonyms="synonyms.txt" ignoreCase="true" expand ←↩

="true"/>
<filter class="solr.LowerCaseFilterFactory"/>
</analyzer>
</fieldType>

6.6 Download the Configuration

This was an example of Apache Solr Synonym.

Download

You can download the synonym configuration here: synonyms.txt

https://examples.javacodegeeks.com/wp-content/uploads/2015/07/synonyms.zip

Apache Solr Cookbook 63 / 78

Chapter 7

Solr Faceted Search Example

In this example of Solr faceted search, we will discuss about the use of faceting the data and also discuss different facet options
available in Solr. For our discussion, we will be using one of the collection example (techproducts) that comes with the Solr
Installation for easy set up. We will show you how to make use of the Solr facet parameters to achieve the desired search results.

Our preferred environment for this example is Windows. Before you begin the Solr installation make sure you have JDK installed
and Java_Home is set appropriately.

7.1 Installing Apache Solr

To begin with, lets download the latest version of Apache Solr from the following location:

https://lucene.apache.org/solr/downloads.html

As of this writing, the stable version available is 5.0.0. Apache Solr has gone through various changes from 4.x.x to 5.0.0, so if
you have different version of Solr you need to download the 5.x.x. version to follow this example.

Once the Solr zip file is downloaded unzip it into a folder. The extracted folder will look like the below.

Apache Solr Cookbook 64 / 78

Figure 7.1: Solr folders

The bin folder contains the scripts to start and stop the server. The example folder contains few example files. We will be
using one of them to demonstrate how Solr indexes the data. The server folder contains the logs folder where all the Solr
logs are written. It will be helpful to check the logs for any error during indexing. The solr folder under server holds different
collection or core. The configuration and data for each of the core/ collection are stored in the respective core/ collection folder.

Apache Solr comes with an inbuilt Jetty server. But before we start the solr instance we must validate the JAVA_HOME is set on
the machine.

7.2 Start Solr Server

Solr provides few useful collection example to learn about the key features. We will use the techproducts collection bundled with
Solr for our discussion. To start the Solr server with the techproducts collection let’s open a command prompt, navigate to bin
folder and issue the following syntax.

solr -e techproducts

This will start the Solr server under the default port 8983.

We can now open the following URL in the browser and validate that our Solr instance is running. You can also notice the
collection techproducts being populated.

https://localhost:8983/solr/

Apache Solr Cookbook 65 / 78

Figure 7.2: Solr admin console

7.3 Facet Search

Faceting is the process of arranging the search results into categories based on indexed terms. The output of the facet search is
the numerical count found for each search term. This feature is very useful in providing better user experience during search by
narrowing in on the results.

The following are the general parameters for facet.

• facet - If set to true, enables faceting.

• facet.query - Specifies a Lucene query to generate a facet count.

7.3.1 Field-Value Faceting

In this example we will set the facet value to true and set the facet.field parameter. The facet.field parameter identifies a field to
be treated as a facet. The other parameters used in the query are Solr general query parameters and not related to faceting. To get
more information on those parameters please look into our previous examples.

Now navigate to the following URL. This will bring the products with price range 0 to 400 and group the results by category.

https://localhost:8983/solr/techproducts/select?q=price:[0 TO 400]&fl=id,name,price&fa
cet=true&facet.field=cat

Apache Solr Cookbook 66 / 78

Figure 7.3: Solr Facet Field Value

There are other handful of facet parameters available to tune the search results when using Field-Value faceting.

7.3.2 Range Faceting

We can use range faceting on date or numeric fields that support range queries. This feature is very helpful in providing better
user experience by bucketing the reference field in ranges. In this example we will use the price field to do the range faceting.
The following parameters are used in the query.

• facet.range - Specifies the field to facet by range.

• facet.range.start - Specifies the start of the facet range.

• facet.range.end - Specifies the start of the facet range.

Apache Solr Cookbook 67 / 78

• facet.range.gap - Specifies the span of the range as a value to be added to the lower bound.

Now navigate to the following URL. This will bring the numerical products with price range bucketed into ranges of 100 for the
results.

https://localhost:8983/solr/techproducts/select?q=price:[0 TO 4000]&fl=id,name,price&facet= ←↩
true&facet.field=cat&facet.range=price&f.price.facet.range.start=0.0&f.price.facet.range ←↩
.end=1000.0&f.price.facet.range.gap=100

Figure 7.4: Solr Facet Range

Apache Solr Cookbook 68 / 78

7.3.3 Interval Faceting

Another feature in Solr is Interval faceting. This looks similar to Range faceting but Interval faceting gives options to set variable
range as against the former which can set only a fixed gap. In order to use Interval Faceting on a field, it is required that the field
has “docValues” enabled.

To modify the field lets navigate to exampletechproductssolrtechproductsconf and set the "docValues" attribute
to true in the schema.xml file as shown below.

schema.xml

<field name="weight" type="float" indexed="true" stored="true"/>
<field name="price" type="float" indexed="true" stored="true" docValues="true"/>
<field name="popularity" type="int" indexed="true" stored="true" />
<field name="inStock" type="boolean" indexed="true" stored="true" />

Since we have modified the configuration we have to restart the Solr instance. Open a command prompt, navigate to bin folder
and issue the following commands.

solr stop -all

solr -e techproducts

In this example we will use the following faceting parameters.

• facet.interval - Specifies the field to facet by interval.

• facet.interval.set - Sets the intervals for the field.

We can use the following syntax to include or exclude the values provided in the set interval.

(1,10)→ will include values greater than 1 and lower than 10.

[1,10)→ will include values greater or equal to 1 and lower than 10.

[1,10]→ will include values greater or equal to 1 and lower or equal to 10.

Now navigate to the following URL. This will bring the numerical count of the products for the intervals provided in the query.

https://localhost:8983/solr/techproducts/select?q=*:*&fl=id,name,price&facet=true&facet. ←↩
field=cat&facet.interval=price&f.price.facet.interval.set=[0,10]&f.price.facet.interval. ←↩
set=(10,100]

Apache Solr Cookbook 69 / 78

Figure 7.5: Solr Facet Interval

7.4 Download the Configuration

This was an example of solr faceted search.

Download

You can download the schema for the example here: Schema.xml

https://examples.javacodegeeks.com/wp-content/uploads/2015/08/facet_schema.zip

Apache Solr Cookbook 70 / 78

Chapter 8

Solr Filter Query Example

In this example of Solr filter query, we will discuss about how to implement filter queries functionality provided by Apache Solr.
We will discuss how to use single and multiple filter queries to achieve the desired results. Also we will show the various filter
query syntax offered by Solr and discuss the advantages of using one over other.

To demonstrate the filter query usage, we will create a core in Solr using basic configuration and index a sample file shipped
along with Solr installation.

Our preferred environment for this example is solr-5.0.0. Before you begin the Solr installation make sure you have JDK installed
and Java_Home is set appropriately.

8.1 Install Apache Solr

To begin with, lets download the latest version of Apache Solr from the following location:

https://lucene.apache.org/solr/downloads.html

Apache Solr has gone through various changes from 4.x.x to 5.0.0, so if you have a different version of Solr you need to download
the 5.x.x. version to follow this example.

Once the Solr zip file is downloaded, unzip it into a folder. The extracted folder will look like the below:

Apache Solr Cookbook 71 / 78

Figure 8.1: Solr folders

The bin folder contains the scripts to start and stop the server. The example folder contains few example files. We will be
using one of them to demonstrate how Solr indexes the data. The server folder contains the logs folder where all the Solr
logs are written. It will be helpful to check the logs for any error during indexing. The solr folder under server holds different
collection or core. The configuration and data for each of the core/ collection are stored in the respective core/ collection folder.

Apache Solr comes with an inbuilt Jetty server. But before we start the solr instance we must validate the JAVA_HOME is set on
the machine.

We can start the server using the command line script. Lets go to the bin directory from the command prompt and issue the
following command:

solr start

This will start the Solr server under the default port 8983.

We can now open the following URL in the browser and validate that our Solr instance is running. The specifics of solr admin
tool is beyond the scope of the example.

https://localhost:8983/solr/

Apache Solr Cookbook 72 / 78

Figure 8.2: Solr admin console

8.2 Configuring Apache Solr

In this section, we will show you how to configure the core/collection for a solr instance and how to define the fields. Apache Solr
ships with an option called Schemaless mode. This option allow users to construct effective schema without manually editing
the schema file. But for this example we will use the Schema configuration for understanding the internals of the Solr.

8.2.1 Creating a Core

When the Solr server is started in Standalone mode, the configuration is called core and when it is started in SolrCloud mode,
the configuration is called Collection. In this example we will discuss about the standalone server and core. We will park the
SolrCloud discussion for later time.

First, we need to create a Core for indexing the data. The Solr create command has the following options:

• -c <name> - Name of the core or collection to create (required).

• -d <confdir> - The configuration directory, useful in the SolrCloud mode.

• -n <configName> - The configuration name. This defaults to the same name as the core or collection.

• -p <port> - Port of a local Solr instance to send the create command to; by default the script tries to detect the port by looking
for running Solr instances.

Apache Solr Cookbook 73 / 78

• -s <shards> - Number of shards to split a collection into, default is 1.

• -rf <replicas> - Number of copies of each document in the collection. The default is 1.

In this example we will use the -c parameter for core name and -d parameter for the configuration directory. For all other
parameters we make use of default settings.

Now navigate the solr-5.0.0bin folder in the command window and issue the following command:

solr create -c jcg -d basic_configs

We can see the following output in the command window.

Creating new core ’jcg’ using command:
https://localhost:8983/solr/admin/cores?action=CREATE&name=jcg&instanceDir=jcg

{
"responseHeader":{
"status":0,
"QTime":663},
"core":"jcg"}

Now we navigate to the following URL and we can see jcg core being populated in the core selector. You can also see the
statistics of the core.

https://localhost:8983/solr

Figure 8.3: Solr jcg core

Apache Solr Cookbook 74 / 78

8.2.2 Modify the schema.xml file

We need to modify the schema.xml file under the folder serversolrjcgconf to include the fields. We will use one of
the example file “books.csv” shipped along with Solr installation for indexing. The file is located under the folder solr-5.0.
0exampleexampledocs

Now we navigate to the folder serversolr directory. You will see a folder called jcg created. The sub-folders namely`conf`
and data have the core’s configuration and indexed data respectively.

Now edit the schema.xml file in the serversolrjcgconf folder and add the following contents after the uniqueKey
element.

schema.xml

<uniqueKey>id</uniqueKey>
<!-- Fields added for books.csv load-->
<field name="cat" type="text_general" indexed="true" stored="true"/>
<field name="name" type="text_general" indexed="true" stored="true"/>
<field name="price" type="tdouble" indexed="true" stored="true"/>
<field name="inStock" type="boolean" indexed="true" stored="true"/>
<field name="author" type="text_general" indexed="true" stored="true"/>

We have set the attribute indexed to true. This specifies the field is used for indexing and the record can be retrieved using the
index. Setting the value to false will make the field only stored but can’t be queried with.

Also note we have another attribute called stored and set it to true. This specifies the field is stored and can be returned in the
output. Setting this field to false will make the field only indexed and can’t be retrieved in output.

We have assigned the type for the fields present in the “books.csv” file here. The first field in the CSV file “id” is automatically
taken care by the uniqueKey element of schema.xml file for indexing.

Since we have modified the configuration we have to stop and start the server. To do so, we need to issue the following command
from bin directory through command line:

solr stop -all

The server will be stopped now. Now to start the server issue the following command from bin directory through command line:

solr start

8.3 Indexing the Data

Apache Solr comes with a Standalone Java program called the SimplePostTool. This program is packaged into JAR and available
with the installation under the folder exampleexampledocs.

Now we navigate to the exampleexampledocs folder in the command prompt and type the following command. You will
see a bunch of options to use the tool.

java -jar post.jar -h

The usage format in general is as follows:

<code>Usage: java [SystemProperties] -jar post.jar [-h|-] [<file|folder|url|arg> [<file|folder|url|arg>. . .]]</code>

As we said earlier, we will index the data present in the “books.csv” file shipped with Solr installation. We will navigate to the
solr-5.0.0exampleexampledocs in the command prompt and issue the following command.

java -Dtype=text/csv -Durl=https://localhost:8983/solr/jcg/update -jar post.jar books.
csv

The SystemProperties used here are:

• -Dtype - the type of the data file.

• -Durl - URL for the jcg core.

Apache Solr Cookbook 75 / 78

The file “books.csv” will now be indexed and the command prompt will display the following output.

SimplePostTool version 5.0.0
Posting files to [base] url https://localhost:8983/solr/jcg/update using content-
type text/csv...
POSTing file books.csv to [base]
1 files indexed.
COMMITting Solr index changes to https://localhost:8983/solr/jcg/update...
Time spent: 0:00:00.647

8.4 Filter queries

Solr provides the following parameter to filter the queries. This parameter can be used with other common query parameters to
achieve the desired output.

• fq - Applies a filter query to the search results.

The fq parameter defines a query that can be used to restrict the superset of documents that can be returned, without influencing
score. The fq parameterized queries are cached independent of the main query. When the same filter is used in the subsequent
queries its a cache hit and the data is returned quickly from the cache.

8.4.1 Single filter query

Let’s form a query to search for the keyword Game in the name field. Open the following URL in the browser. This query will
fetch two records as shown in the screenshot.

https://localhost:8983/solr/jcg/select?q=name

Apache Solr Cookbook 76 / 78

Figure 8.4: Without filter

We will modify the query to filter the result for the book’s price between 1.00 to 7.00. With the filter parameter we will get only
a single record.

Open the following URL in the browser:

https://localhost:8983/solr/jcg/select?q=name:Game&fq=price:[1.00 TO 7.00]

Apache Solr Cookbook 77 / 78

Figure 8.5: Single filter

8.4.2 Multiple filters

The fq parameter can be specified multiple times in a query. The documents will only be included in the result if they are in the
intersection of the document sets resulting from each instance of the parameter. In the example below, only documents which are
in price between 1.00 and 7.00 and also in stock will be returned.

Open the following URL in the browser.

https://localhost:8983/solr/jcg/select?q=name:The&fq=price:[1.00 TO 7.00]&fq=inStock:true

Apache Solr Cookbook 78 / 78

Figure 8.6: Multiple filter

Since the cache works on individual parameters it is suggested to use multiple fq parameters for better caching.

8.5 Download the source code

This was an example of solr filter queries.

Download the Configuration

You can download the schema file of this example here: filter_schema

https://examples.javacodegeeks.com/wp-content/uploads/2015/08/filter_schema.zip

	Apache Solr Tutorial for Beginners
	Why Apache Solr
	Installing Apache Solr
	Configuring Apache Solr
	Creating a Core
	Modify the schema.xml file

	Indexing the Data
	Access the Indexed documents
	Search by name
	Search by starting letter
	Search using wildcard
	Search using a condition

	Solr Client API's
	Download the Schema file

	How to Install Solr on Ubuntu
	Install Apache Solr
	Configure Apache Solr
	Indexing the Data
	Download the Schema file

	Solr query syntax examples
	Installing Apache Solr
	Start Solr Server
	Solr basic query
	Solr query parameters
	Solr advanced queries
	Solr query - selective fields
	Solr query - filter
	Solr query - faceted Search

	Solr autocomplete example
	Install Apache Solr
	Configuring Apache Solr
	Creating a Core
	Modify the schema.xml file

	Indexing the Data
	Setting up the webproject
	Indexing using NGramFilterFactory
	Modify search.html
	Download the Eclipse Project

	Solr replication example
	Install Apache Solr
	Configuring Solr - master
	Creating master Core
	Modify solrconfig

	Configuring Solr - slave
	Indexing and Replication
	Add new record
	Download the Configuration

	Solr Synonyms Example
	Install Apache Solr
	Configuring Apache Solr
	Indexing the Data
	Configure synonym
	With symbol ""
	Comma-separated list

	Schema configuration
	Download the Configuration

	Solr Faceted Search Example
	Installing Apache Solr
	Start Solr Server
	Facet Search
	Field-Value Faceting
	Range Faceting
	Interval Faceting

	Download the Configuration

	Solr Filter Query Example
	Install Apache Solr
	Configuring Apache Solr
	Creating a Core
	Modify the schema.xml file

	Indexing the Data
	Filter queries
	Single filter query
	Multiple filters

	Download the source code

