
Foundational ML and DL Algorithms

Skymind Wiki: Part 2

PAGE 1 (May 2019)

Part 2 of this book is a beginner’s guide to fundamental
machine learning and deep learning algorithms. The goal is to
give readers an intuition around the basic building blocks of
modern approaches to AI. Some concepts are a bit
mathematical, but it's not necessary to fully understand the
details to gleam its importance.

While many of these algorithms are no longer state-of-the-art,
they are still widely used in industry as they provide a solid
baseline in which to measure the performance of subsequent
approaches.

INTRODUCTION 1

MACHINE LEARNING 2

Linear Regression 2

Logistic Regression

Decision Tree

DEEP LEARNING AND NEURAL
NETWORKS

5

2

3

A Few Concrete Examples 6

Neural Network Elements

Key Concepts of Deep Neural Networks

Optimization Algorithms

7

7

11

FURTHER READING 14

Random Forest 4

Algorithms Possible Using ND4J 5

Example: Feedforward Networks 9

Multiple Linear Regression 10

Gradient Descent 11

Neural Networks & Artificial Intelligence 13

Activation Functions 12

Custom Layers, Activation Functions and
Loss Functions

12

Logistic Regression 12

Loss Functions in DeepLearning4j 13

Chris V. Nicholson

https://www.linkedin.com/in/chrisvnicholson/

PAGE 2 (May 2019)

MACHINE LEARNING

Linear regression is simple, which makes it a great place to
start thinking about algorithms more generally. Here it is:

ŷ = a * x + b

Read aloud, you’d say “y-hat equals a times x plus b.”

Testing one line after another against the data points of
the scatter plot, and automatically correcting it in order to
minimize the sum of differences between the line and the
points, could be thought of as machine learning in its
simplest form.

y-hat is the output, or guess made by the algorithm,
the dependent variable.
a is the coefficient. It’s also the slope of the line that
expresses the relationship between x and y-hat.
x is the input, the given or independent variable.
b is the intercept, where the line crosses the y axis.

Linear regression expresses a linear relationship between
the input x and the output y; that is, for every change in x,
y-hat will change by the same amount no matter how far
along the line you are. The x is transformed by the same a
and b at every point.

Linear regression with only one input variable is called
Simple Linear Regression. With more than one input
variable, it is called Multiple Linear Regression. An example
of Simple Linear Regression would be attempting to
predict a house price based on the square footage of the
house and nothing more.

house price estimate = a * square footage + b

Multiple Linear Regression would take other variables into
account, such as the distance between the house and a
good public school, the age of the house, etc.

The reason why we’re dealing with y-hat, an estimate about
the real value of y, is because linear regression is a formula
used to estimate real values, and error is inevitable. Linear
regression is often used to “fit” a scatter plot of given x-y
pairs.

Logistic Regression

Let’s analyze the name first. Logistic regression is not
really regression, not in the sense of linear regression,
which predicts continuous numerical values.

Logistic regression does not do that. It is actually a
binomial classifier that acts like a light switch. A light
switch essentially has two states, on and off. Logistic
regression takes input data and classifies it
as category or not_category, on or off expressed as 1 or 0,
based on the strength of the input’s signal.

Linear Regression

Below you’ll find descriptions of basic and powerful
machine-learning algorithms.

A good fit minimizes the error between y-hat and the
actual y; that is, choosing the right a and b will minimize
the sum of the differences between each y and its
respective y-hat.

That scatter plot of data points may look like a baguette –
long in one direction and short in another – in which case
linear regression may achieve a fit. (If the data points look
like a meandering river, a straight line is probably not the
right function to use to make predictions.)

https://venngage.com/

PAGE 3 (May 2019)

Decision Tree

Decision, or decide, stems from the Latin decidere, which
itself is the combination of “de” (off) and “caedere” (to cut).
So decision is about the cutting off of possibilities.

Decision trees can be used to classify data, and they cut
off possibilities of what a given instance of data might be
by examining a data point’s features. Is it bigger than a
bread box? Well, then it’s not a marble. Is it alive? Well,
then it’s not a bicycle. Think of a decision as a game of 20
questions that an algorithm is asking about the data point
under examination.

A decision tree is a series of nodes, a directional graph that
starts at the base with a single node and extends to the
many leaf nodes that represent the categories that the tree
can classify. Another way to think of a decision tree is as a
flow chart, where the flow starts at the root node and ends
with a decision made at the leaves. It is a decision-support
tool. It uses a tree-like graph to show the predictions that
result from a series of feature-based splits.

Root Node: A root node is at the beginning of a tree.
It represents entire population being analyzed. From
the root node, the population is divided according
to various features, and those sub-groups are split
in turn at each decision node under the root node.

Splitting: It is a process of dividing a node into two
or more sub-nodes.

Decision Node: When a sub-node splits into further
sub-nodes, it’s a decision node.

Leaf Node or Terminal Node: Nodes that do not
split are called leaf or terminal nodes.

Pruning: Removing the sub-nodes of a parent node
is called pruning. A tree is grown through splitting
and shrunk through pruning.

Branch or Sub-Tree: A sub-section of decision tree
is called branch or a sub-tree, just as a portion of a
graph is called a sub-graph.

Parent Node and Child Node: These are relative
terms. Any node that falls under another node is a
child node or sub-node, and any node which
precedes those child nodes is called a parent node.

Logistic regression takes input data and squishes it, so
that no matter what the range of the input is, it will be
compressed into the space between 1 and 0. Notice, in the
image below, no matter how large the input x becomes, the
output y cannot exceed 1, which it asymptotically
approaches, and no matter low x is, y cannot fall below 0.
That’s how logistic regression compresses input data into
a range between 0 and 1, through this s-shaped, sigmoidal
transform.

Here are some useful terms for describing a decision tree:

PAGE 4 (May 2019)

Decision trees are a popular algorithm for several reasons:

Explanatory Power: The output of decision trees is
interpretable. It can be understood by people
without analytical or mathematical backgrounds. It
does not require any statistical knowledge to
interpret them.

Exploratory data analysis: Decision trees can enable
analysts to identify significant variables and
important relations between two or more variables,
helping to surface the signal contained by many
input variables.

Minimal data cleaning: Because decision trees are
resilient to outliers and missing values, they require
less data cleaning than some other algorithms.

Any data type: Decision trees can make
classifications based on both numerical and
categorical variables.

Non-parametric: A decision tree is a non-parametric
algorithm, as opposed to neural networks, which
process input data transformed into a tensor, via
tensor multiplication using large number of
coefficients, known as parameters.

Disadvantages

Overfitting: Over fitting is a common flaw of
decision trees. Setting constraints on model
parameters and making the model simpler through
pruning are two ways to regularize a decision tree.

Predicting continuous variables: While decision
trees can ingest continuous numerical input, they
are not a practical way to predict such values, since
decision-tree predictions must be separated into
discrete categories, which results in a loss of
information when applying the model to continuous
values.

Heavy feature engineering: The flip side of a
decision tree’s explanatory power is that it requires
heavy feature engineering. When dealing with
unstructured data or data with latent factors, this
makes decision trees sub-optimal. Neural networks
are clearly superior in this regard.

Random Forest

Random forests are made of many decision trees. They are
ensembles of decision trees, each decision tree created by
using a subset of the attributes used to classify a given
population (they are sub-trees, see above). Those decision
trees vote on how to classify a given instance of input data,
and the random forest bootstraps those votes to choose
the best prediction. This is done to prevent overfitting, a
common flaw of decision trees.

A random forest is a supervised classification algorithm. It
creates a forest (many decision trees) and orders their
nodes and splits randomly. The more trees in the forest,
the better the results it can produce.

If you input a training dataset with targets and features
into the decision tree, it will formulate some set of rules
that can be used to perform predictions.

PAGE 5 (May 2019)

Neural networks are a set of algorithms, modeled loosely
after the human brain, that are designed to recognize
patterns. They interpret sensory data through a kind of
machine perception, labeling or clustering raw input. The
patterns they recognize are numerical, contained in
vectors, into which all real-world data, be it images, sound,
text or time series, must be translated.

Neural networks help us cluster and classify. You can think
of them as a clustering and classification layer on top of
the data you store and manage. They help to group
unlabeled data according to similarities among the
example inputs, and they classify data when they have
a labeled dataset to train on. (Neural networks can also
extract features that are fed to other algorithms for
clustering and classification; so you can think of deep
neural networks as components of larger machine-learning
applications involving algorithms for reinforcement
learning, classification and regression.)

What kind of problems does deep learning solve, and more
importantly, can it solve yours? To know the answer, you
need to ask questions:

Example: You want to predict whether a visitor to your e-
commerce Web site will enjoy a mystery novel. First,
collect information about past books they’ve read and
liked. Metadata about the novels will be the input; e.g.
number of pages, author, publication date, which series it’s
part of if any. The decision tree contains rules that apply to
those features; for example, some readers like very long
books and some don’t. Inputting metadata about new
novels will result in a prediction regarding whether or not
the Web site visitor in question would like that novel.
Arranging the nodes and defining the rules relies on
information gain and Gini-index calculations. With random
forests, finding the root node and splitting the feature
nodes is done randomly.

DEEP LEARNING AND
NEURAL NETWORKS

What outcomes do I care about? Those outcomes
are labels that could be applied to data: for
example, spam or not_spam in an email
filter, good_guy or bad_guy in fraud
detection, angry_customer or happy_customer in
customer relationship management.

Do I have the data to accompany those labels?
That is, can I find labeled data, or can I create a
labeled dataset (with a service like AWS Mechanical
Turk or Figure Eight or Mighty.ai) where spam has
been labeled as spam, in order to teach an
algorithm the correlation between labels and
inputs?

https://skymind.ai/wiki/supervised-learning
https://skymind.ai/wiki/deep-reinforcement-learning
https://skymind.ai/wiki/logistic-regression

PAGE 6 (May 2019)

Search: Comparing documents, images or sounds
to surface similar items.

Anomaly detection: The flipside of detecting
similarities is detecting anomalies, or unusual
behavior. In many cases, unusual behavior
correlates highly with things you want to detect and
prevent, such as fraud.

A Few Concrete Examples

Deep learning maps inputs to outputs. It finds correlations.
It is known as a “universal approximator”, because it can
learn to approximate an unknown function f(x) = y between
any input x and any output y, assuming they are related at
all (by correlation or causation, for example). In the process
of learning, a neural network finds the right f, or the correct
manner of transforming x into y, whether that be f(x) = 3x +
12 or f(x) = 9x - 0.1. Here are a few examples of what deep
learning can do.

CLASSIFICATION

All classification tasks depend upon labeled datasets; that
is, humans must transfer their knowledge to the dataset in
order for a neural network to learn the correlation between
labels and data. This is known as supervised learning.

Detect faces, identify people in images, recognize
facial expressions (angry, joyful)

Identify objects in images (stop signs, pedestrians,
lane markers…)

Recognize gestures in video

Detect voices, identify speakers, transcribe speech
to text, recognize sentiment in voices

Classify text as spam (in emails), or fraudulent (in
insurance claims); recognize sentiment in text
(customer feedback)

Any labels that humans can generate, any outcomes that
you care about and which correlate to data, can be used to
train a neural network.

CLUSTERING
Clustering or grouping is the detection of similarities. Deep
learning does not require labels to detect similarities.
Learning without labels is called unsupervised learning.
Unlabeled data is the majority of data in the world. One law
of machine learning is: the more data an algorithm can
train on, the more accurate it will be. Therefore,
unsupervised learning has the potential to produce highly
accurate models.

PREDICTIVE ANALYTICS: REGRESSIONS

 With classification, deep learning is able to establish
correlations between, say, pixels in an image and the name
of a person. You might call this a static prediction. By the
same token, exposed to enough of the right data, deep
learning is able to establish correlations between present
events and future events. It can run regression between the
past and the future. The future event is like the label in a
sense. Deep learning doesn’t necessarily care about time,
or the fact that something hasn’t happened yet. Given a
time series, deep learning may read a string of number and
predict the number most likely to occur next.

Hardware breakdowns (data centers,
manufacturing, transport)

Health breakdowns (strokes, heart attacks based on
vital stats and data from wearables)

Customer churn (predicting the likelihood that a
customer will leave, based on web activity and
metadata)

Employee turnover (ditto, but for employees)

https://skymind.ai/wiki/supervised-learning
https://skymind.ai/wiki/unsupervised-learningm

PAGE 7 (May 2019)

The better we can predict, the better we can prevent and
pre-empt. As you can see, with neural networks, we’re
moving towards a world of fewer surprises. Not zero
surprises, just marginally fewer. We’re also moving toward a
world of smarter agents that combine neural networks with
other algorithms like reinforcement learning to attain goals.

With that brief overview of deep learning use cases, let’s
look at what neural nets are made of.

Deep learning is the name we use for “stacked neural
networks”; that is, networks composed of several layers.

The layers are made of nodes. A node is just a place where
computation happens, loosely patterned on a neuron in the
human brain, which fires when it encounters sufficient
stimuli. A node combines input from the data with a set of
coefficients, or weights, that either amplify or dampen that
input, thereby assigning significance to inputs with regard
to the task the algorithm is trying to learn; e.g. which input
is most helpful is classifying data without error? These
input-weight products are summed and then the sum is
passed through a node’s so-called activation function, to
determine whether and to what extent that signal should
progress further through the network to affect the ultimate
outcome, say, an act of classification. If the signals passes
through, the neuron has been “activated.”

Here’s a diagram of what one node might look like.

A node layer is a row of those neuron-like switches that
turn on or off as the input is fed through the net. Each
layer’s output is simultaneously the subsequent layer’s
input, starting from an initial input layer receiving your
data.

Deep-learning networks are distinguished from the more
commonplace single-hidden-layer neural networks by
their depth; that is, the number of node layers through
which data must pass in a multistep process of pattern
recognition.

Earlier versions of neural networks such as the
first perceptrons were shallow, composed of one input and
one output layer, and at most one hidden layer in between.
More than three layers (including input and output)
qualifies as “deep” learning. So deep is not just a buzzword
to make algorithms seem like they read Sartre and listen to
bands you haven’t heard of yet. It is a strictly defined term
that means more than one hidden layer.

In deep-learning networks, each layer of nodes trains on a
distinct set of features based on the previous layer’s
output. The further you advance into the neural net, the
more complex the features your nodes can recognize,
since they aggregate and recombine features from the
previous layer.

Neural Network Elements

Pairing the model’s adjustable weights with input features
is how we assign significance to those features with regard
to how the neural network classifies and clusters input.

Key Concepts of Deep Neural
Networks

https://skymind.ai/wiki/deep-reinforcement-learning
https://skymind.ai/wiki/use-cases
https://skymind.ai/wiki/multilayer-perceptron

PAGE 8 (May 2019)

This is known as feature hierarchy, and it is a hierarchy of
increasing complexity and abstraction. It makes deep-
learning networks capable of handling very large, high-
dimensional data sets with billions of parameters that pass
through nonlinear functions.

Above all, these neural nets are capable of discovering
latent structures within unlabeled, unstructured data,
which is the vast majority of data in the world. Another
word for unstructured data is raw media; i.e. pictures, texts,
video and audio recordings. Therefore, one of the problems
deep learning solves best is in processing and clustering
the world’s raw, unlabeled media, discerning similarities
and anomalies in data that no human has organized in a
relational database or ever put a name to.

For example, deep learning can take a million images, and
cluster them according to their similarities: cats in one
corner, ice breakers in another, and in a third all the photos
of your grandmother. This is the basis of so-called smart
photo albums.

Now apply that same idea to other data types: Deep
learning might cluster raw text such as emails or news
articles. Emails full of angry complaints might cluster in
one corner of the vector space, while satisfied customers,
or spambot messages, might cluster in others. This is the
basis of various messaging filters, and can be used in
customer-relationship management (CRM). The same
applies to voice messages.

With time series, data might cluster around
normal/healthy behavior and anomalous/dangerous
behavior. If the time series data is being generated by a
smart phone, it will provide insight into users’ health and
habits; if it is being generated by an autopart, it might be
used to prevent catastrophic breakdowns.

Deep-learning networks perform automatic feature
extraction without human intervention, unlike most
traditional machine-learning algorithms. Given that feature
extraction is a task that can take teams of data scientists
years to accomplish, deep learning is a way to circumvent
the chokepoint of limited experts. It augments the powers
of small data science teams, which by their nature do not
scale.

When training on unlabeled data, each node layer in a deep
network learns features automatically by repeatedly trying
to reconstruct the input from which it draws its samples,
attempting to minimize the difference between the
network’s guesses and the probability distribution of the
input data itself. Restricted Boltzmann machines, for
examples, create so-called reconstructions in this manner.

In the process, these neural networks learn to recognize
correlations between certain relevant features and optimal
results – they draw connections between feature signals
and what those features represent, whether it be a full
reconstruction, or with labeled data.

A deep-learning network trained on labeled data can then
be applied to unstructured data, giving it access to much
more input than machine-learning nets. This is a recipe for
higher performance: the more data a net can train on, the
more accurate it is likely to be. (Bad algorithms trained on
lots of data can outperform good algorithms trained on
very little.) Deep learning’s ability to process and learn
from huge quantities of unlabeled data give it a distinct
advantage over previous algorithms.

https://skymind.ai/wiki/glossary#nonlineartransformfunction

PAGE 9 (May 2019)

Deep-learning networks end in an output layer: a logistic, or
softmax, classifier that assigns a likelihood to a particular
outcome or label. We call that predictive, but it is predictive
in a broad sense. Given raw data in the form of an image, a
deep-learning network may decide, for example, that the
input data is 90 percent likely to represent a person.

This is because a neural network is born in ignorance. It
does not know which weights and biases will translate the
input best to make the correct guesses. It has to start out
with a guess, and then try to make better guesses
sequentially as it learns from its mistakes. (You can think
of a neural network as a miniature enactment of the
scientific method, testing hypotheses and trying again –
only it is the scientific method with a blindfold on. Or like a
child: they are born not knowing much, and through
exposure to life experience, they slowly learn to solve
problems in the world. For neural networks, data is the only
experience.)

Here is a simple explanation of what happens during
learning with a feedforward neural network, the simplest
architecture to explain.

Input enters the network. The coefficients, or weights, map
that input to a set of guesses the network makes at the
end.

input * weight = guess

Weighted input results in a guess about what that input is.
The neural then takes its guess and compares it to a
ground-truth about the data, effectively asking an expert
“Did I get this right?”

ground truth - guess = error

The difference between the network’s guess and the
ground truth is its error. The network measures that error,
and walks the error back over its model, adjusting weights
to the extent that they contributed to the error.

error * weight's contribution to error = adjustment

Example: Feedforward
Networks

Our goal in using a neural net is to arrive at the point of
least error as fast as possible. We are running a race, and
the race is around a track, so we pass the same points
repeatedly in a loop. The starting line for the race is the
state in which our weights are initialized, and the finish line
is the state of those parameters when they are capable of
producing sufficiently accurate classifications and
predictions.

The race itself involves many steps, and each of those
steps resembles the steps before and after. Just like a
runner, we will engage in a repetitive act over and over to
arrive at the finish. Each step for a neural network involves
a guess, an error measurement and a slight update in its
weights, an incremental adjustment to the coefficients, as
it slowly learns to pay attention to the most important
features.

A collection of weights, whether they are in their start or
end state, is also called a model, because it is an attempt
to model data’s relationship to ground-truth labels, to grasp
the data’s structure. Models normally start out bad and end
up less bad, changing over time as the neural network
updates its parameters.

https://skymind.ai/wiki/attention-mechanism-memory-network

PAGE 10 (May 2019)

The three pseudo-mathematical formulas above account
for the three key functions of neural networks: scoring
input, calculating loss and applying an update to the model
– to begin the three-step process over again. A neural
network is a corrective feedback loop, rewarding weights
that support its correct guesses, and punishing weights
that lead it to err.

Let’s linger on the first step above.

Now, that form of multiple linear regression is happening
at every node of a neural network. For each node of a
single layer, input from each node of the previous layer is
recombined with input from every other node. That is, the
inputs are mixed in different proportions, according to their
coefficients, which are different leading into each node of
the subsequent layer. In this way, a net tests which
combination of input is significant as it tries to reduce
error.

Once you sum your node inputs to arrive at Y_hat, it’s
passed through a non-linear function. Here’s why: If every
node merely performed multiple linear
regression, Y_hat would increase linearly and without limit
as the X’s increase, but that doesn’t suit our purposes.
What we are trying to build at each node is a switch (like a
neuron…) that turns on and off, depending on whether or
not it should let the signal of the input pass through to
affect the ultimate decisions of the network.

When you have a switch, you have a classification problem.
Does the input’s signal indicate the node should classify it
as enough, or not_enough, on or off? A binary decision can
be expressed by 1 and 0, and logistic regression is a non-
linear function that squashes input to translate it to a
space between 0 and 1.

The nonlinear transforms at each node are usually s-
shaped functions similar to logistic regression. They go by
the names of sigmoid (the Greek word for “S”), tanh, hard
tanh, etc., and they shaping the output of each node. The
output of all nodes, each squashed into an s-shaped space
between 0 and 1, is then passed as input to the next layer
in a feed forward neural network, and so on until the signal
reaches the final layer of the net, where decisions are
made.

Multiple Linear Regression

Despite their biologically inspired name, artificial neural
networks are nothing more than math and code, like any
other machine-learning algorithm. In fact, anyone who
understands linear regression, one of first methods you
learn in statistics, can understand how a neural net works.
In its simplest form, linear regression is expressed as

 Y_hat = bX + a

where Y_hat is the estimated output, X is the input, b is
the slope and a is the intercept of a line on the vertical axis
of a two-dimensional graph. (To make this more
concrete: X could be radiation exposure and Y could be the
cancer risk; X could be daily pushups and Y_hat could be
the total weight you can benchpress; X the amount of
fertilizer and Y_hat the size of the crop.) You can imagine
that every time you add a unit to X, the dependent
variable Y_hat increases proportionally, no matter how far
along you are on the X axis. That simple relation between
two variables moving up or down together is a starting
point.

The next step is to imagine multiple linear regression,
where you have many input variables producing an output
variable. It’s typically expressed like this:

 Y_hat = b_1*X_1 + b_2*X_2 + b_3*X_3 + a

(To extend the crop example above, you might add the
amount of sunlight and rainfall in a growing season to the
fertilizer variable, with all three affecting Y_hat.)

https://skymind.ai/wiki/neural-network#logistic

PAGE 11 (May 2019)

In a feedforward network, the relationship between the
net’s error and a single weight will look something like this:

Gradient Descent

The name for one commonly used optimization function
that adjusts weights according to the error they caused is
called “gradient descent.”

Gradient is another word for slope, and slope, in its typical
form on an x-y graph, represents how two variables relate
to each other: rise over run, the change in money over the
change in time, etc. In this particular case, the slope we
care about describes the relationship between the
network’s error and a single weight; i.e. that is, how does
the error vary as the weight is adjusted.

To put a finer point on it, which weight will produce the
least error? Which one correctly represents the signals
contained in the input data, and translates them to a
correct classification? Which one can hear “nose” in an
input image, and know that should be labeled as a face and
not a frying pan?

As a neural network learns, it slowly adjusts many weights
so that they can map signal to meaning correctly. The
relationship between network Error and each of
those weights is a derivative, dE/dw, that measures the
degree to which a slight change in a weight causes a slight
change in the error.

Each weight is just one factor in a deep network that
involves many transforms; the signal of the weight passes
through activations and sums over several layers, so we
use the chain rule of calculus to march back through the
networks activations and outputs and finally arrive at the
weight in question, and its relationship to overall error.

The chain rule in calculus states that

That is, given two variables, Error and weight, that are
mediated by a third variable, activation, through which the
weight is passed, you can calculate how a change
in weight affects a change in Error by first calculating how
a change in activation affects a change in Error, and how a
change in weight affects a change in activation.

The essence of learning in deep learning is nothing more
than that: adjusting a model’s weights in response to the
error it produces, until you can’t reduce the error any more.

Optimization Algorithms

Some examples of optimization algorithms include:

ADADELTA

ADAGRAD

ADAM

NESTEROVS

NONE

RMSPROP

SGD

CONJUGATE GRADIENT

HESSIAN FREE

LBFGS

LINE GRADIENT DESCENT

https://en.wikipedia.org/wiki/Chain_rule

PAGE 12 (May 2019)

Activation Functions

The activation function determines the output a node will
generate, based upon its input. In Deeplearning4j, the
activation function is set at the layer level and applies to all
neurons in that layer.

Some examples include:

Logistic Regression

On a deep neural network of many layers, the final layer
has a particular role. When dealing with labeled input, the
output layer classifies each example, applying the most
likely label. Each node on the output layer represents one
label, and that node turns on or off according to the
strength of the signal it receives from the previous layer’s
input and parameters.

Each output node produces two possible outcomes, the
binary output values 0 or 1, because an input variable
either deserves a label or it does not. After all, there is no
such thing as a little pregnant.

While neural networks working with labeled data produce
binary output, the input they receive is often continuous.
That is, the signals that the network receives as input will
span a range of values and include any number of metrics,
depending on the problem it seeks to solve.

For example, a recommendation engine has to make a
binary decision about whether to serve an ad or not. But
the input it bases its decision on could include how much a
customer has spent on Amazon in the last week, or how
often that customer visits the site.

So the output layer has to condense signals such as
$67.59 spent on diapers, and 15 visits to a website, into a
range between 0 and 1; i.e. a probability that a given input
should be labeled or not.

The mechanism we use to convert continuous signals into
binary output is called logistic regression. The name is
unfortunate, since logistic regression is used for
classification rather than regression in the linear sense that
most people are familiar with. It calculates the probability
that a set of inputs match the label.

CUBE

ELU

HARDSIGMOID

HARDTANH

IDENTITY

LEAKYRELU

RATIONALTANH

RELU

RRELU

SIGMOID

SOFTMAX

SOFTPLUS

SOFTSIGN

TANH

Custom Layers, Activation
Functions and Loss Functions

Deeplearning4j, one of the major AI frameworks Skymind
supports alongside Keras, includes custom layers,
activations and loss functions.

Let’s examine this little formula.

https://deeplearning4j.org/
https://en.wikipedia.org/wiki/Law_of_excluded_middle
https://skymind.ai/wiki/logistic-regression
https://deeplearning4j.org/

PAGE 13 (May 2019)

For continuous inputs to be expressed as probabilities,
they must output positive results, since there is no such
thing as a negative probability. That’s why you see input as
the exponent of e in the denominator – because exponents
force our results to be greater than zero. Now consider the
relationship of e’s exponent to the fraction 1/1. One, as we
know, is the ceiling of a probability, beyond which our
results can’t go without being absurd. (We’re 120% sure of
that.)

As the input x that triggers a label grows, the expression e
to the x shrinks toward zero, leaving us with the fraction
1/1, or 100%, which means we approach (without ever
quite reaching) absolute certainty that the label applies.
Input that correlates negatively with your output will have
its value flipped by the negative sign on e’s exponent, and
as that negative signal grows, the quantity e to the
x becomes larger, pushing the entire fraction ever closer to
zero.

Now imagine that, rather than having x as the exponent,
you have the sum of the products of all the weights and
their corresponding inputs – the total signal passing
through your net. That’s what you’re feeding into the
logistic regression layer at the output layer of a neural
network classifier.

With this layer, we can set a decision threshold above
which an example is labeled 1, and below which it is not.
You can set different thresholds as you prefer – a low
threshold will increase the number of false positives, and a
higher one will increase the number of false negatives –
depending on which side you would like to err.

MSE: Mean Squared Error: Linear Regression

EXPLL: Exponential log likelihood: Poisson
Regression

XENT: Cross Entropy: Binary Classification

MCXENT: Multiclass Cross Entropy

RMSE_XENT: RMSE Cross Entropy

SQUARED_LOSS: Squared Loss

NEGATIVELOGLIKELIHOOD: Negative Log
Likelihood

Loss Functions in
DeepLearning4j

DeepLearning4j supports the following loss functions.

In some circles, neural networks are thought of as “brute
force” AI, because they start with a blank slate and
hammer their way through to an accurate model. They are
effective, but to some eyes inefficient in their approach to
modeling, which can’t make assumptions about functional
dependencies between output and input.

That said, gradient descent is not recombining every
weight with every other to find the best match – its
method of pathfinding shrinks the relevant weight space,
and therefore the number of updates and required
computation, by many orders of magnitude. Moreover,
algorithms such as Hinton’s capsule networks require far
fewer instances of data to converge on an accurate model;
that is, present research has the potential to resolve the
brute force nature of deep learning.

Neural Networks & Artificial
Intelligence

PAGE 14 (May 2019)

Skymind offers AI infrastructure that enables corporate data scientists and IT

teams to rapidly prototype, deploy, maintain, and retrain machine learning

workflows that accelerate time to value. Skymind bridges the gap between data

science, DevOps and the big data stack.

FURTHER READING

A Recipe for Training Neural Networks, by Andrej
Karpathy

https://karpathy.github.io/2019/04/25/recipe/

