
Foundational ML and DL Algorithms

Skymind Wiki: Part 2

PAGE 1    (May 2019)

Part 2 of this book is a beginner’s guide to fundamental 
machine learning and deep learning algorithms. The goal is to 
give readers an intuition around the basic building blocks of 
modern approaches to AI. Some concepts are a bit 
mathematical, but it's not necessary to fully understand the 
details to gleam its importance.
 
While many of these algorithms are no longer state-of-the-art, 
they are still widely used in industry as they provide a solid 
baseline in which to measure the performance of subsequent 
approaches.
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MACHINE LEARNING

Linear regression is simple, which makes it a great place to 
start thinking about algorithms more generally. Here it is:
 
ŷ = a * x + b 
 
Read aloud, you’d say “y-hat equals a times x plus b.”

Testing one line after another against the data points of 
the scatter plot, and automatically correcting it in order to 
minimize the sum of differences between the line and the 
points, could be thought of as machine learning in its 
simplest form.

 

y-hat is the output, or guess made by the algorithm, 
the dependent variable.
a is the coefficient. It’s also the slope of the line that 
expresses the relationship between x and y-hat.
x is the input, the given or independent variable.
b is the intercept, where the line crosses the y axis.

Linear regression expresses a linear relationship between 
the input x and the output y; that is, for every change in x, 
y-hat will change by the same amount no matter how far 
along the line you are. The x is transformed by the same a 
and b at every point.
 
Linear regression with only one input variable is called 
Simple Linear Regression. With more than one input 
variable, it is called Multiple Linear Regression. An example 
of Simple Linear Regression would be attempting to 
predict a house price based on the square footage of the 
house and nothing more.
 
house price estimate = a * square footage + b 
 
Multiple Linear Regression would take other variables into 
account, such as the distance between the house and a 
good public school, the age of the house, etc.
 
The reason why we’re dealing with y-hat, an estimate about 
the real value of y, is because linear regression is a formula 
used to estimate real values, and error is inevitable. Linear 
regression is often used to “fit” a scatter plot of given x-y 
pairs. 

Logistic Regression

Let’s analyze the name first. Logistic regression is not 
really regression, not in the sense of linear regression, 
which predicts continuous numerical values.
 
Logistic regression does not do that. It is actually a 
binomial classifier that acts like a light switch. A light 
switch essentially has two states, on and off. Logistic 
regression takes input data and classifies it 
as category or not_category, on or off expressed as 1 or 0, 
based on the strength of the input’s signal.

Linear Regression

Below you’ll find descriptions of basic and powerful 
machine-learning algorithms.

A good fit minimizes the error between y-hat and the 
actual y; that is, choosing the right a and b will minimize 
the sum of the differences between each y and its 
respective y-hat.
 
That scatter plot of data points may look like a baguette – 
long in one direction and short in another – in which case 
linear regression may achieve a fit. (If the data points look 
like a meandering river, a straight line is probably not the 
right function to use to make predictions.)

https://venngage.com/
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Decision Tree

Decision, or decide, stems from the Latin decidere, which 
itself is the combination of “de” (off) and “caedere” (to cut). 
So decision is about the cutting off of possibilities. 
 
Decision trees can be used to classify data, and they cut 
off possibilities of what a given instance of data might be 
by examining a data point’s features. Is it bigger than a 
bread box? Well, then it’s not a marble. Is it alive? Well, 
then it’s not a bicycle. Think of a decision as a game of 20 
questions that an algorithm is asking about the data point 
under examination.
 
A decision tree is a series of nodes, a directional graph that 
starts at the base with a single node and extends to the 
many leaf nodes that represent the categories that the tree 
can classify. Another way to think of a decision tree is as a 
flow chart, where the flow starts at the root node and ends 
with a decision made at the leaves. It is a decision-support 
tool. It uses a tree-like graph to show the predictions that 
result from a series of feature-based splits.
 

 

Root Node: A root node is at the beginning of a tree. 
It represents entire population being analyzed. From 
the root node, the population is divided according 
to various features, and those sub-groups are split 
in turn at each decision node under the root node.

Splitting: It is a process of dividing a node into two 
or more sub-nodes.

Decision Node: When a sub-node splits into further 
sub-nodes, it’s a decision node.

Leaf Node or Terminal Node: Nodes that do not 
split are called leaf or terminal nodes.

Pruning: Removing the sub-nodes of a parent node 
is called pruning. A tree is grown through splitting 
and shrunk through pruning.

Branch or Sub-Tree: A sub-section of decision tree 
is called branch or a sub-tree, just as a portion of a 
graph is called a sub-graph.

Parent Node and Child Node: These are relative 
terms. Any node that falls under another node is a 
child node or sub-node, and any node which 
precedes those child nodes is called a parent node.

Logistic regression takes input data and squishes it, so 
that no matter what the range of the input is, it will be 
compressed into the space between 1 and 0. Notice, in the 
image below, no matter how large the input x becomes, the 
output y cannot exceed 1, which it asymptotically 
approaches, and no matter low x is, y cannot fall below 0. 
That’s how logistic regression compresses input data into 
a range between 0 and 1, through this s-shaped, sigmoidal 
transform.
 

Here are some useful terms for describing a decision tree:
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Decision trees are a popular algorithm for several reasons:

Explanatory Power: The output of decision trees is 
interpretable. It can be understood by people 
without analytical or mathematical backgrounds. It 
does not require any statistical knowledge to 
interpret them.

Exploratory data analysis: Decision trees can enable 
analysts to identify significant variables and 
important relations between two or more variables, 
helping to surface the signal contained by many 
input variables.

Minimal data cleaning: Because decision trees are 
resilient to outliers and missing values, they require 
less data cleaning than some other algorithms.

Any data type: Decision trees can make 
classifications based on both numerical and 
categorical variables.

Non-parametric: A decision tree is a non-parametric 
algorithm, as opposed to neural networks, which 
process input data transformed into a tensor, via 
tensor multiplication using large number of 
coefficients, known as parameters.

Disadvantages

Overfitting: Over fitting is a common flaw of 
decision trees. Setting constraints on model 
parameters and making the model simpler through 
pruning are two ways to regularize a decision tree.

Predicting continuous variables: While decision 
trees can ingest continuous numerical input, they 
are not a practical way to predict such values, since 
decision-tree predictions must be separated into 
discrete categories, which results in a loss of 
information when applying the model to continuous 
values.

Heavy feature engineering: The flip side of a 
decision tree’s explanatory power is that it requires 
heavy feature engineering. When dealing with 
unstructured data or data with latent factors, this 
makes decision trees sub-optimal. Neural networks 
are clearly superior in this regard.

Random Forest

Random forests are made of many decision trees. They are 
ensembles of decision trees, each decision tree created by 
using a subset of the attributes used to classify a given 
population (they are sub-trees, see above). Those decision 
trees vote on how to classify a given instance of input data, 
and the random forest bootstraps those votes to choose 
the best prediction. This is done to prevent overfitting, a 
common flaw of decision trees.
 
A random forest is a supervised classification algorithm. It 
creates a forest (many decision trees) and orders their 
nodes and splits randomly. The more trees in the forest, 
the better the results it can produce.
 
If you input a training dataset with targets and features 
into the decision tree, it will formulate some set of rules 
that can be used to perform predictions.
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Neural networks are a set of algorithms, modeled loosely 
after the human brain, that are designed to recognize 
patterns. They interpret sensory data through a kind of 
machine perception, labeling or clustering raw input. The 
patterns they recognize are numerical, contained in 
vectors, into which all real-world data, be it images, sound, 
text or time series, must be translated.
 
Neural networks help us cluster and classify. You can think 
of them as a clustering and classification layer on top of 
the data you store and manage. They help to group 
unlabeled data according to similarities among the 
example inputs, and they classify data when they have 
a labeled dataset to train on. (Neural networks can also 
extract features that are fed to other algorithms for 
clustering and classification; so you can think of deep 
neural networks as components of larger machine-learning 
applications involving algorithms for reinforcement 
learning, classification and regression.)
 
What kind of problems does deep learning solve, and more 
importantly, can it solve yours? To know the answer, you 
need to ask questions:

Example: You want to predict whether a visitor to your e-
commerce Web site will enjoy a mystery novel. First, 
collect information about past books they’ve read and 
liked. Metadata about the novels will be the input; e.g. 
number of pages, author, publication date, which series it’s 
part of if any. The decision tree contains rules that apply to 
those features; for example, some readers like very long 
books and some don’t. Inputting metadata about new 
novels will result in a prediction regarding whether or not 
the Web site visitor in question would like that novel. 
Arranging the nodes and defining the rules relies on 
information gain and Gini-index calculations. With random 
forests, finding the root node and splitting the feature 
nodes is done randomly.

DEEP LEARNING AND 
NEURAL NETWORKS

What outcomes do I care about? Those outcomes 
are labels that could be applied to data: for 
example, spam or not_spam in an email 
filter, good_guy or bad_guy in fraud 
detection, angry_customer or happy_customer in 
customer relationship management.

Do I have the data to accompany those labels? 
That is, can I find labeled data, or can I create a 
labeled dataset (with a service like AWS Mechanical 
Turk or Figure Eight or Mighty.ai) where spam has 
been labeled as spam, in order to teach an 
algorithm the correlation between labels and 
inputs?

https://skymind.ai/wiki/supervised-learning
https://skymind.ai/wiki/deep-reinforcement-learning
https://skymind.ai/wiki/logistic-regression
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Search: Comparing documents, images or sounds 
to surface similar items.

Anomaly detection: The flipside of detecting 
similarities is detecting anomalies, or unusual 
behavior. In many cases, unusual behavior 
correlates highly with things you want to detect and 
prevent, such as fraud.

A Few Concrete Examples

Deep learning maps inputs to outputs. It finds correlations. 
It is known as a “universal approximator”, because it can 
learn to approximate an unknown function f(x) = y between 
any input x and any output y, assuming they are related at 
all (by correlation or causation, for example). In the process 
of learning, a neural network finds the right f, or the correct 
manner of transforming x into y, whether that be f(x) = 3x + 
12 or f(x) = 9x - 0.1. Here are a few examples of what deep 
learning can do.

CLASSIFICATION

All classification tasks depend upon labeled datasets; that 
is, humans must transfer their knowledge to the dataset in 
order for a neural network to learn the correlation between 
labels and data. This is known as supervised learning.

Detect faces, identify people in images, recognize 
facial expressions (angry, joyful)

Identify objects in images (stop signs, pedestrians, 
lane markers…)

Recognize gestures in video

Detect voices, identify speakers, transcribe speech 
to text, recognize sentiment in voices

Classify text as spam (in emails), or fraudulent (in 
insurance claims); recognize sentiment in text 
(customer feedback)

Any labels that humans can generate, any outcomes that 
you care about and which correlate to data, can be used to 
train a neural network.

CLUSTERING
Clustering or grouping is the detection of similarities. Deep 
learning does not require labels to detect similarities. 
Learning without labels is called unsupervised learning. 
Unlabeled data is the majority of data in the world. One law 
of machine learning is: the more data an algorithm can 
train on, the more accurate it will be. Therefore, 
unsupervised learning has the potential to produce highly 
accurate models.

PREDICTIVE ANALYTICS: REGRESSIONS

 With classification, deep learning is able to establish 
correlations between, say, pixels in an image and the name 
of a person. You might call this a static prediction. By the 
same token, exposed to enough of the right data, deep 
learning is able to establish correlations between present 
events and future events. It can run regression between the 
past and the future. The future event is like the label in a 
sense. Deep learning doesn’t necessarily care about time, 
or the fact that something hasn’t happened yet. Given a 
time series, deep learning may read a string of number and 
predict the number most likely to occur next.

Hardware breakdowns (data centers, 
manufacturing, transport)

Health breakdowns (strokes, heart attacks based on 
vital stats and data from wearables)

Customer churn (predicting the likelihood that a 
customer will leave, based on web activity and 
metadata)

Employee turnover (ditto, but for employees)

https://skymind.ai/wiki/supervised-learning
https://skymind.ai/wiki/unsupervised-learningm
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The better we can predict, the better we can prevent and 
pre-empt. As you can see, with neural networks, we’re 
moving towards a world of fewer surprises. Not zero 
surprises, just marginally fewer. We’re also moving toward a 
world of smarter agents that combine neural networks with 
other algorithms like reinforcement learning to attain goals.
 
With that brief overview of deep learning use cases, let’s 
look at what neural nets are made of.

Deep learning is the name we use for “stacked neural 
networks”; that is, networks composed of several layers.
 
The layers are made of nodes. A node is just a place where 
computation happens, loosely patterned on a neuron in the 
human brain, which fires when it encounters sufficient 
stimuli. A node combines input from the data with a set of 
coefficients, or weights, that either amplify or dampen that 
input, thereby assigning significance to inputs with regard 
to the task the algorithm is trying to learn; e.g. which input 
is most helpful is classifying data without error? These 
input-weight products are summed and then the sum is 
passed through a node’s so-called activation function, to 
determine whether and to what extent that signal should 
progress further through the network to affect the ultimate 
outcome, say, an act of classification. If the signals passes 
through, the neuron has been “activated.”
 
Here’s a diagram of what one node might look like.

A node layer is a row of those neuron-like switches that 
turn on or off as the input is fed through the net. Each 
layer’s output is simultaneously the subsequent layer’s 
input, starting from an initial input layer receiving your 
data.

Deep-learning networks are distinguished from the more 
commonplace single-hidden-layer neural networks by 
their depth; that is, the number of node layers through 
which data must pass in a multistep process of pattern 
recognition.
 
Earlier versions of neural networks such as the 
first perceptrons were shallow, composed of one input and 
one output layer, and at most one hidden layer in between. 
More than three layers (including input and output) 
qualifies as “deep” learning. So deep is not just a buzzword 
to make algorithms seem like they read Sartre and listen to 
bands you haven’t heard of yet. It is a strictly defined term 
that means more than one hidden layer.
 
In deep-learning networks, each layer of nodes trains on a 
distinct set of features based on the previous layer’s 
output. The further you advance into the neural net, the 
more complex the features your nodes can recognize, 
since they aggregate and recombine features from the 
previous layer.

Neural Network Elements

Pairing the model’s adjustable weights with input features 
is how we assign significance to those features with regard 
to how the neural network classifies and clusters input.

Key Concepts of Deep Neural 
Networks

https://skymind.ai/wiki/deep-reinforcement-learning
https://skymind.ai/wiki/use-cases
https://skymind.ai/wiki/multilayer-perceptron
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This is known as feature hierarchy, and it is a hierarchy of 
increasing complexity and abstraction. It makes deep-
learning networks capable of handling very large, high-
dimensional data sets with billions of parameters that pass 
through nonlinear functions.
 
Above all, these neural nets are capable of discovering 
latent structures within unlabeled, unstructured data, 
which is the vast majority of data in the world. Another 
word for unstructured data is raw media; i.e. pictures, texts, 
video and audio recordings. Therefore, one of the problems 
deep learning solves best is in processing and clustering 
the world’s raw, unlabeled media, discerning similarities 
and anomalies in data that no human has organized in a 
relational database or ever put a name to.
 
For example, deep learning can take a million images, and 
cluster them according to their similarities: cats in one 
corner, ice breakers in another, and in a third all the photos 
of your grandmother. This is the basis of so-called smart 
photo albums.
 
Now apply that same idea to other data types: Deep 
learning might cluster raw text such as emails or news 
articles. Emails full of angry complaints might cluster in 
one corner of the vector space, while satisfied customers, 
or spambot messages, might cluster in others. This is the 
basis of various messaging filters, and can be used in 
customer-relationship management (CRM). The same 
applies to voice messages.

With time series, data might cluster around 
normal/healthy behavior and anomalous/dangerous 
behavior. If the time series data is being generated by a 
smart phone, it will provide insight into users’ health and 
habits; if it is being generated by an autopart, it might be 
used to prevent catastrophic breakdowns.
 
Deep-learning networks perform automatic feature 
extraction without human intervention, unlike most 
traditional machine-learning algorithms. Given that feature 
extraction is a task that can take teams of data scientists 
years to accomplish, deep learning is a way to circumvent 
the chokepoint of limited experts. It augments the powers 
of small data science teams, which by their nature do not 
scale.
 
When training on unlabeled data, each node layer in a deep 
network learns features automatically by repeatedly trying 
to reconstruct the input from which it draws its samples, 
attempting to minimize the difference between the 
network’s guesses and the probability distribution of the 
input data itself. Restricted Boltzmann machines, for 
examples, create so-called reconstructions in this manner.
 
In the process, these neural networks learn to recognize 
correlations between certain relevant features and optimal 
results – they draw connections between feature signals 
and what those features represent, whether it be a full 
reconstruction, or with labeled data.
 
A deep-learning network trained on labeled data can then 
be applied to unstructured data, giving it access to much 
more input than machine-learning nets. This is a recipe for 
higher performance: the more data a net can train on, the 
more accurate it is likely to be. (Bad algorithms trained on 
lots of data can outperform good algorithms trained on 
very little.) Deep learning’s ability to process and learn 
from huge quantities of unlabeled data give it a distinct 
advantage over previous algorithms.

https://skymind.ai/wiki/glossary#nonlineartransformfunction
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Deep-learning networks end in an output layer: a logistic, or 
softmax, classifier that assigns a likelihood to a particular 
outcome or label. We call that predictive, but it is predictive 
in a broad sense. Given raw data in the form of an image, a 
deep-learning network may decide, for example, that the 
input data is 90 percent likely to represent a person.

This is because a neural network is born in ignorance. It 
does not know which weights and biases will translate the 
input best to make the correct guesses. It has to start out 
with a guess, and then try to make better guesses 
sequentially as it learns from its mistakes. (You can think 
of a neural network as a miniature enactment of the 
scientific method, testing hypotheses and trying again – 
only it is the scientific method with a blindfold on. Or like a 
child: they are born not knowing much, and through 
exposure to life experience, they slowly learn to solve 
problems in the world. For neural networks, data is the only 
experience.)
 
Here is a simple explanation of what happens during 
learning with a feedforward neural network, the simplest 
architecture to explain.
 
Input enters the network. The coefficients, or weights, map 
that input to a set of guesses the network makes at the 
end.
 
input * weight = guess 
 
Weighted input results in a guess about what that input is. 
The neural then takes its guess and compares it to a 
ground-truth about the data, effectively asking an expert 
“Did I get this right?”
 
ground truth - guess = error 
 
The difference between the network’s guess and the 
ground truth is its error. The network measures that error, 
and walks the error back over its model, adjusting weights 
to the extent that they contributed to the error.
 
error * weight's contribution to error = adjustment 
 
 

Example: Feedforward 
Networks

Our goal in using a neural net is to arrive at the point of 
least error as fast as possible. We are running a race, and 
the race is around a track, so we pass the same points 
repeatedly in a loop. The starting line for the race is the 
state in which our weights are initialized, and the finish line 
is the state of those parameters when they are capable of 
producing sufficiently accurate classifications and 
predictions.
 
The race itself involves many steps, and each of those 
steps resembles the steps before and after. Just like a 
runner, we will engage in a repetitive act over and over to 
arrive at the finish. Each step for a neural network involves 
a guess, an error measurement and a slight update in its 
weights, an incremental adjustment to the coefficients, as 
it slowly learns to pay attention to the most important 
features.
 
A collection of weights, whether they are in their start or 
end state, is also called a model, because it is an attempt 
to model data’s relationship to ground-truth labels, to grasp 
the data’s structure. Models normally start out bad and end 
up less bad, changing over time as the neural network 
updates its parameters.

https://skymind.ai/wiki/attention-mechanism-memory-network
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The three pseudo-mathematical formulas above account 
for the three key functions of neural networks: scoring 
input, calculating loss and applying an update to the model 
– to begin the three-step process over again. A neural 
network is a corrective feedback loop, rewarding weights 
that support its correct guesses, and punishing weights 
that lead it to err.
 
Let’s linger on the first step above.

Now, that form of multiple linear regression is happening 
at every node of a neural network. For each node of a 
single layer, input from each node of the previous layer is 
recombined with input from every other node. That is, the 
inputs are mixed in different proportions, according to their 
coefficients, which are different leading into each node of 
the subsequent layer. In this way, a net tests which 
combination of input is significant as it tries to reduce 
error.
 
Once you sum your node inputs to arrive at Y_hat, it’s 
passed through a non-linear function. Here’s why: If every 
node merely performed multiple linear 
regression, Y_hat would increase linearly and without limit 
as the X’s increase, but that doesn’t suit our purposes.
What we are trying to build at each node is a switch (like a 
neuron…) that turns on and off, depending on whether or 
not it should let the signal of the input pass through to 
affect the ultimate decisions of the network.
 
When you have a switch, you have a classification problem. 
Does the input’s signal indicate the node should classify it 
as enough, or not_enough, on or off? A binary decision can 
be expressed by 1 and 0, and logistic regression is a non-
linear function that squashes input to translate it to a 
space between 0 and 1.
 
The nonlinear transforms at each node are usually s-
shaped functions similar to logistic regression. They go by 
the names of sigmoid (the Greek word for “S”), tanh, hard 
tanh, etc., and they shaping the output of each node. The 
output of all nodes, each squashed into an s-shaped space 
between 0 and 1, is then passed as input to the next layer 
in a feed forward neural network, and so on until the signal 
reaches the final layer of the net, where decisions are 
made.

Multiple Linear Regression

Despite their biologically inspired name, artificial neural 
networks are nothing more than math and code, like any 
other machine-learning algorithm. In fact, anyone who 
understands linear regression, one of first methods you 
learn in statistics, can understand how a neural net works. 
In its simplest form, linear regression is expressed as
 
    Y_hat = bX + a 
 
where Y_hat is the estimated output, X is the input, b is 
the slope and a is the intercept of a line on the vertical axis 
of a two-dimensional graph. (To make this more 
concrete: X could be radiation exposure and Y could be the 
cancer risk; X could be daily pushups and Y_hat could be 
the total weight you can benchpress; X the amount of 
fertilizer and Y_hat the size of the crop.) You can imagine 
that every time you add a unit to X, the dependent 
variable Y_hat increases proportionally, no matter how far 
along you are on the X axis. That simple relation between 
two variables moving up or down together is a starting 
point.
 
The next step is to imagine multiple linear regression, 
where you have many input variables producing an output 
variable. It’s typically expressed like this:
 
    Y_hat = b_1*X_1 + b_2*X_2 + b_3*X_3 + a
 
(To extend the crop example above, you might add the 
amount of sunlight and rainfall in a growing season to the 
fertilizer variable, with all three affecting Y_hat.)

https://skymind.ai/wiki/neural-network#logistic
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In a feedforward network, the relationship between the 
net’s error and a single weight will look something like this:

Gradient Descent

The name for one commonly used optimization function 
that adjusts weights according to the error they caused is 
called “gradient descent.”
 
Gradient is another word for slope, and slope, in its typical 
form on an x-y graph, represents how two variables relate 
to each other: rise over run, the change in money over the 
change in time, etc. In this particular case, the slope we 
care about describes the relationship between the 
network’s error and a single weight; i.e. that is, how does 
the error vary as the weight is adjusted.
 
To put a finer point on it, which weight will produce the 
least error? Which one correctly represents the signals 
contained in the input data, and translates them to a 
correct classification? Which one can hear “nose” in an 
input image, and know that should be labeled as a face and 
not a frying pan?
 
As a neural network learns, it slowly adjusts many weights 
so that they can map signal to meaning correctly. The 
relationship between network Error and each of 
those weights is a derivative, dE/dw, that measures the 
degree to which a slight change in a weight causes a slight 
change in the error.
 
Each weight is just one factor in a deep network that 
involves many transforms; the signal of the weight passes 
through activations and sums over several layers, so we 
use the chain rule of calculus to march back through the 
networks activations and outputs and finally arrive at the 
weight in question, and its relationship to overall error.
 
The chain rule in calculus states that

That is, given two variables, Error and weight, that are 
mediated by a third variable, activation, through which the 
weight is passed, you can calculate how a change 
in weight affects a change in Error by first calculating how 
a change in activation affects a change in Error, and how a 
change in weight affects a change in activation.
 
The essence of learning in deep learning is nothing more 
than that: adjusting a model’s weights in response to the 
error it produces, until you can’t reduce the error any more.

Optimization Algorithms

Some examples of optimization algorithms include:

ADADELTA

ADAGRAD

ADAM

NESTEROVS

NONE

RMSPROP

SGD

CONJUGATE GRADIENT

HESSIAN FREE

LBFGS

LINE GRADIENT DESCENT

 

https://en.wikipedia.org/wiki/Chain_rule
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Activation Functions

The activation function determines the output a node will 
generate, based upon its input. In Deeplearning4j, the 
activation function is set at the layer level and applies to all 
neurons in that layer.
 
Some examples include:

Logistic Regression

On a deep neural network of many layers, the final layer 
has a particular role. When dealing with labeled input, the 
output layer classifies each example, applying the most 
likely label. Each node on the output layer represents one 
label, and that node turns on or off according to the 
strength of the signal it receives from the previous layer’s 
input and parameters.
 
Each output node produces two possible outcomes, the 
binary output values 0 or 1, because an input variable 
either deserves a label or it does not. After all, there is no 
such thing as a little pregnant.
 
While neural networks working with labeled data produce 
binary output, the input they receive is often continuous. 
That is, the signals that the network receives as input will 
span a range of values and include any number of metrics, 
depending on the problem it seeks to solve.
 
For example, a recommendation engine has to make a 
binary decision about whether to serve an ad or not. But 
the input it bases its decision on could include how much a 
customer has spent on Amazon in the last week, or how 
often that customer visits the site.
 
So the output layer has to condense signals such as 
$67.59 spent on diapers, and 15 visits to a website, into a 
range between 0 and 1; i.e. a probability that a given input 
should be labeled or not.
 
The mechanism we use to convert continuous signals into 
binary output is called logistic regression. The name is 
unfortunate, since logistic regression is used for 
classification rather than regression in the linear sense that 
most people are familiar with. It calculates the probability 
that a set of inputs match the label.
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Custom Layers, Activation 
Functions and Loss Functions

Deeplearning4j, one of the major AI frameworks Skymind 
supports alongside Keras, includes custom layers, 
activations and loss functions.

Let’s examine this little formula.

https://deeplearning4j.org/
https://en.wikipedia.org/wiki/Law_of_excluded_middle
https://skymind.ai/wiki/logistic-regression
https://deeplearning4j.org/
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For continuous inputs to be expressed as probabilities, 
they must output positive results, since there is no such 
thing as a negative probability. That’s why you see input as 
the exponent of e in the denominator – because exponents 
force our results to be greater than zero. Now consider the 
relationship of e’s exponent to the fraction 1/1. One, as we 
know, is the ceiling of a probability, beyond which our 
results can’t go without being absurd. (We’re 120% sure of 
that.)
 
As the input x that triggers a label grows, the expression e 
to the x shrinks toward zero, leaving us with the fraction 
1/1, or 100%, which means we approach (without ever 
quite reaching) absolute certainty that the label applies. 
Input that correlates negatively with your output will have 
its value flipped by the negative sign on e’s exponent, and 
as that negative signal grows, the quantity e to the 
x becomes larger, pushing the entire fraction ever closer to 
zero.
 
Now imagine that, rather than having x as the exponent, 
you have the sum of the products of all the weights and 
their corresponding inputs – the total signal passing 
through your net. That’s what you’re feeding into the 
logistic regression layer at the output layer of a neural 
network classifier.
 
With this layer, we can set a decision threshold above 
which an example is labeled 1, and below which it is not. 
You can set different thresholds as you prefer – a low 
threshold will increase the number of false positives, and a 
higher one will increase the number of false negatives – 
depending on which side you would like to err.

MSE: Mean Squared Error: Linear Regression

EXPLL: Exponential log likelihood: Poisson 
Regression

XENT: Cross Entropy: Binary Classification

MCXENT: Multiclass Cross Entropy

RMSE_XENT: RMSE Cross Entropy

SQUARED_LOSS: Squared Loss

NEGATIVELOGLIKELIHOOD: Negative Log 
Likelihood

Loss Functions in 
DeepLearning4j

DeepLearning4j supports the following loss functions.

In some circles, neural networks are thought of as “brute 
force” AI, because they start with a blank slate and 
hammer their way through to an accurate model. They are 
effective, but to some eyes inefficient in their approach to 
modeling, which can’t make assumptions about functional 
dependencies between output and input.
 
That said, gradient descent is not recombining every 
weight with every other to find the best match – its 
method of pathfinding shrinks the relevant weight space, 
and therefore the number of updates and required 
computation, by many orders of magnitude. Moreover, 
algorithms such as Hinton’s capsule networks require far 
fewer instances of data to converge on an accurate model; 
that is, present research has the potential to resolve the 
brute force nature of deep learning.

Neural Networks & Artificial 
Intelligence
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Skymind offers AI infrastructure that enables corporate data scientists and IT 

teams to rapidly prototype, deploy, maintain, and retrain machine learning 

workflows that accelerate time to value. Skymind bridges the gap between data 

science, DevOps and the big data stack.

FURTHER READING

A Recipe for Training Neural Networks, by Andrej 
Karpathy

https://karpathy.github.io/2019/04/25/recipe/

