
AMQP Essentials
BY PAOLO PATIERNO

» What Is AMQP?

» AMQP Architecture

» AMQP Communications

» Flow Control

» Quality of Service... and much more!C
O

N
T

E
N

T
S

JA
V

A
 E

N
T

E
R

P
R

IS
E

 E
D

IT
IO

N
 7

WH AT IS A MQP?

AMQP (Advanced Message Queuing Protocol) is a binary

transfer protocol that was made for enterprise applications

and server-to-server communication (e.g., for financial

businesses), but today it can be very useful in the Internet

of Things world, thanks to the following primary features.

AMQP is binary and avoids a lot of the useless data sent

on the wire when using a text-based protocol like HTTP;

because of this, it can be considered compact, too.

Thanks to its multiplexed nature, only one connection

(over a reliable stream transport protocol) is needed to

allow separated data flows between the two peers; and of

course it’s symmetric and provides both a client-server

communication style and peer-to-peer exchange. Finally,

it’s secure and reliable, providing three different levels of

QoS (Quality of Service).

The last ratified version of AMQP (1.0) is the only one

standardized by OASIS (since 2012/10) and ISO/IEC (since

2014/05), and it’s totally broker-model agnostic, as it

doesn’t define any requirements on broker internals (this is

the main difference with previous “not standard” versions

like 0.9.1); the protocol is focused on how the data is

transferred on the wire.

A MQP A RCHITECTURE

AMQP has a layered model defined in the following way

from a bottom-up perspective:

• TRANSPORT/FRAMING: Defines the connection behavior
and the security layer between peers on top of an
underlying network transport protocol (TCP, for
example). It also adds the framing protocol and how the
exchanged data is formatted and encoded.

• MESSAGING: Provides messaging capabilities at application
level on top of the previous layer defining the message

entity as built of one or more frames.

G
et

 M
or

e
R

ef
ca

rd
z!

 V
is

it
 D

Zo
ne

.c
om

/R
ef

ca
rd

z
225

A
M

Q
P

 E
S

SE
N

TI
A

LS

Regarding the network transport layer, AMQP isn’t strongly

tied to TCP, and as such can be used with any reliable stream

transport protocol; so, for example, SCTP (Stream Control

Transmission Protocol) and pipes are suitable.

TR ANSPORT/FR AMING
The main entities that build peers in an AMQP network are:

• NODES: Named entities responsible for storing and/or
delivering messages. In the messaging space, a node
could be, for example, a producer/consumer or a queue.
A node is addressable and can be organized in a flat,
hierarchical, or graphical way.

• CONTAINER: Generally speaking, a container is an
application. Previously defined nodes live in a
container that could be a client with its producers and/
or consumers, or a broker with its storage entities (like
queues for example)

So, at the transport level, how do containers and related

nodes communicate with each other and exchange

messages? First of all, a TCP connection is established

between the containers with or without a security layer

using SSL/TLS protocol. After that, an AMQP connection is

created on top of the underlying network connection thanks

to the exchange of some connection preamble packets with

protocol version information; the same transport-level

security (like, for example, SSL/TLS) can be negotiated

in line using SASL (Simple Authentication and Security

Layer) protocol. Such a connection provides a full-duplex

communication with an ordered sequence of frames whose

maximum size is negotiated to provide a first level of flow

control. The same connection is divided in multiplexed and

unidirectional channels, and all the frames flow through

them with an assigned channel identifier.FIGURE 1: Layered model

FIGURE 2: Nodes and Containers

© DZONE, INC. DZONE.COM

http://www.refcardz.com
https://DZone.com/Refcardz

© DZONE, INC. | DZONE.COM

2 CORE AMQP

After the connection, an AMQP session is established between
two peers; it binds two unidirectional channels to form a
bidirectional conversation with a flow control mechanism
based on the number of exchanged frames. Of course, a
connection supports multiple sessions.

Finally, in order to exchange messages between nodes (for
example, from a producer to a queue and from the queue to
a consumer) an AMQP link is created between them. It’s a
unidirectional route attached to each node at a terminus that
could be the source or target, and it’s responsible for tracking a
message’s exchange status. The link provides the third level of
flow control based on credits. Of course, a session can support
multiple links.

Connections and sessions are ephemeral, so they don’t retain
any status if the underlying network connection is lost; on
reconnecting, the peer has to create a new connection and a
new session not related to the previous ones. Links, however,
are recoverable, and—if the network goes down during message
transfer—each link is recovered with the previous message
delivery status (related to the QoS requested).

Regarding the data exchanged, the frame is the atomic unit and
is divided in three main parts:

• FRAME HEADER: The header has a fixed size (8 bytes), and it
is mandatory, as it contains the information needed to parse
the rest of the frame itself—for example the total frame size
and the frame type.

• EXTENDED HEADER: A variable header that depends on the
frame type.

• FRAME BODY: A sequence of bytes that has a format that
depends on the frame type.

The frame body is interesting because it’s defined as a
performative followed by an opaque payload filled by the
application with data to transmit; these performatives are
related to opening/closing the connection, beginning/ending a
session, attaching/detaching a link, transferring content, and
handling flow control.

MESSAGING
The applications based on the AMQP protocol doesn’t exchange
data speaking the framing “language,” but rather it’s the
messaging layer built on top of it that provides messaging
capabilities.

This layer defines a well-known structure of the message
composed of two main parts :

• BARE MESSAGE: it’s an immutable part from the sender to the
receiver. No one intermediary can change its content

• ANNOTATED MESSAGE: it consists of the previous bare message
plus some annotations that can be used and changed by
intermediaries between sender and receiver

The bare message contains the body and two types of collections:
the first one is for system properties that are standard and
well-defined by the AMQP specification; the second one is for
application specific properties (also named user properties) that
can be added and changed by the application.

The annotations are flexible and related to the overall solution
in terms of clients and broker for example; the same is for
application properties that aren’t fixed but created by the
application according to its needs. The system properties are
well-known and defined by the specification and most used are:

• MESSAGE ID: A unique identifier for the message assigned by
the producer.

• TO: Identifies the destination node for the message.

• SUBJECT: Contains summary information about message
content.

• REPLY TO: The address of the node to send replies to (it’s
useful in a request/response scenario).

• CORRELATION ID: Used for correlation between a request
message and related response (in a reply message it’s the
message id of the request).

• CONTENT TYPE: Used to specify content type for the opaque
payload.

• ABSOLUTE EXPIRY TIME: The time when the message is
considered to be expired.

The messaging layer defines a set of delivery states to describe
the message state at the receiver endpoint. A delivery state can
be “terminal,” which means that the message won’t change
anymore and results in what is called an ”outcome.” A message
can also be “non-terminal,” which indicates a transient state
used for link recovery.

FIGURE 3: Connection, sessions, and links

FIGURE 4: Frame format

FIGURE 5: Message format

http://www.dzone.com?refcardz

© DZONE, INC. | DZONE.COM

3 CORE AMQP

The outcomes defined by the specification are:

• ACCEPTED: The message is received and successfully
processed by the receiver.

• REJECTED: The receiver rejected the message because it is
invalid and can not be processed.

• RELEASED: The message was not processed, even if it was a
valid message (i.e. not rejected). It should be redelivered.

• MODIFIED: indicates that the message was modified but not
processed

There is only one “non-terminal” state, named Received,
which indicates partial message data or the starting point for
a resumed transfer.

A MQP COM MUNIC ATIONS
All the AMQP concepts—from connection, session, and link to
performatives and messages—fit together to define how the
communication happens between two peers. The main steps
involved are:

• OPEN/CLOSE a connection (respectively after opening a
network connection and before closing it) using “open” and
“close” performatives

• BEGIN/END a session inside the connection thanks to “begin”
and “end” performatives

• ATTACH/DETACH a link inside the session using “attach” and
“detach” performatives

• SEND/RECEIVE messages with flow control thanks to
“transfer,” “disposition,” and “flow” performatives

COMMUNICATION: OPEN
In order to open the communication with a peer, first there is an
AMQP/SASL handshake on the raw TCP connection, then the AMQP
“open” performative is exchanged to define the max frame size
(flow control), maximum number of channels, and so on. Inside
the connection, a session is started using the “begin” performative
specifying the window size (number of frames for flow control).
Finally, the “attach” performative is used to attach a link.

COMMUNICATION: SEND
After the link is attached, the receiver can send a “flow”
performative to the sender specifying the credit number to
limit number of messages it’s able to receive (flow control). The
producer sends data using the “transfer” performative, which
is followed by a “disposition” performative by the receiver if
and only if the required QoS is at level one (at least once) and
the messages are not settled by the producer. The receiver can
send only one “disposition” performative to confirm that it has
received more “transfer” performatives.

COMMUNICATION: RECEIVE
A receive communication is the opposite flow of a send. The
receiver sends the “flow” performative to set the credit-based
flow control and how many messages it can receive before
processing them. For one or more “transfers,” it replies with
a “disposition” if the QoS level is greater than zero and the
producer requires settlement.

COMMUNICATION: CLOSE
Closing a communication means it becomes detached from all
active links using the “detach” performative. After that, the
“end” performative is used to end the session, and the “close”

FIGURE 6: Communication: Open

FIGURE 7: Communication: Send

FIGURE 8: Communication: Receive

http://www.dzone.com?refcardz

© DZONE, INC. | DZONE.COM

4 CORE AMQP

performative is used to close the connection. Of course, the last step
is to close the underlying network connection at the socket level.

FLOW CONTROL

The AMQP protocol provides different ways to do “flow
control” at different levels. First of all, during the opening
connection process, the two peers negotiate a maximum
frame size that defines the maximum size of each single
frame that can be exchanged.

The first level of flow control is provided by session; each session
endpoint has an incoming and outgoing window with a size
defined as frame count. On both sides (sender and receiver), the
frame’s exchange can be stopped when the window is full (the
sender doesn’t have more window space to send, the receiver
doesn’t have more window space to receive); each transfer
decrements the window size.

The last flow control level is at the messaging level, where each
link has a “link credit,” which is the number of messages the
receiver is able to receive. The receiver can set this value using
the “flow” performative; for each incoming message the counter
is decremented until a value of zero suspends transfer.

Why are two different flow control levels needed?
The session flow control is useful to protect a Cloud platform at
high-scale when there are million connections and frames; in
this way it can handle capacity management and throttling. In
the IoT space it’s very useful for very low constrained devices
that have low memory capacity for buffers.

The link flow control is at higher level and protects the
application in order to avoid the need to accept more than
messages that the application can handle concurrently.

QUA LITY OF SERVICE

The AMQP protocol provides the three following Quality of
Service levels related to the messages delivery:

• At most once: it’s also known as “fire and forget”, because
the message can be delivered at most one time. It could

happen that it’s lost in the network and doesn’t arrive to the
receiver. The sender doesn’t receive any information about
message receipt and doesn’t resend the message.

• At least once: in this scenario the message can be delivered
one or more time. For each message, the sender should
receive an acknowledge by the receiver. If the receive gets
the message but the acknowledge is lost then the sender re-
sends the message (in that case a second delivery as duplicate
message).

• Exactly once: thanks a kind of double commit with some
acknowledge messages exchanged between sender and
receiver, the message is delivered exactly only one time to
the receiver.

When the message exchange starts, the sender assigns a delivery
tag to the message in order to track its delivery. Both peers
have an internal map with settlement status of the messages
in transit and each message starts with an unsettled status.
The transfer performative is used to send the message, and it
contains the settlement status at sender too; the disposition
performative is used as acknowledge to describe the settlement
status at receiver.

In the “at most once” delivery, the sender sends the message
already settled (settled = TRUE); it doesn’t want to know about
delivery anymore. The message could be arrived or not but no
acknowledge is expected.

When the “at least once” delivery is used, the sender sends the
message in unsettled status (settled = FALSE) because it wants an
acknowledge from the receiver; during the transit, the message
is still unsettled in the internal sender map. Once received
the message, the receiver replies with a disposition frame
that defines the message as settled (at receiver side of course);
receiving the disposition, the sender changes settlement status
to settled and the message isn’t in transit anymore. Of course,
the disposition frame could be lost and the sender re-sends the
message having a duplicate delivery to the receiver.

The “exactly once” delivery isn’t commonly used.

FIGURE 9: Communication: Close

FIGURE 10: At most once delivery

FIGURE 11: At least once delivery

http://www.dzone.com?refcardz

© DZONE, INC. | DZONE.COM

5 CORE AMQP

SECURITY A ND AUTHENTIC ATION

SSL/TLS AND SASL
The AMQP protocol provides security features at connection
level and it’s based on the SSL/TLS protocol other than
using SASL (Simple Authentication and Security Layer)
authentication mechanism.

Using SSL/TLS the communication channel is encrypted to provide
“confidentiality” so that an eavesdropper can’t get and understand
data in transit between the peers. Establishing the SSL/TLS
connection can be done in the following three different ways:

• TLS INSIDE AMQP: the connection between peers starts
at AMQP level directly (on port 5672) and then the TLS
handshake occurs inline. During the AMQP negotiation, the
peer indicates desire for TLS inside.

• AMQP INSIDE TLS: the peers starts a TLS handshake first on
top of the underlying TCP protocol. In that way the network
layer is encrypted and then the AMQP negotiation can start.
In this scenario, the different port 5671 is used (it’s related to
AMQPS, so AMQP on SSL/TLS).

• WEBSOCKET TUNNEL: even if it’s still in draft, there is a
specification about AMQP 1.0 over WS. In this case, a WS
channel is established inside an already TLC encrypted
connection and then the AMQP handshake starts on top of it.

Other than security, AMQP provides a SASL based authentication
mechanism. The type of authentication to use is negotiated during
a SASL handshake with specific AMQP frames and it could be one
of the main supported like ANONYMOUS (no authentication),
PLAIN (username and password), EXTERNAL and so on.

PL ATFOR MS AND CLIENTS BASED ON A MQP
Who uses AMQP? What are the main platforms based on AMQP?

The first offer comes from the open-source world thanks to the
Apache Foundation with the Apache Qpid project that provides an
AMQP stack implementation in C, Java, C++ and other languages.
In the same way, there is the AMQP .Net Lite library that is an
open source .Net and C# implementation from Microsoft.

The above products are used as clients in most cases but what
about broker/server and enterprise architecture based on AMQP?

ActiveMQ by Apache Foundation is the most popular and
powerful open-source messaging and integration patterns
server that support AMQP protocol.

There is the Microsoft Azure Service Bus that provides
a messaging middleware exposing queues and topics/
subscriptions with which we can communicate using AMQP. This
service offers the event hubs too for big data ingestion. Another
service by Microsoft based on AMQP is the Azure IoT Hub for
Internet of Things solution and devices connection.

After that, another enterprise product and messaging
middleware is JBoss A-MQ by Red Hat that is built upon the
Apache Qpid project.

Last but not the least and always as messaging middleware,
there is MQLight by IBM that added AMQP to the already
supported MQTT protocol.

Other products are available on the official AMQP website here.

The easiest way to start with an AMQP protocol client-side would
be to use a high level language implementation like Java (Apache
Qpid Proton-J) or C# (AMQP .Net Lite). On the broker side, to
avoid using a Cloud platform, an ActiveMQ instance running
locally on the PC is a great choice.

The following example is a simple message exchange using a
queue between two clients, a sender and a receiver; the queue is
an AMQP node created inside the ActiveMQ broker as container.

The ActiveMQ broker is available here, and the getting started guide
to install it and create a queue (using the Web UI console) is here.

The AMQP .Net Lite library is open source, and you can clone the
code from GitHub.

OPEN COMMUNICATION
First of all we need to define the base address of the broker for
connecting. For this purpose, the AMQP .Net Lite library exposes
the Address class that we can use in the following way:

Address address
 = new Address(“amqp://admin:admin@192.168.1.103:5672”);

That has the format amqp://[username]:[password]@[host]:[port].

Opening the communication with the broker means open a
connection and begin a session:

Connection connection = new Connection(address);
Session session = new Session(connection);

After that we need to create and attach the link with the
destination queue to send data:

SenderLink sender
 = new SenderLink(session, “sender-link”, “q1”);

In this example, the queue already created and available in the
broker is named “q1”.

LET’S TRY A MQP

FIGURE 12: AMQP & TLS

http://www.dzone.com?refcardz
http://qpid.apache.org/
https://github.com/Azure/amqpnetlite
http://activemq.apache.org/
https://azure.microsoft.com/en-us/services/service-bus/
http://www.redhat.com/en/technologies/jboss-middleware/amq
https://developer.ibm.com/messaging/mq-light/
https://www.amqp.org/about/examples
http://activemq.apache.org/
http://activemq.apache.org/getting-started.html

© DZONE, INC. | DZONE.COM

6 CORE AMQP

At the end of this three steps, the connection is established and
the sender can start to send messages to the queue.

SEND MESSAGE
Each message is implemented through the Message class that
exposes system and application properties other than a body
that can be filled with any payload.

Message message = new Message(“Hello DZone!”);
message.Properties = new Properties();
message.Properties.MessageId = messageId;
message.ApplicationProperties = new ApplicationProperties();
message.ApplicationProperties[“my_app_prop”] = value;
sender.Send(message, 60000);

After creating the message, the Send() method provided by the
SenderLink class is able to send the message in a synchronous
way with a specified timeout.

RECEIVE MESSAGE
On the receiver side, the connection and the session are created
in the same way but the attached link is specified using the
ReceiverLink class.

ReceiverLink receiver
 = new ReceiverLink(session, “receiver-link”, “q1”);

This class provides the Receive() method to wait synchronously
for an available message in the queue and get it. The returned
message can be “null” if the receiving timeout expires.

Message message = receiver.Receive();

After receiving the message, the receiver needs to update the
delivery status calling the Accept(), Reject() or Release()

method with message as parameter to complete the action.

receiver.Accept(message);

Before receiving the message, the receiver can use the
SetCredit() to apply flow control at link level to specify the
maximum number of messages it can handle.

receiver.SetCredit(10, false);

RECEIVE MESSAGE ASYNCHRONOUSLY
The AMQP .Net Lite provides an asynchronous way to receive
messages using a callback invoked when a message is received
from the queue.

receiver.Start(10, (link, m) =>
 {
 // do work with message
 link.Accept(m);
 });

In that case, the Start() method is used to specify both the
credit and the lambda expression used as callback that has the
link and the received message as parameters.

CLOSE COMMUNICATION
When the peers don’t need the channel anymore, they can close
it in the opposite order they open it. First detaching the link then
ending the session and finally closing the connection.

sender.Close(); // or receiver.Close();
session.Close();
connection.Close();

ABOUT THE AUTHOR

PAOLO PATIERNO is a Senior Software Engineer and Microsoft MVP
for Windows Embedded / Internet of Things who has been working on Microsoft
technologies since 2006 with all .Net Frameworks (Micro, Compact and Full);
he has been developing on embedded and mobile systems (based on Windows
CE, WindowsPhone/Android and RTOS) since 2010, using C/C++, C# and
Java. Focused on IoT protocols and on developing end to end solution in the
IoT business on both devices and Cloud side. Member of DotNetCampania,
TinyCLR.it and Embedded101 communities. Technical writer and owner of
some open source projects on GitHub. He blogs at paolopatierno.wordpress.
com and you can follow him on Twitter @ppatierno.

RESOURCES

AMQP 1.0 SPECIFICATION
docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf

AMQP.ORG : OFFICIAL WEB SITE
amqp.org

AMQP VIDEO COURSE (by Clemens Vasters)
channel9.msdn.com/Blogs/Subscribe/The-AMQP-10-Protocol-16-Overview

BLOGS AND OTHER RESOURCES (from Apache Qpid)
qpid.apache.org/resources.html

BROWSE OUR COLLECTION OF 250+ FREE RESOURCES, INCLUDING:

RESEARCH GUIDES: Unbiased insight from leading tech experts

REFCARDZ: Library of 200+ reference cards covering the latest tech topics

COMMUNITIES: Share links, author articles, and engage with other tech experts

JOIN NOW

DZONE, INC.
150 PRESTON EXECUTIVE DR.
CARY, NC 27513

888.678.0399
919.678.0300

REFCARDZ FEEDBACK WELCOME
refcardz@dzone.com

SPONSORSHIP OPPORTUNITIES
sales@dzone.com

Copyright © 2016 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher. VERSION 1.0

DZone communities deliver over 6 million pages each month to more than 3.3 million software
developers, architects and decision makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, research guides, feature articles, source code and more.

"DZone is a developer's dream," says PC Magazine.

http://www.twitter.com/ppatierno
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf
http://www.amqp.org/
https://channel9.msdn.com/Blogs/Subscribe/The-AMQP-10-Protocol-16-Overview
https://qpid.apache.org/resources.html
https://facebook.github.io/react/docs/why-react.html
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com

