

Getting Started
With Docker

By Christopher M. Judd

 » About Docker

 » Docker Architecture

 » Getting Started

 » Typical Local Workflow

 » Other Helpful Commands

 » Dockerfile, and more...

ABOUT DOCKER

Almost overnight, Docker has become the de facto

standard that developers and system administrators

use for packaging, deploying, and running distributed

applications. It provides tools for simplifying

DevOps by enabling developers to create templates

called images that can be used to create lightweight

virtual machines called containers, which include

their applications and all of their applications’

dependencies. These lightweight virtual machines

can be promoted through testing and production

environments where sysadmins deploy and run them.

Docker makes it easier for organizations to automate

infrastructure, isolate applications, maintain

consistency, and improve resource utilizations.

Similar to the popular version control software Git,

Docker has a social aspect, in that developers and

sysadmins are able to share their images via

Docker Hub.

Docker is an open-source solution that runs natively

on Linux but also works on Windows and Mac using a

lightweight Linux distribution and VirtualBox. Many

tools have also grown up around Docker to make it

easier to manage and orchestrate complex distributed

applications.

DOCKER ARCHITECTURE

Docker utilizes a client-server architecture and a remote

API to manage and create Docker containers built upon

Linux containers. Docker containers are created from

Docker images. The relationship between containers

and images are analogous to the relationship between

objects and classes in object-oriented programming.

Docker
Images

A recipe or template for creating Docker
containers. It includes the steps for installing and
running the necessary software.

Docker
Container

Like a tiny virtual machine that is created from
the instructions found within the Docker image
originated

Docker
Client

Command-line utility or other tool that takes
advantage of the Docker API (https://docs.docker.
com/reference/api/docker_remote_api) to
communicate with a Docker daemon

Docker
Host

A physical or virtual machine that is running a
Docker daemon and contains cached images as
well as runnable containers created from images

Memory

I/O

Cache

CPU

DOCKER MONITORING

Site24x7

Get Detailed Insight into Docker Containers

221

C
O

N
T

E
N

T
S

G
et

 M
or

e
Re

fc
ar

dz
! V

is
it

 d
zo

ne
.c

om
/r

ef
ca

rd
z

G
E

T
T

IN
G

 S
T

A
R

T
E

D
 W

IT
H

 D
O

C
K

E
R

© DZONE, INC. | DZONE.COM

BROUGHT TO YOU BY:

https://hub.docker.com/
https://docs.docker.com/reference/api/docker_remote_api
https://docs.docker.com/reference/api/docker_remote_api
http://dzone.com/refcardz
http://dzone.com/refcardz
http://dzone.com/
http://www.site24x7.com/
https://www.site24x7.com/docker-monitoring.html?utm_source=dzone&utm_medium=refcardz2&utm_campaign=112015

Memory

I/O

Cache

CPU
DOCKER MONITORING

All-in-One Monitoring Solution for DevOps and IT
Website Application Server Cloud Network
Website Performance
Website Availability
Public Status Pages
Mail Server
DNS

Java
.NET
RUM
Ruby on Rails
Mobile APM

Windows
Linux
On-Premise
SQL

Amazon EC2
Amazon RDS
Amazon S3
VMware
Docker

Router
Firewall
Switch

Site24x7

www.Site24x7.com

LEARN MORE

Your First YEAR is on Us!
Sign Up for Free

at http://bit.ly/dzone365

Analyze resource usage and performance
metrics of containers and hosts

https://www.site24x7.com/docker-monitoring.html?utm_source=dzone&utm_medium=refcardz1&utm_campaign=112015
http://bit.ly/dzone365
http://bit.ly/dzone365
https://www.site24x7.com/?utm_source=dzone&utm_medium=refcardz1f&utm_campaign=112015
http://q-r.to/s247

Docker
Registry

A repository of Docker images that can be
used to create Docker containers. Docker Hub
(https://hub.docker.com) is the most popular
social example of a Docker repository.

Docker
Machine

A utility for managing multiple Docker hosts,
which can run locally in VirtualBox or remotely
in a cloud hosting service such as Amazon Web
Services, Microsoft Azure, or Digital Ocean

GETTING STARTED

INSTALLING DOCKER
For Mac and Windows the installation could not be simpler.

All you need to do is download and install the Docker

Toolbox found at https://www.docker.com/toolbox. The

installer includes the Docker Client, Docker Machine,

Compose (Mac only), Kitematic, and VirtualBox.

Since Docker is based on the Linux Container
technologies which are not available on Mac and
Windows, VirtualBox is used to run a tiny Linux
kernel containing the Docker server.

HOT
TIP

At the time of this writing, installing Docker on Linux is

not as easy. To install Docker on Linux you may have to

install some prerequisites; check https://docs.docker.com/

installation for specific instructions. For some distributions

there may be packages available using its native package

manager. For other distributions you will need to run:

curl -sSL https://get.docker.com/ | sh

Optionally on Linux you can install Docker-Machine as

root; to do so, execute the following:

curl -L https://github.com/docker/machine/releases/
↳download/v0.4.0/docker-machine_linux-amd64 > /
↳usr/local/bin/docker-machine
chmod +x /usr/local/bin/docker-machine

If you want to create machines locally, you will also need to

install VirtualBox using the instructions found at https://

www.virtualbox.org/wiki/Linux_Downloads.

As of the date of this publication, Docker-Machine is still

considered in beta and is not recommended for production use.

RUNNING A CONTAINER
With Docker installed you are able to begin running

containers. If you don’t already have the container you

want to run, Docker will download the image necessary to

build the container from the Docker Hub, then build and

run it.

To run the simple hello-world container to make sure

everything is configured properly, run the following

commands:

docker run hello-world

Ultimately this command prints a message to standard

output explaining all the steps that took place to display

the message.

TYPICAL LOCAL WORKFLOW

Docker has a typical workflow that enables you to create

images, pull images, publish images, and run containers.

The typical Docker workflow involves building an image

from a Dockerfile, which has instructions on how to configure

a container or pull an image from a Docker Registry such as

Docker Hub. With the image in your Docker environment,

you are able to run the image, which creates a container

as a runtime environment with the operating systems,

software, and configurations described by the image. For

example, your result could be a container on the Debian

operating system running a version of MySQL 5.5, which

creates a specific database with users and tables required

by your web application. These runnable containers

can be started and stopped like starting and stopping a

virtual machine or computer. If manual configurations or

software installations are made, a container can then be

committed to make a new image that can be later used to

create containers from it. Finally, when you want to share

an image with your team or the world, you can push your

images to a Docker registry.

PULL IMAGE FROM DOCKER REGISTRY
The easiest way to get an image is to visit https://hub.

docker.com and find an already prepared image to build

a container from. There are are many certified official

3

© DZONE, INC. | DZONE.COM

GETTING STARTED WITH DOCKER

https://hub.docker.com
https://www.docker.com/toolbox
https://docs.docker.com/installation
https://docs.docker.com/installation
https://www.virtualbox.org/wiki/Linux_Downloads
https://www.virtualbox.org/wiki/Linux_Downloads
https://hub.docker.com
https://hub.docker.com
http://dzone.com/refcardz
http://dzone.com/
http://www.site24x7.com/

accounts for common software such as MySQL, Node.js,

Java, Nginx, or WordPress, but there are also hundreds of

thousands of images created by ordinary people as well. If

you find an image you want, such as mysql, execute the pull

command to download the image.

docker pull mysql

If you don’t already have the image locally, Docker will

download the most current version of that image from

Docker Hub and cache the image locally. If you don’t want

the current image and instead want a specific version, you

can also add a tag to identify the desired version.

docker pull mysql:5.5.45

If you know you will want to run the image
immediately after pulling, you can save a step by just
using the run command and it will automatically pull
it in the background.

HOT
TIP

BUILDING IMAGE FROM A DOCKERFILE
If you can’t find what you need or don’t trust the source of

an image you find on Docker Hub, you can always create

your own images by creating a Dockerfile. Dockerfiles

contain instructions for inheriting from an existing

image, where you can then add software or customize

configurations.

The following is a simple example of what you might find

in a file named Dockerfile:

FROM mysql:5.5.45
RUN echo America/New_York | tee /etc/timezone &&
↳dpkg-reconfigure --frontend noninteractive tzdata

This Dockerfile example shows that the image created will

inherit from the certified mysql repository (specifically the

5.5.45 version of MySQL). It then runs a Linux command to

update the time zone to be Eastern Time.

More details on creating a Dockerfile will be provided later.

To build this image from the directory containing the

Dockerfile, run the following command:

docker build .

This command will create an unnamed image. You can see

it by running the command to list images.

docker images

This displays all the locally cached images, including the

ones created using the build command.

REPOSITORY TAG IMAGE ID VIRTUAL SIZE
<none> <none> 4b9b8b27fb42 214.4 MB
mysql 5.5.45 0da0b10c6fd8 213.5 MB

As you can see, the build command created an image with

a repository name and tag name of <none>. This tends not

to be very helpful, so you can use a –t option to name the

image for easier usage:

docker build –t est-mysql .

Listing the images again you can see the image is much

clearer.

REPOSITORY TAG IMAGE ID VIRTUAL SIZE
est-mysql latest 4b9b8b27fb42 214.4 MB
mysql 5.5.45 0da0b10c6fd8 213.5 MB

There is an alternative option to creating a custom image

besides writing a Dockerfile. You can run an existing image

with bash access then customize the image manually by

installing software or changing configurations. When

complete you can run the docker commit command to

create an image of the running container. This is not

considered a best practice since it is not repeatable or self-

documenting like using the Dockerfile method.

RUNNING AN IMAGE
To run a Docker image you just need to use the run

command followed by a local image name or one found

in Docker Hub. Commonly, a Docker image will require

some additional environment variables, which can be

specified with the -e option. For long-running processes

like daemons, you also need to use a –d option. To start the

est-mysql image, you would run the following command to

configure the MySQL root user’s password, as documented

in the Docker Hub mysql repository documentation:

docker run -e MYSQL_ROOT_PASSWORD=root+1 -d est-
↳mysql

To see the running container, you can use the Docker ps

command:

docker ps

The ps command lists all the running processes, the image

name they were created from, the command that was run,

4

© DZONE, INC. | DZONE.COM

GETTING STARTED WITH DOCKER

http://dzone.com/refcardz
http://dzone.com/
http://www.site24x7.com/

any ports that software are listening on, and the name of

the container.

CONTAINER ID IMAGE COMMAND
30645f307114 est-mysql “/entrypoint.sh mysql”

PORTS NAMES
3306/tcp serene_brahmagupta

As you can see from the running processes above, the

name of the container is serene_brahmagupta. This is an

auto-generated name and may be challenging to maintain.

So it is considered a best practice to explicitly name the

container using the --name option to provide your name at

container start up:

docker run --name my-est-mysql -e MYSQL_ROOT_
↳PASSWORD=root+1 -d est-mysql

You will notice from the ps output that the container is

listening to port 3306, but that does not mean you are able

to use the MySQL command line or MySQL Workbench

locally to interact with the database, as that port is

only accessible in the secure Docker environment in

which it was launched. To make it available outside that

environment, you must map ports using the –p option.

docker run --name my-est-mysql -e MYSQL_ROOT_
↳PASSWORD=root+1 -p 3306:3306 -d est-mysql

Now mysql is listening on a port that you can connect to.

But you still must know what the IP address is to connect.

To determine the IP address you can use the docker-

machine ip command to figure it out.

docker-machine ip default

Using default as the machine name, which is the default

machine installed with the Docker Toolbox, you will receive

the IP address of the machine hosting your docker container.

With the IP address, you can now connect to MySQL using

your local MySQL command line.

mysql -h 192.168.99.100 -u root -proot+1

STOPPING AND STARTING CONTAINERS
Now that you have a Docker container running, you

can stop it by using the Docker stop command and the

container name:

docker stop my-est-mysql

The entire state of the container is written to disk, so if you

want to run it again in the state it was in when you shut it

down, you can use the start command:

docker start my-est-mysql

TAGGING AN IMAGE
Now that you have an image that you have run and

validated, it is a good idea to tag it with a username, image

name, and version number before pushing it to repository.

You can accomplish this by using the Docker tag command:

docker tag est-mysql javajudd/est-mysql:1.0

PUSH IMAGE TO REPOSITORY
Finally, you are ready to push your image to Docker Hub for

the world to use or your team to use via a private repository.

First, if you haven’t done so already, you will need to go

https://hub.docker.com/ to create a free account. Next you

need to login using the login command.

docker login

When prompted, input the username, password, and email

address you registered with.

Now push your image using the push command, specifying

your username, image name, and version number.

docker push javajudd/est-mysql:1.0

After some time you will receive a message that the

repository has been successfully pushed. If you log back

into your Docker Hub account, you will see the new repository.

5

© DZONE, INC. | DZONE.COM

GETTING STARTED WITH DOCKER

https://hub.docker.com/
http://dzone.com/
http://dzone.com/refcardz
http://www.site24x7.com/

OTHER HELPFUL COMM ANDS

LIST CONTAINERS
You have already seen how the ps command can list the

running containers, but what about all the containers,

regardless of their state? By adding the –a option, you can

see them all.

docker ps -a

With a listing of all containers, you can decide which ones

to start or remove.

REMOVE CONTAINERS
When you are done using a container, rather than having it

lie around, you will want to remove it to reclaim diskspace.

To remove a container, you can use the rm command:

docker rm my-est-mysql

REMOVE IMAGES
You have already seen how the images command can

list all the locally cached images. These images can take

significant amounts of space, ranging from a megabyte

to several hundred megabytes, so you will want to purge

unwanted images using the rmi command:

docker rmi est-mysql

During the debugging cycle of creating a new image, you

may generate a large amount of unwanted and unnamed

images, which are denoted with a name of <none>. You can

easily remove all the dangling images using the following

command:

docker rmi $(docker images -q -f dangling=true)

LIST PORTS
It’s often helpful to know what ports are exposed by

a container, such as port 3306 for accessing a MySQL

database or port 80 for accessing a web server. The port

command can be used to display the exposed ports.

docker port my-est-mysql

LIST PROCESSES
If you need to see the processes running in a container, you

can use the top command (similar to running the Linux top

command):

docker top my-est-mysql

EXECUTE COMMANDS
You can execute commands in a running container using

the exec command. To list the contents of the root of the

hard drive you can, for example, do the following:

docker exec my-est-mysql ls /

If you want to ssh as root into the container, there is an

equivalent exec command you can run to gain access to a

bash shell, and since all the communications between the

Docker client and the Docker daemon are already encrypted,

it is secure.

docker exec -it my-est-mysql bash

RUN CONTAINER
The run command is the most complicated and featured of

all the Docker commands. It can be used to do things such

as manage networking settings; manage system resources

such as memory, CPU, and filesystems; and configure

security. Visit https://docs.docker.com/reference/run/ to see

all options available.

DOCKERFILE

As you have already seen, the Dockerfile is the primary

way of creating a Docker image. It contains instructions

such as Linux commands for installing and configuring

software. The build command can refer to a Dockerfile on

your PATH or to a URL, such as a GitHub repository. Along

with the Dockerfile, any files in the same directory or its

subdirectories will also be included as part of the build

process. This is helpful if you want the build to include

scripts to execute or other necessary files for deployment.

If you wish to exclude any files or directories from
being included, you have the option of using a
.dockerignore file for this purpose.

HOT
TIP

INSTRUCTIONS
Instructions are executed in the order in which they are

found in the Dockerfile. The Docker file can also contain

line comments starting with the # character.

This table contains the list of commands available.

INSTRUCTION DESCRIPTION

FROM This must be the first instruction in the Dockerfile
and identifies the image to inherit from

MAINTAINER Provides visibility and credit to the author of
the image

6

© DZONE, INC. | DZONE.COM

GETTING STARTED WITH DOCKER

https://docs.docker.com/reference/run/
http://dzone.com/
http://dzone.com/refcardz
http://www.site24x7.com/

INSTRUCTION DESCRIPTION

RUN Executes a Linux command for configuring
and installing

ENTRYPOINT The final script or application used to
bootstrap the container, making it an
executable application

CMD Provide default arguments to the ENTRYPOINT
using a JSON array format

LABEL Name/value metadata about the image

ENV Sets environment variables

COPY Copies files into the container

ADD Alternative to copy

WORKDIR Sets working directory for RUN, CMD,
ENTRYPOINT, COPY, and/or ADD instructions

EXPOSE Ports the container will listen on

VOLUME Creates a mount point

USER User to run RUN, CMD, and/or ENTRYPOINT
instructions

DOCKERFILE EXAMPLE
This an example of the official MySQL 5.5 Dockerfile

found at https://github.com/docker-library/mysql/

blob/5836bc9af9deb67b68c32bebad09a0f7513da36e/5.5/

Dockerfile, which uses many of the available instructions.

FROM debian:jessie

RUN groupadd -r mysql && useradd -r -g mysql
↳mysql
RUN mkdir /docker-entrypoint-initdb.d
RUN apt-get update && apt-get install -y perl
↳--no-install-recommends && rm -rf /var/lib/apt/
↳lists/*
RUN apt-get update && apt-get install -y libaio1
↳&& rm -rf /var/lib/apt/lists/*
RUN gpg --keyserver ha.pool.
↳sks-keyservers.net --recv-keys
↳A4A9406876FCBD3C456770C88C718D3B5072E1F5

ENV MYSQL_MAJOR 5.5
ENV MYSQL_VERSION 5.5.45

RUN apt-get update && apt-get install -y curl
↳--no-install-recommends && rm -rf /var/lib/apt/
↳lists/* \
 && curl -SL “http://dev.mysql.com/get/
↳Downloads/MySQL-$MYSQL_MAJOR/mysql-$MYSQL_
↳VERSION-linux2.6-x86_64.tar.gz” -o mysql.tar.gz \
 && curl -SL “http://mysql.he.net/Downloads/
↳MySQL-$MYSQL_MAJOR/mysql-$MYSQL_VERSION-
↳linux2.6-x86_64.tar.gz.asc” -o mysql.tar.gz.asc \
 && apt-get purge -y --auto-remove curl \
 && gpg --verify mysql.tar.gz.asc \
 && mkdir /usr/local/mysql \
 && tar -xzf mysql.tar.gz -C /usr/local/mysql
↳--strip-components=1 \
 && rm mysql.tar.gz* \
continued ->

 && rm -rf /usr/local/mysql/mysql-test /usr/
↳local/mysql/sql-bench \
 && rm -rf /usr/local/mysql/bin/*-debug /usr/
↳local/mysql/bin/*_embedded \
 && find /usr/local/mysql -type f -name “*.a”
↳-delete \
 && apt-get update && apt-get install -y
↳binutils && rm -rf /var/lib/apt/lists/* \
 && { find /usr/local/mysql -type f -executable
↳-exec strip --strip-all ‘{}’ + || true; } \
 && apt-get purge -y --auto-remove binutils

ENV PATH $PATH:/usr/local/mysql/bin:/usr/local/
↳mysql/scripts

RUN mkdir -p /etc/mysql/conf.d \
 && { \
 echo ‘[mysqld]’; \
 echo ‘skip-host-cache’; \
 echo ‘skip-name-resolve’; \
 echo ‘user = mysql’; \
 echo ‘datadir = /var/lib/mysql’; \
 echo ‘!includedir /etc/mysql/conf.d/’; \
 } > /etc/mysql/my.cnf

VOLUME /var/lib/mysql

COPY docker-entrypoint.sh /entrypoint.sh
ENTRYPOINT [“/entrypoint.sh”]

EXPOSE 3306
CMD [“mysqld”]

This example Dockerfile performs the following actions:

• Extends from an existing Debian image called

“debian:jessie”

• Uses the RUN instruction to configure the image by adding

some groups, making a directory, and installing required

software using the Debian apt-get package manager

• Runs gpg to setup some encryption with PGP

• Uses the ENV instruction to define the major and minor

versions of MySQL represented in this image

• Runs a long line of commands to install and configure

the system followed by another environment variable

to set up the system PATH

• Uses the RUN command to create a configuration file

• Uses the VOLUME command to map a file system

• Uses the COPY command to copy and rename the script

it will execute when the container starts up, followed by

the ENTRYPOINT which specifies the same script to execute

• Uses EXPOSE to declare port 3306 as the standard

MySQL port to be exposed

• Uses CMD to specify that the command-line argument

passed to the ENTRYPOINT at container startup time is

the string “mysqld”

7

© DZONE, INC. | DZONE.COM

GETTING STARTED WITH DOCKER

https://github.com/docker-library/mysql/blob/5836bc9af9deb67b68c32bebad09a0f7513da36e/5.5/Dockerfile
https://github.com/docker-library/mysql/blob/5836bc9af9deb67b68c32bebad09a0f7513da36e/5.5/Dockerfile
https://github.com/docker-library/mysql/blob/5836bc9af9deb67b68c32bebad09a0f7513da36e/5.5/Dockerfile
http://dzone.com/
http://dzone.com/refcardz
http://www.site24x7.com/

Christopher M. Judd is the CTO and a partner at Manifest
Solutions (http://www.manifestcorp.com), an international
speaker, an open source evangelist, the Central Ohio Java
Users Group (http://www.cojug.org) and Columbus iPhone
Developer User Group leader, and the co-author of Beginning

Groovy and Grails (Apress, 2008), Enterprise Java Development on
a Budget (Apress, 2003), and Pro Eclipse JST (Apress, 2005), as well

as the author of the children’s book “Bearable Moments.” He has
spent 20 years architecting and developing software for Fortune 500
companies in various industries, including insurance, health care, retail,
government, manufacturing, service, and transportation. His current
focus is on consulting, mentoring, and training with Java, Java EE,
Groovy, Grails, Cloud Computing, and mobile platforms like iPhone,
Android, Java ME, and mobile web.

© DZONE, INC. | DZONE.COM© DZONE, INC. | DZONE.COM© DZONE, INC. | DZONE.COM

ABOUT THE AUTHOR

DZONE, INC.
150 PRESTON EXECUTIVE DR.
CARY, NC 27513

888.678.0399
919.678.0300

REFCARDZ FEEDBACK WELCOME
refcardz@dzone.com

SPONSORSHIP OPPORTUNITIES
sales@dzone.com

Copyright © 2015 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher. VERSION 1.0 $7.95

DZone communities deliver over 6 million pages each month to more than 3.3 million software
developers, architects and decision makers. DZone offers something for everyone, including
news, tutorials, cheat sheets, research guides, feature articles, source code and more.

"DZone is a developer's dream," says PC Magazine.

BROWSE OUR COLLECTION OF 250+ FREE RESOURCES, INCLUDING:
RESEARCH GUIDES: Unbiased insight from leading tech experts

REFCARDZ: Library of 200+ reference cards covering the latest tech topics

COMMUNITIES: Share links, author articles, and engage with other tech experts

JOIN NOW

8

CREDITS:
Editor: G. Ryan Spain | Designer: Yassee Mohebbi | Production: Chris Smith | Sponsor Relations: Chris Brumfield | Marketing: Chelsea Bosworth

docker-machine ls

START AND STOP MACHINES
Docker Machines can be started using the docker-machine

start command.

docker-machine start qa

Once the machine is started, you have to configure the

Docker command line, which Docker Daemon should be

interacting with. You can do this using the docker-machine

env command and evaluating it with eval.

docker-machine env qa
eval “$(docker-machine env qa)”

To stop a machine, use the docker-machine stop command.

docker-machine stop qa

The docker-machine start and stop commands
literally start and stop VirtualBox VMs. If you have the
VirtualBox Manager open, you can watch the state of
the VM change as you run the commands.

HOT
TIP

DOCKER M ACHINE

Docker Machine is another command-line utility used for

managing one or more local or remote machines. Local

machines are often run in separate VirtualBox instances.

Remote machines may be hosted on cloud providers such as

Amazon Web Services (AWS), Digital Ocean, or Microsoft Azure.

CREATE LOCAL MACHINES
When installing the Docker Toolbox, you will be given a default

Docker Machine named “default.” This is easy to use to get

started, but at some point you may need multiple machines

to segment the different containers you are running. You

can use the docker-machine create command to do this:

docker-machine create -d virtualbox qa

This creates a new local machine using a VirtualBox image

named “qa.”

LIST MACHINES
If you need to see what machines you have configured you

can run the docker-machine ls command:

GETTING STARTED WITH DOCKER

http://www.manifestcorp.com
http://www.cojug.org
mailto:refcardz%40dzone.com?subject=
mailto:sales%40dzone.com?subject=
http://dzone.com/
http://dzone.com/
http://dzone.com/refcardz

