
dzone’s 2015 guide to code qualit y and soft ware agilit y 1

dzone.com/guides dzone’s 2015 guide to code quality and software agility

BROUGHT TO YOU IN PARTNERSHIP WITH

THE DZONE GUIDE TO

2015 EDITION

http://www.dzone.com/guides

2 dzone’s 2015 guide to code qualit y and soft ware agilit y

dzone.com/guides dzone’s 2015 guide to code quality and software agility

“If houses were built like software projects, a single
woodpecker could destroy civilization.”

—Gerald Weinberg

Deep in our hearts we all know this is true. It’s not
that developers don’t care about quality. It’s just
that we don’t actually have infinite time to test
nondeterministic systems (well, any physical system
at runtime). And, of course, we all have to be agile,
which infinite testing isn’t.

On top of that there’s the limited register space of the
human brain. And the fact that some developer who
no longer works here apparently preferred a lines-of-
code to lines-of-documentation ratio of 3720:1.

Of course everybody knows that bugs cost some
crazy figure—maybe $60 billion per year in the US
alone. And in principle everybody understands that
a bug caught earlier costs far less than the same bug
caught later, in rough proportion to the difference in
time between the two bug-catches.

The problem isn’t that we don’t know that it’s
important to keep software quality high. Rather, the
problem is that it’s very hard to know for certain
how to do it. Uncertainty excuses future discounting.
Technical debt tempts like a fee-free credit card. Up
to a point, taking on debt is completely worth it. But
where exactly does that point lie?

The Agile Manifesto teaches: you probably don’t know
yet. Fine, agreed, in principle. So when do you know?
How many iterations before customers give up? And
how immutable are those burndown lists anyway?

Software quality is a numbers game, software agility
a fuzzy set of trade-offs and hand-offs at both code
and organizational levels. In the real world, best
practices and formal methodologies will only get you
so far. The rest of the way is heuristic, and that’s how
we’ve approached our 2015 Guide to Code Quality
and Software Agility. Testing, refactoring, setting
requirements, failing often with discipline—we’ve
got it covered.

Check it out, let us know what you think—help us
get it righter next time.

john esposito
editor-in-Chief, dZone researCh

researCh@dZone.Com

Table of Contents

Credits

Dear Reader,
exeCutive summary

Key researCh findings

Why your managers thinK your softWare Quality
is great—or not
by johanna rothman

refaCtoring in a legaCy Code jungle
by gil Zilberfeld

monitoring is testing
by emil gustafsson

the agile manifesto: infographiC

your Code is liKe a Crime sCene: find problem
spots With forensiC methods
by adam tornhill

testing: What it is, What it Can be
by andy tinKham

What elon musK Can teaCh us about agile softWare
development
by gerry Claps

Code revieW CheCKlist
by Kevin london

solutions direCtory

diving deeper into featured softWare Quality
solutions

diving deeper into softWare Quality

glossary

3

4

6

10

14

18

20

24

26

28

29

33

34

35

editorial
john esposito
research@dzone.com
editor-in-Chief

g. ryan spain
direCtor of publiCations

jayashree gopal
projeCt manager

mitch pronschinske
sr. researCh analyst

benjamin ball
researCh analyst

matt Werner
marKet researCher

moe long
marKet researCher

john Walter
Content Curator

lauren Clapper
Content Curator

business
rick ross
Ceo

matt schmidt
president & Cto

Kellet atkinson
vp & publisher

matt o’brian
direCtor of business
development

jane foreman
vp of marKeting

alex Crafts
sales@dzone.com
direCtor of major
aCCounts

Chelsea bosworth
marKeting assoCiate

Chris smith
produCtion advisor

jillian poore
sales assoCiate

jim howard
sales assoCiate

Chris Brumfield
Customer suCCess
assoCiate

art
ashley slate
design direCtor

yassee mohebbi
graphiC designer

special thanks to our topic
experts Alexander Podelko,
Alex Rosemblat, David Farley,
Sergey Chernyshev, Colin Scott,
and our trusted DZone Most
Valuable Bloggers for all their
help and feedback in making
this report a great success.

Want your solution to be featured in Coming guides?
Please contact research@dzone.com for submission information.

liKe to Contribute Content to Coming guides?
Please contact research@dzone.com for consideration.

interested in beComing a dZone researCh partner?
Please contact sales@dzone.com for information.

http://www.dzone.com/guides
http://www.cse.lehigh.edu/~gtan/bug/softwarebug.htmlhttp://
mailto:research%40dzone.com?subject=
mailto:research%40dzone.com?subject=
mailto:sales%40dzone.com?subject=
mailto:research%40dzone.com?subject=
mailto:research%40dzone.com?subject=
mailto:sales%40dzone.com?subject=

dzone’s 2015 guide to code qualit y and soft ware agilit y 3

dzone.com/guides dzone’s 2015 guide to code quality and software agility

DZone surveyed more than 600 IT professionals
for our Guide to Code Quality and Software Agility
to discover how organizations should prioritize
various quality metrics as they mature, and to
reveal how the types of software they produce
inf luence their testing strategies. In this
summary you will learn how the majority of
organizations are managing software testing,
and where their energy should be focused.

researCh taKeaWays

01. the definition of softWare Quality
Changes depending on Customer needs
Data: Among companies with fewer than 100 employees, 52% of
organizations that do software testing have a dedicated QA or
testing team. For companies with 100 or more employees, this
number increases to 79%.

Implications: Larger companies clearly have a greater focus on
producing low-defect software. These companies generally serve
more customers and are more mature. When companies have a
larger customer base with several years worth of functionality
expectations, the customers tend to be more conservative and ask
that you solve their problems without introducing more. Smaller
customer bases, like those of a startup, tend to be more forgiving
of beta-quality software and care more about release speed and
feature delivery. Startups themselves are more focused on the speed
of innovation and often don’t recruit testers in their early stages.

Recommendations: Software teams should follow the industry
trend toward more testing for larger, more established products,
and focus on speed of innovation for newer products. Refer to
Johanna Rothman’s article in this guide, “Why Your Managers
Think Your Software Quality is Great—or Not”, to see a graphic
that lays out the best practices for software quality prioritization.

02. teChniCal debt Worsens When legaCy Code
refaCtoring isn’t a priority
Data: 61% of respondents say they have been limited in their
ability to write automated tests because they needed to rewrite
legacy code before they could write the tests.

Implications: Refactoring legacy code is a major challenge for
software companies, and it’s even more significant for larger
corporations. Large enterprises will suffer greatly if they have
sizable sections of code that can’t be checked regularly with

automated regression tests, therefore the technical debt incurred
by not refactoring legacy code is greater for large organizations.

Recommendations: The longer organizations put off refactoring
their legacy code, the more harmful the technical debt will
become. Make refactoring legacy code and building automated
tests for it a priority. Gil Zilberfeld’s article in this guide,
“Refactoring in a Legacy Code Jungle,” is a great resource to guide
organizations through this process.

03. developers Can test, but most Can’t
repliCate the value of pure testers
Data: Overall, developers handle most of the unit testing (90% of
them handle it) while QA and testing teams focus on functional
(70%) and user acceptance testing (UAT) (62%). In smaller
organizations, developers do 11% more UAT and usability testing
than they do in larger firms. 31% of organizations that do testing
report they have no QA or testing teams. 92% of developers
surveyed do some kind of testing, checking, and/or bug-finding at
their organization.

Implications: It’s clear that in many situations, developers are
taking on the responsibilities of QA and testing teams, especially
in smaller organizations, which are less likely to have those
teams. Having dedicated, highly-skilled testers that are not
merely recently-converted developers is an important step toward
achieving low-defect systems [1].

Recommendations: Developers can manage testing in many
low-maturity organizations, such as startups, but as a software
product’s customer base grows, the increased expectations for
low-defect software necessitate having dedicated, skilled testers
on the team. Read Andy Tinkham’s article in this guide: “Testing:
What It Is, What It Can Be” to discover what a modern testing
team looks like and how such teams can provide immense value.

04. the type of softWare produCt Can
determine Whether more foCus should be
on up-front testing or monitoring
Data: Respondents said they perform all types of tests more often
when they are building high-risk and boxed software versus web
applications and SaaS. For example, respondents building boxed
and high-risk software were 7% more likely to always perform
UAT and 9% more likely to always do functional tests than were
developers who build SaaS and web apps.

Implications: More testing (especially exploratory testing) is
needed before the first release of critical software that has a
lower tolerance for failure. Less testing and more real-world
environment monitoring is often better for SaaS and web
applications, where it is possible to test changes and new features
immediately and invisibly without degrading user experience.

Recommendations: Once again, teams should follow the industry
trend and perform more testing up front for products that are
“boxed” (not easily updatable) or high-risk (medical, financial)
because low-defect software is essential right out of the gate
in order for the product to retain customers. The majority of
software, however, is web-based, and can still benefit from
significant up-front testing, but it is more important to use heavy
monitoring and instrumentation, not just to prevent negative user
impact, but to recover quickly when problems inevitably arise.
Emil Gustafsson’s article in this guide, “Monitoring is Testing”,
gives a more granular view of the up front testing/monitoring mix
you should be using.

[1] blog.codinghorror.com/making-developers-cry-since-1995

Executive
Summary

http://www.dzone.com/guides
http://blog.codinghorror.com/making-developers-cry-since-1995/

4 dzone’s 2015 guide to code qualit y and soft ware agilit y

dzone.com/guides dzone’s 2015 guide to code quality and software agility

almost all development shops test
Starting with the basics, we asked respondents whether their team
does testing at all. 87% said they do, leaving 13% who don’t. 95% of
respondents said they believe that testing is necessary on all the
software they develop, meaning 8% of respondents don’t do testing,
but believe they should. We told respondents to disregard sanity
testing (basically to use the software as a customer would, to see if
it works roughly the way you want it to) as a type of testing for the
purposes of this question. This leads us to conclude that there is still
a small contingent of developers that don’t see the value in testing,
but the overwhelming majority consider testing to be a vital part of
software development.

sCrum and Custom agile methods are
fairly popular
53% of respondents said they use Scrum while 47% said they use
a custom agile methodology. This was a select many question,
so other common development practices included Test-Driven
Development (40%), Waterfall (31%), and DevOps practices (28%).
For those that employ Behavior-Driven Development (15%), which
is a methodology built on top of TDD, if they answered BDD but not
TDD, we added them to the TDD total. Kanban has 18% adoption
among respondents, while Extreme Programming, even though
most modern development practices are imbued with its principles,
boasts only 8% who say they use the entire methodology.

over tWo-thirds of orgs have a dediCated
Qa or testing team
Respondents were asked if they have a dedicated quality
assurance (QA) and/or testing team or individual, and while 30%
have neither, 49% have dedicated QA and 32% have dedicated
testing. But since there is often disagreement about what QA
includes, we asked all the respondents who had either of those
teams whether the testing team is a part of the QA team for the
next question. We found that most respondents (72%) have QA
teams that include testers. 28% said QA and testing are separate
in their organization.

most developers do some Kind of testing
To most development shops, it makes sense that developers
would write some of the tests since they’re writing the code and
can test their own contributions shortly after they’re written.
Unit testing is one type of test that’s mainly in the domain of
developers. We found that 92% of developers do some kind of
testing, checking, and/or bug-finding at their organization.
76% of QA and/or dedicated testing teams do checking, but that
question also included respondents who didn’t have QA or testing
teams. When you remove those respondents from this question,
it’s nearly 100% of QA or testing teams that participate in
testing, as expected. Other major participants in testing among
respondent’s organizations were Product Owners (48%), the final
customers (35%), Project Managers (28%), and beta testers (22%).

developers do unit testing While Qa
foCuses on funCtional and uat
As we mentioned in the previous section, unit testing is mainly
handled by developers in most organizations, and that assertion
is supported by our results. When asked what types of testing
they handle, developers overwhelmingly said unit testing
(90%). The next most common quality enhancing practices that
developers perform are functional tests (68%), code reviews (68%),
and integration testing (66%). QA and testing teams, in contrast
to development, don’t perform much unit testing (12%, 17%), but

Key Research
Findings

more than 600 it professionals responded
to dZone’s 2015 Code Quality and
software agility survey. here are the
demographics for this survey:

01. Developers (36%) and Development Leads (21%) were the
most common roles.

02. 63% of respondents come from large organizations (100
or more employees) and 37% come from small organizations
(under 100 employees).

03. The majority of respondents are headquartered in Europe
(41%) or the US (36%).

04. Over half of the respondents (73%) have over 10 years of
experience as IT professionals.

05 . A large majority of respondents’ organizations use Java
(76%). C# is the next most popular language (36%).

01. methodologies employed 03. Who partiCipates in testing?02. does your organiZation
distinguish betWeen Qa and
testing?SCRUM53%

CUSTOM AGILE47%

TDD40%

WATERFALL31%

DEVOPS28%

72%
QA INCLUDES

TESTERS

28%
SEPARATE

TEAMS

92%
76%

48%

35%

DEVELOPERS

PRODUCT
OWNERS

FINAL
CUSTOMERS QA AND/OR

TESTING

http://www.dzone.com/guides

dzone’s 2015 guide to code qualit y and soft ware agilit y 5

dzone.com/guides dzone’s 2015 guide to code quality and software agility

they do perform a fair amount of functional tests (70%, 64%)
and integration tests (56%, 54%). QA and testing teams tend to
perform more usability tests (47%, 53%) and UAT (61%, 62%) than
development (usability 17%, UAT 21%). Only 8% of organizations
that test their software said that they use outsourced teams. The
types of tests they do are similar to testing and QA teams with
functional (62%), integration (45%), and UAT (43%) as their top three.
The survey also found that developers are more likely than QA or
testing to use static code analysis tools, and that security testing
was the least common test type employed when development,
testing, and QA were combined. When asked to rank their testing
priorities, security was also in last place. The rankings were: 1.
Functionality, 2. Usability, 3. Efficiency / Performance, 4. Security.

the definition of done (dod) varies
signifiCantly among orgs
The most basic definition of done for software products is also
the most common for respondents: 79% say its when all code
compiles and builds for all platforms. Other common answers
were: Features reviewed and accepted by Product Owner (65%), Unit
tests are implemented for new functionality and are all green with
known failures noted (63%), New features are system-tested (59%), and
Acceptance/story tests are written and passing (52%). We also asked
whether respondents had ever had deadlines in their current
product team that caused them to release with less testing than
they thought was necessary. 72% said yes.

many shops run tests as they Code
Even though only 40% of respondents practice TDD, 61% run unit
and functional tests as they code, which is one of the first steps
to enacting TDD. 54% run those same tests before code is pushed
to source control, and 49% run them when the code is deployed
to an integration environment. Many respondents also have
the groundwork in place for BDD, with 35% saying they have a
language structured around their domain model that allows
the average stakeholder to understand the business logic of the
application and participate in its design. Still, only 15% said they
practice BDD.

70% / 30% split betWeen produCtion Code
and testing Code
While some philosophies consider testing code a form of
production code, for the purposes of this question, we separated
them by the code’s purpose. 30% is the average amount of time
respondents think they spend building code for tests, and they
say that they’re building production code the other 70% of the
time. This is a fairly good split considering research from Delft
University that shows CS students only spent 4% of their time
writing test code, even though they self-reported much higher
numbers [1]. If we’re measuring this split against Fred Brooks’
seminal work, The Mythical Man Month, then the split should try
to reach 50/50.

it orgs tend to have more developers and
feWer testers
When asked about the ratio of testers to developers, the largest
percentage (23%) made no distinction between testers and
developers. The second largest percentage (20%), said the ratio
was one tester for every five developers, or more. These results
clearly point to more developers and fewer testers being the
norm in IT organizations.

unit, funCtional, and integration are the
most important tests for orgs
Taking their entire immediate product team (Devs, QA, Ops)
into account, respondents were asked to give a never, rarely,
sometimes, often, always ranking to various kinds of testing.
Unit, functional, and integration ratings were heaviest at the
‘always’ end of the spectrum, indicating the importance of
those types of testing. UAT and code reviews were also fairly
important with an even distribution between ‘sometimes,’
‘often,’ and ‘never.’ Usability testing, performance monitoring,
and exploratory testing were firmly averaging in the middle of
the rankings around ‘sometimes,’ while static code analysis and
security testing seemed to be the least important, with most
rankings around ‘rarely’ and ‘sometimes.’

[1]: gousios.gr/pub/test-time-nier.pdf

04. testing types done by eaCh department: developers

06. groundWorK for tdd, bdd

05. testing types done by eaCh department: testers / Qa

07. time spent on test Code vs. produCtion Code

(QA) FUNCTIONAL TESTS 70

(TESTING) FUNCTIONAL TESTS

(TESTING) UAT

(QA) UAT

(TESTING) USABILITY TESTS

(TESTING) UNIT TESTS

(QA) UNIT TESTS

64

62

61

53

47

17

12

(QA) USABILITY TESTS

UNIT TESTS

FUNCTIONAL TESTS

CODE REVIEWS

INTEGRATION TESTS

90

68

68

66

40% PRACTICE TDD

TEST AS THEY CODE

PRACTICE BDD

HAVE DOMAIN-DETERMINED LANGUAGE

61%

15%

35% 50%
PRODUCTION

DZONE
AUDIENCE

MYTHICAL
MAN MONTH

30%
TEST

DELFT CS
STUDENTS

4%
TEST

96%
PRODUCTION

70%
PRODUCTION

50%
TEST

http://www.dzone.com/guides
http://www.gousios.gr/pub/test-time-nier.pdf

6 dzone’s 2015 guide to code qualit y and soft ware agilit y

dzone.com/guides dzone’s 2015 guide to code quality and software agility

Have you ever worked on a project where you
thought your software was great and your
managers didn’t? When that occurs, the team feels
demoralized. “What did we do wrong? We thought
we delivered what our customers (or managers)
wanted. Why don’t they like the software?”

We often think of software quality in terms such as “fit for
use,” “exceeds expectations,” or even “we’ll know it when we
see it.” However, I find it more interesting to think about Gerald
Weinberg’s definition of quality:

Quality is value to some person.

You have many someones investested in a software development
project: customers, managers, the project team, and possibly
other people across your organization. For example, if you have
a help desk or a support department, those people might judge
your product quality differently than you do as a developer or
manager. Let’s consider the different aspects of quality and the
different things stakeholders care about.

Consider all aspeCts of Quality
Quality is more than limiting or eliminating defects in your
software. Quality also includes the software’s feature set, when
the software feature set will be available to customers (release
date), and project cost. For some organizations quality includes
increasing the knowledge and skills of team members as they
complete the project.

As developers, you might focus on the feature set as the most
important aspect of quality assessment. You might think an
incomplete feature deserves top priority. But often, conversations
with customers or managers (e.g., product owners, project
managers) on this issue indicate a different set of priorities:

Product Owner: “We need the product to release in two weeks.”
Developer: “Feature XYZ isn’t done.”
Product Owner: “I don’t care. We have to meet the release date.”

The release date is a big part of the quality definition for product
owners and their customers.

I like to think about constraints, drivers, and f loats when I think
about what quality means to my project.The organization sets the
constraints: release cost, project team, and project environment.
We have all worked on projects where the original “constraints”
were not, in fact, constraints at all. Depending on what’s
important to management, the release cost can increase or the
project team can grow or change.

The customers care about the final product’s release date (when
they will receive their software), the set of features (what
is included in the software), and defect levels (how well the
software features operate upon product delivery). Your priorities
should match theirs, and if you run out of time, sometimes you
may descope the feature set or increase the expected defect levels.
The point is, you need to know what quality really means for
your project.

I like to provide project sponsors with options and clarify
expectations at the beginning of a project. “If we’re three weeks
before the release date, and we’re still finishing feature development,

Why Your
Managers Think
Your Software
Quality is Great—
or Not
by johanna rothman

QuiCK vieW

01
Software quality depends on both an
organization’s goals and its customers’
needs. The definition of quality for each
product is ideally determined by managers
based on these goals and needs.

02
Quality is more than just ensuring a lack
of software defects. It can also include
project cost, feature release time, and
even team skill development.

03
Determine your primary quality metrics
by deciding which things you would
prioritize three weeks before launch.

04
The quality metrics that teams focus
on should shift with the maturity of a
product and the growth of its user base.

http://www.dzone.com/guides

dzone’s 2015 guide to code qualit y and soft ware agilit y 7

dzone.com/guides dzone’s 2015 guide to code quality and software agility

and we have more defects than we planned on having, where should
we focus our attention?” I lay out the options clearly:

A. Finish the features

B. Fix the defects

C. Release on time, as-is

D. Stay within the budget, regardless of what you do

I tell the sponsors, “you can only choose one of these.” This way, I
force the sponsor to decide what is truly driving the project. If you
know what your sponsor wants, in order of preference, you can
make informed decisions throughout the project to deliver the
quality the sponsor wants.

Some sponsors say, “I want it all. It’s all #1.” But they can’t have
all of these aspects driving the project. While a choice has to be
made, let them know that all of their criteria will be recognized in
the order that they are ranked. Each aspect of the project, and it’s
priority, defines this project’s quality.

What do your Customers reQuire for
produCt Quality?
If you constantly work under time constraints, you might think
that providing a good product on time is the best definition of
quality. Not everyone wants something fast. One useful perspective
on quality is to think about your product’s life span and when
certain customers may adopt of your product.

Quality Perspectives Across a Product’s Lifecycle (from Manage It!
Your Guide to Modern, Pragmatic Project Management)

If you have a product that solves a specific problem or small set of
problems for the early market, you will have just a few customers,
labelled in the Quality Perspectives chart as Technology Enthusiasts,
who will expect a fast release. As you progress in the early market to
the Visionaries, you will have more customers. The Visionaries want
you to solve their problems, and their problems are all over the place.
If you’ve ever played “feature leapfrog” with a competitor, you know
this problem. This group still wants specific feature sets, but they care
more about the speed of release than the Technology Enthusiast.

To hit the mainstream, you have to cross the “chasm” between
Visionaries and Pragmatists. Many small companies never reach the
mainstream because they don’t create enough features to engage a
mainstream market, they release products with too many defects,
and/or they release at the wrong time, so they don’t capture their
potential customers.

Once your product hits the mainstream, things change. Your
customers don’t necessarily want more features. They want the
features you produce to work. Release time is still important, but not
as important as making sure the features work.

The later in the market timeline you are, the less your customers care
about the speed of release. Now the priority is on low defects—quality
is not assumed here. You have to prove yourself each and every
release. These later customers also care that you solve their problems
without introducing more.

Although this product timeline can be helpful, you still can’t assume it
will tell you exactly what quality means to your customers. You may
end up having all five types of customers in the chart, regardless of
where your product is in its life span, and you’ll have to choose which
customers to satisfy first, second, third, etc. (and you may never get
around to satisfying some customers).

I have worked on projects for which the release date was the sole
priority (time to release). I’ve worked on projects that required we
fix outstanding problems while avoiding the introduction of new
problems (low defects). I’ve also been on projects where we had
to make sure a few new scenarios worked well in order to meet a
specific release date (low defects followed by time to release).

Each project is unique. If you know what your customers find
valuable, you will be more successful.

What your managers find valuable
Managers care about revenue, customer retention/acquisition,
and user experience. Even if you are an internal IT organization,
managers care about whether your products allow your coworkers
to do their jobs better or faster (which affects revenue and customer
acquisition). If your coworkers (your customers in this case) don’t
enjoy working with the system, and if you don’t make installation
and upgrades/rollbacks easy, the system won’t be used.

If you need to talk management about the quality of your software,
plan to frame the conversation around revenue and user experience,
as well as any other requirements.

Quality is uniQue to your projeCt
Quality is not one size fits all. Sure, you can work to reduce technical
debt, or not create more, as you work; agile approaches can help
you do this. However, you should also identify what’s driving your
project to create a quality experience. Although you may want to add
more features and push back the release date, that might not be the
primary quality metric for your customers. Once you know what’s
driving your project, you can decide how to organize the project and
decide which technical practices will best enhance product quality.

johanna rothman is the head of Rothman Consulting
Group and the author of ten books on managing software
development, hiring developers, and the job hunt. She writes
two blogs at jrothman.com and createadaptablelife.com.

Early Market End of LifeMainstream

The ChasmSize of
Customer
Base

Technology
Enthusiasts

1. Feature Set

2. Time to Release

3. Low Defects

1. Time to Release

2. Feature Set

3. Low Defects

1. Low Defects

2. Time to Release

3. Feature Set

1. Low Defects

2. Feature Set

3. Time to Release

1. Low Defects

2. Feature Set

3. Time to Release

Visionaries Pragmatists Conservatives Skeptics

Quality is not
 one size fits all.

http://www.dzone.com/guides
http://www.jrothman.com/books/manage-it-your-guide-to-modern-pragmatic-project-management/
http://www.jrothman.com/books/manage-it-your-guide-to-modern-pragmatic-project-management/
http://www.jrothman.com
http://www.createadaptablelife.com

8 dzone’s 2015 guide to code qualit y and soft ware agilit y

dzone.com/guides dzone’s 2015 guide to code quality and software agility

Maybe you can’t do a one-fi ngered push-up, but you can master speed and scale

with Sauce Labs. Optimized for the continuous integration and delivery workfl ows

of today and tomorrow, our reliable, secure cloud enables you to run your builds

in parallel, so you can get to market faster without sacrifi cing coverage.

A U T O M A T E D T E S T I N G
H A S S A U C E L A B S .

Try it for free at saucelabs.com and see

why these companies trust Sauce Labs.

M A R T I A L A R T S
H A S B R U C E L E E .

http://www.dzone.com/guides
http://bit.ly/1VsAEqb
https://www.facebook.com/saucelabs
https://twitter.com/saucelabs
https://plus.google.com/%2BSauceLabs_Official

dzone’s 2015 guide to code qualit y and soft ware agilit y 9

dzone’s 2015 guide to code quality and software agility

When organizations build quality into
the product, they begin a virtuous cycle
of better and faster releases

Faster releases with better quality. If you follow this mantra,
you are doing DevOps, whether you call it by that name or not.
So why are so many companies neglecting quality?

Until recently, QA was something that happened after the code
was written, and not something that needed to happen at each
stage of development. However, new tools make it possible for
any organization to include quality on day one of development.
This “built in” approach not only keeps customers happy, but
also makes the development team more efficient. While this
implies major changes to processes, new automation tools and
services can substantially ease the transition.

Modern QA tools allow organizations to build quality into the
product from the start, versus finding problems late in the
development process. They include whole testing grids that
are on-demand and allow end-to-end functional testing to
occur multiple times per day. Tools that increase test coverage

immediately without new test cases or scripts. And tools that
offer the same level of testing for both web and native mobile
applications.

As organizations move to Continuous Delivery (CD), testing
starts with automated unit tests on developer workstations,
continues with automated functional testing in shared
staging environments, and finishes with automated delivery
or deployment. Everyone is instantly aware of defects that
break builds, and because builds and testing occur continually
throughout the development process, defects are found earlier
and are easier to fix. The QA team morphs into facilitators.
Building automation, and strategies to reduce the average
number of bugs per release.

The more bugs you have, the more you will create. Software
issues compound over time. However, when organizations build
quality into the product from the start, they begin a virtuous
cycle of better and faster releases. After all, if your competitors
have better products because of awesome test automation, and
you don’t, you will lose.

Written by lubos parobeK
VP Product, SAUCE LABS

Continuous
Delivery for Better
Software, Faster

sponsored opinion

Our cloud-based platform helps developers securely test mobile and web applications across
600+ browser/OS platforms and mobile devices.

BLOG sauceio.com weBsite saucelabs.comtwitteR @saucelabs

Sauce Labs Automated Testing Platform by Sauce Labs

Case study

The Yahoo Mail team managed 20 VMs manually, which meant
only 20 tests could be run in parallel. Needing to scale its testing
environment to ensure quality, the team bumped its VM count to
100, but soon found that managing the internal infrastructure was
too time-consuming. After moving to Sauce Labs, they increased
the VMs they were using in order to speed up their builds and run
more tests in parallel. Today, 30 Mail engineers run more than
10,000 integration and functional tests per day in parallel in 100
builds across Chrome, Firefox, and IE 10 against the server. The
screenshots are especially helpful, because some of the test cases
run great in a local environment, but when testing outside the
Yahoo! network, there are challenges.

strengths

•	 Instant access to our automated testing platform
with 600+ browser/OS/device configs

•	 Reduce testing time from hours to minutes by
running tests in parallel

•	 Eliminate false positives due to unupdated
browsers, operating systems, or residual data

•	 Optimized for popular CI systems, testing
frameworks, tools, and services

•	 Yahoo

•	 Salesforce.com

•	 Yelp

•	 Twitter

notable Customers

Category

Test Platform
api or sdK?

API
open sourCe?

Yes

http://www.dzone.com/guides
http://bit.ly/1Ewg9EZ
http://bit.ly/1NSU6dy
http://bit.ly/1KnGK9I

10 dzone’s 2015 guide to code qualit y and soft ware agilit y

dzone.com/guides dzone’s 2015 guide to code quality and software agility

Refactoring
In A Legacy
Code Jungle
by gil Z ilberfeld

QuiCK vieW

01
The first steps toward refactoring your
legacy code for testability include a
thorough read-through, re-organization
of the file structure, and renaming of
classes, functions, and variables.

02
Next, change the code to introduce
access points for new tests using
proven refactoring patterns.

03
Finally, separate and remove
dependencies from the code.

Refactoring is a safe action when you have
existing tests in place to make sure the working
code isn’t broken in the process. However, many
organizations accumulate legacy code without
building or maintaining corresponding tests,
and you can’t write proper tests until you’ve
refactored the code. DZone’s 2015 Code Quality and
Software Agility survey results report that 61% of
respondents were limited in their ability to write
automated tests because they had legacy code that
needed to be rewritten. In this situation, there are
two choices: forgo the adventure altogether or do the
brave deed and modify the code.

By leaving the code as-is, you incur costs not just in terms
of ongoing maintenance, but you also have to add future
maintenance costs to the equation. The code slowly rots away
and future change costs rise.

When the project can no longer afford to take on more technical
debt, modifying the code is the only choice. The problem is
that writing tests for legacy code is hard. Depending on your
language of choice (or maybe the current language wasn’t even
your choice), here are some of problems you might encounter
when trying to write new tests:

•	 The tested object can’t be created.

•	 The object can’t be separated from its dependencies.

•	 There are singletons that are created once and impact
different test scenarios.

•	 There are algorithms that are not exposed through a public
interface.

•	 There are dependencies inherited by the tested code.

Yes, it’s challenging to write new tests on legacy code—but this
doesn’t change the fact that legacy code is often the area of a
product most in need of testing.

In other words, you’re going into the jungle.

But before you do, you better tool up with enough refactoring
techniques so that when you bump into trouble, you’ll know
what to do. Some of these techniques are automatic, which
can cut out tedium and human error. Others are manual, and
therefore carry an unknown amount of risk. You need to match
the tool to the task at hand.

getting aCQuainted With the hostile
environment
Before you start moving code around, become familiar with
your surroundings. The first step is to read the code, jump
around from file to file, and think about how you might be able
to organize the project a little better. Then start by reorganizing
the source structure. Move co-located classes to separate files,
move types into areas where you would expect to find them, and
fix typos to increase readability and maneuverability working
in the codebase. The structure is a model of the code, and if it’s
hard to understand the model, it will be difficult to refactor
confidently. If we feel comfortable, we’ll be more confident
making further changes.

After things are in place, start renaming. Classes, functions,
variables, files—anything that can improve readability. If
programmers understand the code, the tests will be more

http://www.dzone.com/guides

dzone’s 2015 guide to code qualit y and soft ware agilit y 11

dzone.com/guides dzone’s 2015 guide to code quality and software agility

effective (and there’s not much point in testing the code if it can’t
be understood).

Be sure to modify names that don’t fit their true purpose/
describe their functions. For example, we have a function called
“getValidCustomer” that returns a success code if a Customer
object is updated from the database. It makes sense to rename it to
“PopulateValidCustomer.” (While we’re at it, change it to a void
method.) Now the names describe the function.

Choosing good names is not as simple as it seems. There’s an art to
it, especially with giant catch-all classes. If we use more accurate
names, we can mentally (and structurally) refine our model. On the
other hand, using generic names hides functionality, which causes
inappropriate functionality to gravitate into these classes like a
giant black hole. (If you’ve ever written a “-Utils” class, you know
what I mean. If you bump into these classes, try to separate them
and rename them properly.)

Renaming is low-risk, as it’s mostly done automatically by the
IDE. Usually, when doing pre-test renaming, it’s recommended
that you concentrate more on method names and variables in the
code. These are usually small enough to modify without making
any larger, potentially damaging changes.

penetrating the foliage
In order to test code, you need to access it in different ways: probe the
code and check the results; set up data and see how the code reacts;
and replace dependencies with mock objects in order to control the
tests. The more access points available, the easier writing tests will
become. The setup and validation code will be shorter, less prone to
error, and able to get better coverage.

We can change the code to introduce access points using these
refactoring patterns:

•	 Change accessibility: Change method signature from private
to public.

•	 Introduce field: In a long method that does many things,
store tested data in accessible fields.

•	 Add accessors: If data is too hidden, use “getters” and “setters”
to probe and modify that data.

•	 Introduce interfaces: If we want to mock a dependency,
split its functionality into separate interfaces and mock the
specific one you need. Then it can be used correctly once
testing begins.

•	 Virtualize: Enable overriding and redefining functions by
making them virtual.

Like renaming, these changes are also low-risk. However, you might
encounter some resistance from peers who will say, “we shouldn’t
expose that, it’s not proper design.” Reassure them these exposures
and modifications are temporary for the purposes of test design, and

that a more sophisticated approach can be taken once the code is
refactored and the new tests are built.

removing obstaCles for maKing a pathWay
Once you can access the code and its dependencies, it’s time to
actually move code around—this time it’s not just for readability.
By separating and removing dependencies, writing the tests
becomes a simpler process.

There are many patterns available to remove dependencies from
the code:

•	 Move methods: Especially in large classes, there are private
methods that clearly don’t belong in that class. When these
methods also use dependencies, they can be moved to
separate classes. I usually identify extractable bits of code in
the complex methods, then extract to private methods in that
class. You can also explore if these methods can be moved
into other classes. From this, we get two benefits: the large
class is reduced in size, and you can mock the new method
instead of the direct dependency.

•	 Extract classes: The methods mentioned above can also be
extracted to entirely new classes. An additional benefit is
that you can specialize the new class, give it a proper name,
and make sure that it won’t become a black hole.

•	 Introduce parameter: When methods use a dependency
directly (and probably more than one dependency), this
process should be modified so that dependencies are sent to
methods from the calling code. This way you can set up the
dependency from the test. For example, if a function calls
a static method, you can introduce a parameter that will
contain the result of that static method call. Not only does
this weed out the dependencies and make the code testable,
it moves the dependency call up the chain. By doing this, you
can use Extract Class for the tested code and benefit from
having a separation of concerns.

Moving code around in these steps does increase the risk of
affecting system function. Slow, thoughtful modifications,
executed in pairs, will help to avoid breakage. Luckily, some
of these modifications can be done automatically by the IDE,
reducing that risk.

the adventure begins
Our journey began in the jungle with the prospect of modifying
legacy code for the benefits of testability. The truth is, these
techniques also apply to general refactoring—modifying the code
to be simpler, modular, and more readable.

Teams usually don’t stop here, though. After clearing a path,
the real fun begins. You can separate more classes, extract logic
from loops, invert conditionals, and make other higher-risk
modifications. As the code is simplified, tests will become easier
and more effective.

But the sun is setting, and you need to set up camp. You’ll have to
continue this journey on your own. There is a wealth of resources
out there dedicated to this subject, so don’t stop here.

gil Zilberfeld has over 20 years of experience
developing, testing, managing, and designing software. He is a
speaker, blogger, consultant, trainer, and practitioner of agile
practices, both technical and procedural. He is also the author
of Everyday Unit Testing.

YES, IT’S ChALLENgINg TO wRITE NEw TESTS
ON LEgACY CODE—BUT ThIS DOESN’T ChANgE
ThE FACT ThAT LEgACY CODE IS OFTEN ThE
AREA OF A PRODUCT MOST IN NEED OF TESTINg.

http://www.dzone.com/guides
https://dzone.com/refcardz/refactoring-patterns
http://www.gilzilberfeld.com/blog-2
https://leanpub.com/everydayunittesting

12 dzone’s 2015 guide to code qualit y and soft ware agilit y

dzone.com/guides dzone’s 2015 guide to code quality and software agility

http://www.dzone.com/guides
http://www.tasktop.com/sync
http://www.tasktop.com/data
http://www.tasktop.com/why-SLI
http://bit.ly/1fRGe5x

dzone’s 2015 guide to code qualit y and soft ware agilit y 13

dzone’s 2015 guide to code quality and software agility

One of the most hotly debated issues in software development
and delivery is the definition of “software quality.” One thing
that’s agreed is that software quality isn’t simply the job of a QA
department. It requires collaboration across the entire software
development and delivery lifecycle.

For example, if the PMO, business analysts, production owners,
developers, testers and others do not regularly collaborate on
the requirements and defects, there is little chance that the
team will produce a satisfactory application. Similarly, if project
teams can’t fully understand the nature of their defects, how
can they know if the application is “done?”

But there are many impediments in the way, one of which
results from the disparate tools used to develop and manage
these artifacts. Each of the disciplines in the lifecycle has their

own specialized tool, with their own view of these common
artifacts. And, unfortunately, these tools aren’t integrated
with one another. So the only way to share and collaborate on
these artifacts is through email, meetings and spreadsheets.
Additionally, there is no straightforward way to get cross-
project metrics and visibility. This introduces delays and errors,
and ultimately reduces the ability of the team to produce a high-
quality product.

But if these tools were integrated, colleagues would be able to
work more f luidly together. They would work on these artifacts
in the tool they normally use, but with the benefit of updates
from other colleagues working on the same artifact in their own
tools. Additionally, reports could easily be generated that would
support an organization’s definition of “software quality.” As an
example, by automating traceability among requirements, tests
and test results organizations can concentrate on defects in the
most important areas of the application, enhancing the user’s
perception of quality and providing applications that delight
their users.

Written by betty ZaKheim
VP, TASkTOP

Using Tool
Integration to Take
a Lifecycle View of
Software Quality

sponsored opinion

Tasktop Sync integrates software delivery tools, reducing the friction between stakeholders
and increasing their capacity to do great work.

BLOG tasktop.com/blog weBsite tasktop.comtwitteR @tasktop

Tasktop Sync by Tasktop

Case study

When organizations buy new tools, they often forget to consider
how that tool integrates with existing tools. After all, there
are certain artifacts that are created by one discipline, that
must be shared with other disciplines, or the value of that
artifact is diminished. Defect reports logged by testers in a
defect management tool, should automatically appear in the
issue trackers the developers use. And user stories defined
in a requirement management tool should automatically
appear in the tools testers use to define their test cases.
Tasktop synchronizes artifacts across all these tools to allow
each practitioner to work in their tool of choice while getting
continual updates from their colleagues.

strengths

•	 Synchronizes defects, requirements, tests, help desk
tickets, issues, and much more

•	 Increases collaboration, visibility, and traceability

•	 Reduces errors, traceability gaps, and wasted time

•	 Enables non-developers to integrate tools across the entire
development lifecycle

•	 Enterprise-grade performance and robustness; integrates
complex tools and workf lows

27 of the Fortune 100; 7 of the top 25 world banks; 4 of
the top 7 US insurers; 3 of the top 6 health plans—use
Tasktop products

notable Customers

Category

SDLC Tool Integration
api or sdK?

SDK
open sourCe?

No

Making certain that software is of high
quality requires every discipline in the
software development and delivery lifecycle

http://www.dzone.com/guides
http://bit.ly/1JHlrxD
http://bit.ly/1JHlrO9
http://bit.ly/1X6F3kq

14 dzone’s 2015 guide to code qualit y and soft ware agilit y

dzone.com/guides dzone’s 2015 guide to code quality and software agility

Monitoring
Is Testing
by emil gustafsson

QuiCK vieW

01
Boxed software, or software with high costs
for each defect, needs more up front testing
to ensure quality standards are met, while
web-based service software needs more
monitoring and instrumentation.

02
Focusing 100% on stable unit and
functional tests will not help you find new
bugs in your system. You need manual
tests and techniques like fuzz testing.

03
Your application needs to have the proper
instrumentation for exposing health
properties such as requests per second,
request completion time, failure rate, etc.
This instrumentation itself also requires
monitoring and maintenance.

Software quality has traditionally focused only
on the number of defects in a system. Testing was
the main technique for decreasing those defects.
Today, we know that quality is not something you
can test into a product—it has to be part of the
product from the start. And while testing can still
be used to ensure quality, there are other strategies
we need to consider. The definition of quality is
not the same for every organization, because the
type of product being developed changes with an
organization’s needs and priorities.

testing depends on the deployment model
First, let’s consider boxed software: software that is packaged
and sold in a “box” (virtual or physical). This type of software
is difficult to update and feedback from users is traditionally
scarce. Since updates take a long time and are typically
expensive, extensive testing is needed before releasing boxed
software. Because of cost, automated testing rather than manual
testing would seem to be the preferred choice, but a balance of
methods is necessary to effectively to monitor these programs.

A major problem with automated tests is that they are typically
an ineffective method for identifying new bugs unless they are
designed for that purpose. Unit and functional tests should be
stable, consistent, and reproduce the same result every time. This
results in an unfortunate blind spot with regards to new bugs, as
these tests are only able to identify regressions—something that
programming teams often forget.

In my experience, focusing 100% on stable unit and functional
tests, without any other test component, will not give you the
software quality you want. However, integration of other
techniques can help fill the gaps. Manual testing finds new bugs
and so do tools that are designed to find new tests. Fuzz testing,
where inputs are mutated randomly, finds one category of bugs.
There are also variants of fuzz testing tools that are smarter than
the basic random-input versions. These will analyze the code to
figure out what values to use. IntelliTest in Visual Studio 2015,
formerly known as Pex, is such a tool.

If boxed software is at one end of the software model
spectrum, services are at the other end, in particular, services
in a cloud environment. Cloud services offer the potential to
have multiple versions of your service running at the same
time during deployments. In a service, the need for thorough
up-front testing is not as important as it is in boxed software.
Instead, the ability to detect defects in live applications
is far more important. In fact, it’s more effective to focus
your software refinement efforts on detection in a services
environment, because there is always the option to roll back to
the last stable version at the push of a button.

Clearly, a different set of tools is required to ensure quality
in services than what is required for boxed software. For
example, in a service you want the ability to try a new version
on only a single machine or even on a small subset of users
before the new version is released to all users. You also need
the ability to roll back to an older version and limit user impact
if something goes wrong.

However, this does not mean that you stop all up-front testing
for services. It only means that you might focus some (if not the
majority) of your efforts on using different tools and techniques
from boxed software testing tools. You also want to run tests

http://www.dzone.com/guides
http://research.microsoft.com/en-us/projects/pex/

dzone’s 2015 guide to code qualit y and soft ware agilit y 15

dzone.com/guides dzone’s 2015 guide to code quality and software agility

continuously in production (TIP-testing). That is, you essentially
want to run a certain set of tests all the time to make sure your
service is healthy.

all serviCes need instrumentation and
monitoring
How do you know your service is healthy and behaves the way
it should? The answer is instrumentation and monitoring. Your
application needs to have the proper instrumentation exposing
health properties, such as requests per second, request completion
time, failure rate, etc. This instrumentation, in turn, requires
monitoring and maintenance, meaning everything from
notifications that cause somebody to be woken up in the middle
of the night, to dashboards with pretty graphs, and automatic
actions such as automatically scaling by adding and removing
instances to a cloud service.

Good monitoring is relative. For example, using the absolute
number of a certain failure per second means that depending on
how popular the service is, the monitor is more or less likely to
trip. I’ve experienced this many times: an alert happens that has
never happened before and when the problem is investigated, it
turns out that the threshold for the alert is some absolute number
that represented a failure rate of a few percent a few years ago,
but with recent load, the absolute number only represents a
fraction of a percent.

My advice is to use relative monitors instead. When working
on a service, failures (or other anomalies) should almost always
be compared to the total amount of requests to your service.
With relative monitors, the system triggers alerts based on
percentages of that total load rather than absolute values. The
only real exception to this rule is latency monitoring, since
latency typically requires a different approach. For example,
many shops monitor when the 95th percentile reaches a value
higher than some absolute value. So if the slowest 5% of requests
take longer than 200ms then you want to act. While the
threshold here is an absolute value, the use of percentiles still
gives you a relative property that you want in your arsenal of
statistics to monitor. You want your monitors to trigger on real
problems and not have too many false alarms because we all
know what happens to somebody who cries wolf all the time –
they get ignored!

While I recommend gravitating towards instrumentation and
monitoring for services, this should be balanced with testing
for optimum results. As for boxed software, a fair amount of
instrumentation is necessary for an awareness of what problems
the users have and how your product is being used. However,
because the cost of updating boxed software is so high, you have
to hedge your bets with more testing.

hybrid softWare models
There’s a good deal of software that doesn’t fall solely under the
services or boxed categories. For example, there are a lot of apps
being developed today—small applications typically installed
on a phone or tablet. Apps are interesting to consider as a hybrid
model. They are very close to services in how they behave, but
they are like boxed software because new versions need to be
downloaded and installed by the user. Apps are typically easy to
install, but there is no guarantee that they will be updated. Also,
different platforms (Android, iOS, Windows) take different
lengths of time to review and deploy updates, so even within
this category, you need to consider how much testing is needed
versus relying on the ability to provide quick updates for your
app. Ultimately, because of the similarities between apps and
services, instrumentation of apps’ behavior is very important in
order to create a high quality app.

baCK to defining softWare Quality
There are several variables that affect how your organization
should define software quality. User base size is a large part of the
equation. If your software has a single user, you probably want
less up-front testing than if you have millions of users.

Another consideration is the cost of a defect. If your software
deals with trading stock on behalf of other users, an outage
of just a few seconds could cost you a lot of money even with
just a few users. So, in this case, a little more up-front testing
is probably necessary, even though your software is a service.
On the other hand, a service that provides daily stock quotes
to millions of users probably has little need for significant up-
front testing.

Life-critical software, like the code found in medical devices, is
another example of code that needs more up-front testing, both
because of the rules and regulations around their reliability,
and because of the significant human cost of any defect in that
software. If you’re not working with embedded software, most
modern boxed software can now be updated relatively quickly,
so here are some basic principles you can follow to create high
quality software in both boxed and service software settings.

•	 Make sure you have the capability to update your software
quickly.

•	 Make sure you know how your software behaves in the
hands of your users with instrumentation and monitoring,
Preferably through limited release of your product to only a
fraction of your total user base.

•	 Use automated tests to protect against regressions.

All in all, it comes down to observing how your software behaves
in real life rather than in an artificial environment. That is how
you achieve software quality: by measuring user impact, and not
just preventing bugs, but responding quickly once you find them.

emil gustafsson is an Engineering Manager at
Ericsson in Silicon Valley. He has spent the last 15 years
developing distributed systems for government agencies and
large companies. He frequently writes about software on his
blog, Being Cellfish. Emil is also a certified Scrum master that
never cared to pay for renewal.

Achieving software quality is about
measuring user impact.
 It’s not just about preventing
bugs, but responding quickly
once you find them.

http://www.dzone.com/guides
http://blog.cellfish.se/

Learn how to get back on track with AnswerHub.

GET A DEMO TODAY

Reducing duplicate
questions

Identifying topic
experts

Retaining your
team’s knowledge

dzonesoftware.com

Improve developer productivity with AnswerHub by:

TOP DEVELOPMENT TEAMS ARE SUCCEEDING WITH ANSWERHUB:

Collaboration e�orts derailed?

Get back on track.

 !

 !

http://www.dzone.com/guides
http://bit.ly/1Ewx4ra
http://bit.ly/1Ewx4ra
http://landing.dzonesoftware.com/request-demo-0

dzone’s 2015 guide to code qualit y and soft ware agilit y 17

dzone’s 2015 guide to code quality and software agility

Building software is hard. Building great software is even
harder. Building great software, delivered on time and under
budget is nearly impossible—even under the best conditions.
One of the key tenets of the agile process is that you iterate
quickly as you build new features. Unfortunately, this can
often leave inadequate time for proper specifications and
clarification as you endlessly move from sprint to sprint. Worse,
organizations very often have brilliant topic experts who take
their know-how with them when they leave the building. This
knowledge gap can lead to lost productivity and lost profit.

One of the key things that we get to do here at DZone Software
is help developers and other tech teams share their knowledge

better. Most organizations try to use tools like email or chat
to help get their questions answered during a sprint, leading
to the knowledge being captured in fundamentally transient
systems that lack proper discovery through search. It becomes
impossible to find new experts inside the organization,
because everyone always goes to the same people, leaving them
overwhelmed and under delivering on their own projects.

With our TeamHub platform and the AnswerHub Q&A product,
previously unknown experts inside the organization surface
through their participation in a knowledge-sharing process that
doesn’t involve filling out a blank wiki page or chatting with
someone. Organizational knowledge is captured so that as new
things are learned, they surface easily in future development -
leading to increased productivity and shortened training time.
Sprint close rates increase because team members are able to
find answers to their questions even after the experts have left
the building or even left the company.

Written by matt sChmidt
President and cto, DZONE

Faster Project
Delivery
Through Expert
Identification

sponsored opinion

Build Q&A communities like Quora and Stack Overflow with AnswerHub’s enterprise
application platform for collaboration and knowledge management.

BLOG dzonesoftware.com/blog weBsite dzonesoftware.comtwitteR @answerhub

AnswerHub by DZone Software

Case study

Unity is a f lexible development platform for creating multiplatform
games and interactive experiences used by 1.7 million developers.
Unity tried using forums to provide support, but as the community
grew, the forums became saturated with repeat questions and
endless threads, making it difficult for users to find relevant
information in a timely manner. They turned to AnswerHub
because the rich tagging system and advanced search bar minimizes
the number of duplicate questions and accelerates the speed with
which users can find answers. Unity’s community traffic grew
by over 20,000 visits (nearly 50%) per month in a year. Unity’s
community now supports more than 650,000 users, with 140,000+
questions and an average of 4.5 million page views per month.

strengths

•	 Q&A module allows users to post questions and crowdsource
answers

•	 Identify topic experts to get questions answered by those
who know best

•	 Document processes easily and create wikis to share
knowledge within your team

•	 Earn badges and reputation points in our built-in
gamification engine

•	 Integrates with tools like email, Parature, Conf luence, Hip
Chat, and more

notable Customers

Category

Project Management, Ideation,
Knowledge Management,
Collaboration

api or sdK?

API, SDK
open sourCe?

No

Building great software,
delivered on time & under budget
is nearly impossible - even under
the best conditions.

•	 Microsoft Xbox

•	 eBay

•	 GE

•	 Thomson
Reuters

•	 IBM

•	 LinkedIn

•	 Epic Games

•	 Pixar

•	 Unity

•	 Oculus

http://www.dzone.com/guides
http://bit.ly/1Kzv8it
http://bit.ly/1Q4aHKB
http://bit.ly/1UnHAma

Ron Jefferies

Jon Kern

Brian Marick

Robert C. Martin

Steve Mellor

Ken Schwaber

Jeff Sutherland

Dave Thomas

Kent Beck

Mike Beedle

Arie van Bennekum

Alistair Cockburn

Ward Cunningham

Martin Fowler

James Grenning

Jim Highsmith

Andrew Hunt

S I G N AT O R I ES

D Z O N E . C O M P R ES E N T S T H E 1 5 T H A N N I V E R SA RY

OUR HIGHEST PRIORITY IS TO SATISFY THE

CUSTOMER THROUGH EARLY AND CONTINUOUS

DELIVERY OF VALUABLE SOFTWARE.

WELCOME CHANGING REQUIREMENTS, EVEN LATE IN

DEVELOPMENT. AGILE PROCESSES HARNESS CHANGE FOR

THE CUSTOMER’S COMPETITIVE ADVANTAGE.

DELIVER WORKING SOFTWARE FREQUENTLY, FROM

A COUPLE OF WEEKS TO A COUPLE OF MONTHS,

WITH A PREFERENCE TO THE SHORTER TIMESCALE.

BUSINESS PEOPLE AND DEVELOPERS MUST WORK

TOGETHER DAILY THROUGHOUT THE PROJECT.

AGILE PROCESSES PROMOTE SUSTAINABLE DEVELOPMENT.

THE SPONSORS, DEVELOPERS, AND USERS SHOULD BE

ABLE TO MAINTAIN A CONSTANT PACE INDEFINITELY.

WORKING SOFTWARE IS THE PRIMARY

MEASURE OF PROGRESS.

BUILD PROJECTS AROUND MOTIVATED INDIVIDUALS.

GIVE THEM THE ENVIRONMENT AND SUPPORT THEY NEED,

AND TRUST THEM TO GET THE JOB DONE.

THE MOST EFFICIENT AND EFFECTIVE METHOD OF

CONVEYING INFORMATION TO AND WITHIN A DEVELOPMENT

TEAM IS FACE-TO-FACE CONVERSATION.

CONTINUOUS ATTENTION TO TECHNICAL EXCELLENCE

AND GOOD DESIGN ENHANCES AGILITY.

SIMPLICITY—THE ART OF MAXIMIZING THE AMOUNT OF

WORK NOT DONE—IS ESSENTIAL.

THE BEST ARCHITECTURES, REQUIREMENTS, AND

DESIGNS EMERGE FROM SELF-ORGANIZING TEAMS.

AT REGULAR INTERVALS, THE TEAM REFLECTS ON

HOW TO BECOME MORE EFFECTIVE, THEN TUNES AND

ADJUSTS ITS BEHAVIOR ACCORDINGLY

We are uncovering better ways of developing software by doing it
and helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the
items on the left more.

12 PRINCIPLES OF AGILE SOFTWARE

20 dzone’s 2015 guide to code qualit y and soft ware agilit y

dzone.com/guides dzone’s 2015 guide to code quality and software agility

Your Code Is Like
a Crime Scene:
Find Problem Spots With
Forensic Methods

by adam tornhill

QuiCK vieW

01
The same principles behind geographical
offender profiling, a technique used by
forensic psychologists, can also be applied
to a codebase.

02
Your version control system contains
much of the data you need to identify
where to focus your code quality
improvement efforts.

03
Sometimes, only a small percentage
of the codebase is responsible for the
majority of historic defects. By narrowing
down their efforts, developers can often
solve a large number of defects by
working on a very small section of code.

We’ll never be able to understand large-scale
systems from a single snapshot of the code. Instead,
we need to understand how the code evolves and
how the people who work on it are organized. That
is, we have to unlock the history of our system
to predict its future. Follow along and see how
your version control data can provide just the
information you need to prioritize and improve the
parts of your codebase that matter the most.

the Challenge of legaCy Code
If you’ve spent some years in the software industry, you’ve probably
encountered your fair share of legacy code. The real problem
with legacy code isn’t necessarily the lack of comprehensive unit
tests or even excess complexity. The problem is that no one truly
understands why the code looks as it does.

Legacy code is full of mysteries. For example, that strange if-
statement that seems to do nothing was once introduced as a
workaround for a nasty compiler bug that has now been fixed. The
re-use of the ‘userId’ parameter to represent a time stamp was a
quick and dirty fix that saved a deadline.

All these things are part of a system’s story; a history that’s often
lost with the passage of time. What you’re left with is a mess, and
now you need to maintain it, add new features, and improve the
existing code. Where do you start?

move beyond Code
Now, let’s pretend for a moment that you are handed a complete
map of the system. You immediately notice that it isn’t your typical

software diagram of boxes and cylinders. Instead, this map looks
more topographical. It shows the distribution of complexity in your
codebase along with information on the relative importance of
each part. You’re told that the map is generated based on how the
team interacted with the codebase, so you know it’s closer to reality
than most of the documentation. This is good news! Now you know
which components you need to grasp first and you know where the
most difficult spots are located. All of this drives your learning.

Wouldn’t it be great to have access to that information on your own
projects organized so you can concentrate on the parts that require
the most attention?. The good news is that you already have the
data you need—just not presented in the manner you need. We’ll
uncover this information by taking inspiration from an unexpected
field: forensic psychology.

learn from forensiC psyChology
Time and money are always important in commercial software
projects, so you need to find a way to gradually improve the
code while you maintain it. You also need to ensure that the
improvements you choose to make do the most good. Even if some
modules suffer from excess complexity, that doesn’t mean you
should focus on them. If the team hasn’t worked on a particular
module for a long time, there are probably other modules with
more urgent matters where your efforts will have a greater effect
on overall quality (that’s why complexity metrics alone won’t do
the trick). To identify the most problematic modules, you need to
prioritize all the design issues and technical debt you have in the
codebase, hardly an easy task

Interestingly enough, crime investigators face similarly open-
ended, large-scale problems. Modern forensic psychologists attack
these problems with methods such as geographical offender
profiling. Believe it or not, this method works for software
developers too.

http://www.dzone.com/guides
http://www.adamtornhill.com/articles/crimegallery/codecrimescenegallery.htm
http://www.adamtornhill.com/articles/crimegallery/codecrimescenegallery.htm

dzone’s 2015 guide to code qualit y and soft ware agilit y 21

dzone.com/guides dzone’s 2015 guide to code quality and software agility

A geographical offender profile uses the spatial movement of
criminals to calculate a probability surface for the location of the
criminal’s home base. This probability surface is projected onto a
real-world map and the high probability areas are called hotspots.

Crime investigators use these probability distributions to focus their
investigations. Instead of searching and supervising a vast area, law
enforcement can now focus their efforts where they are most likely
to apprehend their targets.

hotspots are based on spatial patterns
Geographical offender profiling works because crimes, at least their
geographic locations, are never random; the distribution of crimes
follows a set of known principles. For a forensic psychologist, once
they have a series of recorded crimes, they can detect patterns in the
spatial behavior of the offender. They then use that information to
predict where the criminal is located.

Software development is similar because code modifications aren’t
random either. Code changes for a reason: users want new features,
bugs appear and are fixed, and code improves as we learn new ways
to simplify it.

If you look into the evolution of a large system, you’ll see that
these modifications follow an uneven distribution. Some modules
stabilize early during development while others remain in a state
of f lux. The latter is likely to be a problem; code that changes often
does so either because the problem domain is poorly understood, or
because the code suffers from quality problems.

The geographical profiling technique provides an attractive solution
to the legacy code puzzle. Every time we make a change to our code
we give away a piece of information. A code change is like a vote for
the importance of a module. What we need to do is to aggregate all
those votes cast by the programmers who work on the system. Code
changes are our equivalent to spatial movement—and all of those
changes are recorded by our version control systems.

analyZe hotspots in Code
Version control systems are a gold mine, full of valuable
information on change patterns in legacy code. To identify hotspots,
we just need to traverse the source code repository and calculate the
change frequency of each module. That gives us a prioritized picture
of the most frequently modified code.

But there’s more to a hotspot than pure change frequencies. To
qualify as a hotspot, the code area also has to have a high likelihood
of overall quality problems. We don’t have a good metric for that
within software. What we do have is a decent approximation based
on complexity metrics from the source code. Everything from
simple heuristics, like lines of code, to more elaborate metrics, like
cyclomatic complexity, can potentially serve this purpose since the
differences in predictive value are usually small enough to ignore.

If we combine change frequency with code complexity, we get
an operational definition for hotspots. A hotspot is complicated

code that programmers also have to work with often. Such code
is often a maintenance nightmare. There’s empirical research to
support this claim: change frequency is one of the best predictors
of software defects [1].

I’ve listed some key tools and resources for finding and visualizing
hotspots in your own code.

Code Maat: A command line tool to mine and analyze data
from version control systems.

Code Maat Gallery: A gallery of the best examples from
various version control data visualizations.

Your Code as a Crime Scene: My book on forensic techniques
in code quality management.

Now that we know how hotspots are found, here are some tips on
how to best use that information.

use hotspots in praCtiCe
Hotspots in code, like their counterparts in crime investigations,
aren’t precise. Instead they suggest a probability of where most of
the problems are located. A hotspot analysis can guide your team
to the most beneficial areas to focus on for codebase improvement.
Some obvious uses of hotspots are to identify code that’s expensive
to maintain, and to prioritize which sections of code need to be
reviewed. You can also use hotspots to communicate with testers,
who use the information to focus their testing around hotspot-dense
feature areas.

Hotspots are a simple metric. That simplicity is a strength that
translates to practice surprisingly well. In a recent analysis of one
project I worked on, I found that system’s hotspots made up just 4%
of the code—but were responsible for 72% of all historic defects! In
other words, if our team were to improve just 4% of that codebase,
we would get rid of the majority of all defects. Similar situations
have been found in empirical research on software defects [2].

just a beginning
In this article we learned about hotspots as a way to direct our
software quality improvement efforts. Hotspots let you narrow down
a large system to specific, critical areas that need your attention.

Hotspot analysis is a powerful technique, but there’s so much more
we can do once we learn to analyze how our code evolves. Over
the past years I’ve used version-control data to predict bugs, detect
architectural decay, find organizational problems that show up in
the code, evaluate Conway’s Law, and more. Visit the links in the
Analyze Hotspots in Code section of this article to download the tool
that I use for finding hotspots and see examples of how it’s done and
how they’re visualized.

[1]: http://research.microsoft.com/pubs/69126/icse05churn.pdf
[2]: http://www.research.att.com/techdocs/TD_100504.pdf

adam tornhill is a programmer that combines degrees
in engineering and psychology. He’s the author of Your Code as a
Crime Scene, has written the popular Lisp for the Web tutorial and
self-published a book on Patterns in C. Adam also writes open-
source software in a variety of programming languages. His other
interests include modern history, music and martial arts.

the geographiCal profiling teChniQue

provides an attraCtive solution to the

legaCy Code puZZle.

http://www.dzone.com/guides
https://www.ncjrs.gov/html/nij/mapping/ch6_1.html
http://github.com/adamtornhill/code-maat
http://www.adamtornhill.com/articles/crimegallery/codecrimescenegallery.htm
http://pragprog.com/book/atcrime/your-code-as-a-crime-scene
http://github.com/adamtornhill/code-maat
http://pragprog.com/book/atcrime/your-code-as-a-crime-scene
http://www.adamtornhill.com/articles/crimegallery/codecrimescenegallery.htm
http://research.microsoft.com/pubs/69126/icse05churn.pdf
http://www.research.att.com/techdocs/TD_100504.pdf
https://twitter.com/adamtornhill
http://www.adamtornhill.com/articles/socialside/socialsideofcode.htm
https://pragprog.com/book/atcrime/your-code-as-a-crime-scene
https://pragprog.com/book/atcrime/your-code-as-a-crime-scene
http://www.adamtornhill.com/articles/lispweb.htm
http://leanpub.com/patternsinc

22 dzone’s 2015 guide to code qualit y and soft ware agilit y

dzone.com/guides dzone’s 2015 guide to code quality and software agility

PROJECT
MANAGEMENT
SHOULDN’T

SUCK

ThoughtWorks.com/mingle

• Work the way you want
• In-app communication

• Reports at your fingertips

http://www.dzone.com/guides
http://thght.works/1FcW0i6

dzone’s 2015 guide to code qualit y and soft ware agilit y 23

dzone’s 2015 guide to code quality and software agility

If you have a very vocal QA on your team, you’re lucky. Quality
Assurance is a unique department and can be an important catalyst to
improve your processes. But what if your QA isn’t speaking up? Here
are some red flags that your current process isn’t working for them.

•	 QAs have an overwhelming inventory of “to do” items

•	 QAs only speak at the end of the delivery process

•	 QA interaction with devs is strictly transactional or
handover-related

fixing Qa Collaboration
If you recognized some of those red f lags, here are some things
you can do to help.

involve Qas in planning meetings
Encourage QAs to voice their opinions during planning meetings:
they can help the team oversee quality risks in the whole delivery
process. Acting as a quality consultant, a QA is like a street lamp—
he or she sheds light on the risks so the team can plan accordingly.

pair devs and Qas
When devs start coding user stories, they can pair with a QA to
communicate testing expectations as acceptance tests. This isn’t just
ATDD (Acceptance Test Driven Development): it’s also adding more
communication opportunities for the team to stay on the same page.

Connect Qa With the deployment process
In a continuous delivery environment, let QA deploy to production.
Deployment can be a better use of their skills (and potentially more
fulfilling) than spending time on searching for unimportant defects.

moving toWard a better model
Many teams represent their workf low on a physical or digital
board. I recommend this because it encourages collaboration
and visualizes your daily process. When you’re ready to improve
your QA process, it’s easy to start by changing your board: for
example, adding stages like “QA story review ” or “deployed by
QA.” A f lexible agile project management tool like Mingle can
easily accommodate new stages like these, and will adapt as your
team refines its new workf low. As your team and processes evolve,
Mingle will support you instead of limiting you.

Written by huimin li
Product Marketing Manager, ThOUghTwORkS

Is Your Process
QA-friendly?

sponsored opinion

A QA should be like a street lamp: shedding
light on the risks. Evolve your process to
support your QA to act as a quality champion.

Offers tailored workflows, customized reporting, and integrates with more than 50 tools.

BLOG thoughtworks.com/mingle/blog weBsite thoughtworks.com/mingletwitteR @thatsmingle

Mingle by ThoughtWorks

Case study

SunGard used ThoughtWorks’ Mingle to manage a critical
project to replace a legacy financial product for a large
government agency. Mingle empowered the geographically
distributed team to actualize high returns for their very
first Agile project delivery, within the constraints of a
fixed budget. Mingle’s real-time visibility, ease of use, and
inherent adaptability enabled the team to get the most out
of Agile, while improving team productivity by 15% and
yielding a highly profitable ROI (return on investment) of
four times.

strengths

•	 Get going quickly with prebuilt templates. Change it
anytime, easily

•	 Through tags, customized properties and people, you can
track anything

•	 Integrate with GitHub and 50+ dev and QA tools

•	 Actionable team analytics, including burn-up charts and
cycle time analytics

•	 Create custom reports via MQL and macros

notable Customers

Category

Project Management
api or sdK?

API
open sourCe?

No

•	 Cisco
•	 SunGard
•	 Siemens

•	 Dillard’s
•	 The trainline
•	 WestJet

•	 NHS

http://www.dzone.com/guides
http://thght.works/1LOoFBP
http://bit.ly/1O43n0q
http://thght.works/1NSU8SJ

24 dzone’s 2015 guide to code qualit y and soft ware agilit y

dzone.com/guides dzone’s 2015 guide to code quality and software agility

Testing:
What It Is,
What It Can Be

by andy t inKham

QuiCK vieW

01
Some organizations are still stuck in old
modes of testing, in which test cycles
are often measured in months. The
majority of orgs have modern tools and
well-defined testing strategies, but they
aren’t as focused on being information
providers.

02
Orgs with highly-effective testers have
frequent collaboration between testers,
developers, and other stakeholders.
Testers use knowledge from several non-
IT disciplines to look at problems from
multiple angles and employ a good deal
of statistical analysis of monitoring data.

What do you think of when you hear the term “software
testing”? Many people I’ve encountered say it’s a group
of people refining the software just before release, doing
their darndest to break the beautiful software that was
handed over to them, cackling with glee each time a
new defect is found. Other people have an answer that
involves someone as a gatekeeper, akin to the bridge
keeper in Monty Python and the Holy Grail, subjecting
each release to questions for which a wrong answer can
mean death (at least for the predetermined release date
chosen back at the beginning of the iteration).

While there certainly are testers who fit these stereotypes,
the reality of testing is undergoing a bit of a renaissance. Test
teams are in the process of adapting their work from the slow,
documentation-heavy methods of the past into more f lexible
and rapid approaches, enabling them to better keep pace
with software development. At the core of this adaptation is
a realization that testing isn’t about finding bugs. If it were,
test teams would “fail” more and more as the overall team
improved since there would be fewer bugs to find. Instead,
modern testing focuses more on providing information at the
time it’s needed. Bugs are just one piece of that information.

testing as it is
laggards
In a progression similar to the Technology Adoption Lifecycle
from Geoffrey Moore’s Crossing the Chasm (Figure 1), different
organizations are at various points in their responses to testing

changes in the software industry. At the back of the pack,
some organizations function much as test organizations have
for decades. Their test cycles are often measured in months.
These organizations are likely feeling pressure to reduce their
delivery cycle while still finding as many bugs as possible.

the majority
Moving left along the curve, we find the majority of testing
organizations. These teams have begun to adapt, at least in part,
to increased time pressure from consumers. Some have brought
exploratory methods into their testing, leaving behind rigid
scripting and allowing the tester autonomy to immediately
incorporate information gathered during testing. Some have
also built automation into their efforts for well-defined,
repeatable testing work, leveraging tools to perform those tasks
rather than humans. Some may have even brought testing work
forward in their development process, mobilizing the entire
team to catch problems earlier and collaborate on fixes. Teams
may not explicitly focus on being information providers and, as
such, may be missing opportunities to reach their full potential.
However, the testing team is probably achieving some success
in keeping up with the rest of their organization, depending on
how they interact with the developers.

INNOVATORS EARLY
ADOPTERS

LAGGARDSEARLY MAJORITY LATE
MAJORITY

Technology Adoption Lifecycle

“The Chasm”

Area under the
curve represents
number of
customers

http://www.dzone.com/guides

dzone’s 2015 guide to code qualit y and soft ware agilit y 25

dzone.com/guides dzone’s 2015 guide to code quality and software agility

early adopters
The early adopters portion of the curve is where we begin to
really see testing innovations, achieving results beyond the old
norms. Testers in these organizations routinely analyze systems
they are testing from multiple viewpoints or “lenses” [1]. They
go beyond tests that confirm software functionality and use
risk-based test design to think about specific failure cases. At
this level, testers move away from vague failure scenarios and
instead draw on skills in experimental design and risk analysis,
as they craft tests to reveal if certain imagined failures can
actually be triggered. Here we see testing becoming a vibrant
and exciting career path.

Testers in early adopter organizations often draw on concepts
from psychology, both to recognize their own limitations (such
as confirmation bias and inattentional blindness [2]) and to
better understand how others might use their software. These
testers are embedded in the overall team, working closely with
analysts, developers, and designers to build software the entire
team can be proud of releasing.

In teams within these organizations, testers can serve as
headlights, illuminating things to come so that the team can
react accordingly [3]. They can investigate areas of unanticipated
feature interaction or operating conditions such as input data,
limited resources (i.e., CPU or memory), and user behavior. These
might be things that the larger team hasn’t considered.

innovators
Finally, there are innovators: the vanguards who are defining the
new vision of software testing for the rest of the industry. Testing
jobs in these organizations may not look anything like traditional
testing jobs. They may involve skills like data analysis—digging
into massive sets of data to provide their team with detailed
insights around their system and users. These testers invent
new ways of visualizing the information they gather, and
communicate it to their teams effectively and efficiently.

Some teams on the cutting edge of testing work closely with
their operations team, exploring the space of DevOps. These
test teams may be better-equipped to leverage automation
by increasing its sophistication, using it as a tool to support
testing work, rather than replacing it. These organizations
are continually refining their workf lows, discarding those
that no longer provide valuable information, tweaking others
to keep them relevant, and introducing new tasks to answer
questions the team didn’t know they had. Testing in this type
of organization is a rewarding challenge, a critical role to keep

the team moving forward, and a far step from the perceived
drudgery of more traditional testing.

that’s great! hoW do i get there?
Most organizations fall into the middle portion of the curve.
Moving towards the front of the curve takes effort, but it is
achievable. To start, you can:

•	 Analyze your current practices. Effective testing provides
information that the team needs. If a task only results in
information the team and stakeholders don’t value, it may
be time to stop the task or change it to make it more useful.

•	 Analyze “release day” emotions. If the team has an
uncomfortable mood on release day, it can be a red f lag
indicating that the team doesn’t have all the information
needed to have confidence in the release.

•	 Pick one unanswered question that the team has at release.
Don’t try to make changes all at once. It can be difficult to
formulate clear questions, so the team needs time to gain
experience. By identifying just one question to answer, you
can begin building experience within your culture while
making just a small number of changes.

•	 Break down walls. Teams build software best when they
function as one team. Break down the walls isolating
developers, testers, and analysts. Foster communication
between groups that doesn’t go through the bug tracker.

•	 Look to the cutting edge. The practices described here are
only a small subset of what test teams can do, but they
are good starting points. If you are uncertain where to
start, seek help—either online, from the broader testing
community, or by bringing in someone external with the
expertise to meet your needs.

Testing is a critical function in software development, and
when utilized effectively, it provides a team with a steady f low
of information. This allows the team to make quick, confident
decisions, and to avoid repetitious and ineffective work while
ensuring you deliver high quality software.

[1] testingbias.com/episodes/10
[2] youtube.com/watch?v=z-Dg-06nrnc
[3] bit.ly/dz-testinglesson

andy tinKham is the QA Practice Lead at C2 IT Solutions
in Minneapolis, MN (c2its.com). He has worked in testing for 20
years, focusing on automation in testing, performance, and testing
strategy. He is a founding member of the Association for Software
Testing and the Twin Cities Test Automation Group and a frequent
speaker. Recently, he co-hosted the Testing Bias podcast with Ian
Bannerman and is planning to launch new podcasts in the near
future. Follow him on Twitter (@andytinkham) or through his blog
at testerthoughts.com.

Testing jobs at the most forward-
thinking organizations may not
look anything like traditional
testing jobs. They may involve
skills like data analysis.

Effective testing provides
information that the team needs.

http://www.dzone.com/guides
http://testingbias.com/episodes/10
https://www.youtube.com/watch?v=z-Dg-06nrnc
http://bit.ly/dz-testinglesson
http://c2its.com
http://www.twitter.com/andytinkham
http://www.testerthoughts.com

26 dzone’s 2015 guide to code qualit y and soft ware agilit y

dzone.com/guides dzone’s 2015 guide to code quality and software agility

What
Elon Musk
Can Teach Us
About Agile
Software
Development
by gerry Claps

QuiCK vieW

01
The cross-functional, co-located teams
of SpaceX and Tesla have shown
solid adherence to the agile principle,
“Individuals and interactions over
processes and tools.”

02
Tesla’s regular firmware updates show
that Elon Musk’s company understands
having software that works is more
important than having comprehensive
documentation.

03
Musk understands agile’s principle of
responding to change over following a
plan. There wasn’t enough world battery
production for his initial plan, so he built
his own factory.

After reading an insanely long Wait but
Why series looking into Elon Musk and
Tesla, I realized that the entrepreneur
extraordinaire has a link to agile software
development that many seem to miss. And
more importantly, it’s something we can all
learn from.

The man has blown a personal $180m+ to try to change
the world with electric cars (Tesla Motors), solar energy
(SolarCity), and space rockets (SpaceX). Impressive,
right? So it’s not very surprising to hear people compare
him to Tony Stark, a.k.a. “Iron Man.”

But how does this relate to Agile Software Development?
Let’s break down the Agile Manifesto, line by line, to

see where Musk puts us to shame (we’ll use electric cars
from Tesla Motors as ongoing examples).

“individuals and interaCtions over
proCesses and tools”
An office where both design and engineering sit side
by side? A place where equal weight is placed on both
design and engineering? That’s what SpaceX and Tesla
have. That makes for some real cross-functional teams.
Dependencies are easy to fix when the person with the
solution is in the same room as you.

Musk knows that the old way of thinking doesn’t quite
cut it when you’re trying to change the game. He knows
that there needs to be an intense focus on two things:
the product and the people building the product.

Tesla Motors has a $0 marketing plan. They sell directly
to the public and only hire very passionate people.

http://www.dzone.com/guides
http://waitbutwhy.com/2015/05/elon-musk-the-worlds-raddest-man.html
http://waitbutwhy.com/2015/06/how-tesla-will-change-your-life.html
https://en.wikipedia.org/wiki/Tesla_Motors
https://en.wikipedia.org/wiki/SolarCity
https://en.wikipedia.org/wiki/SpaceX
http://agilemanifesto.org/
https://medium.com/%40allanberger/the-power-of-cross-functional-teams-b4815a04996d
http://www.referralcandy.com/blog/tesla/
https://www.quora.com/What-is-it-like-to-work-with-Elon-Musk

dzone’s 2015 guide to code qualit y and soft ware agilit y 27

dzone.com/guides dzone’s 2015 guide to code quality and software agility

“WorKing softWare over
Comprehensive doCumentation”
Anyone a fan of Continuous Deployment? Tesla cars
receive regular firmware updates, automatically. How
is that possible you say? It’s a bit like updating Google
Chrome. When you connect to the internet, there’s a
quick check done to see if you have the latest version,
and if you don’t, it downloads in the background, and
then is installed with your next browser open.

That means there’s no need for thick user manuals
or encyclopedia-like requirements documents for
you to create. Simply sketch, prototype, and develop
new features; adequately test them (automation helps,
see Continuous Integration); and provide an initial
prompt to the user when there’s something new. Your
customers can continue using your updated software
product, without having to do a thing.

“Customer Collaboration over
ContraCt negotiation”
If Tesla Motors were to negotiate a contract, they would
have never developed an electric car to begin with.
The 1900s came and went with a multitude of failed
attempts at commercializing electric cars (unfortunately
for us). In other words, electric cars are a proven way to
destroy your business.

In spite of this, Elon Musk saw that electric cars
were the future. He may not have directly spoken to
customers (init ially), but he did speak to the world. A
zero-footprint car was the aim. And Tesla Motors was
the best solution.

Had Musk opted for a better contract, we would not
see the innovation that Tesla Motors has achieved to
date. To succeed, innovation must transcend contract
negotiations.

“responding to Change over
folloWing a plan”
Imagine you find out the perfect commercial design for an

electric car battery requires you to use all the lithium ion
batteries currently being produced in the world, as they
are being made. Bummer, next idea I guess.

Not for Musk — he decided to build a Gigafactory that
will produce more lithium ion batteries than the entire
world was producing in 2013, by 2020. And, at a fraction
of the cost (by approximately one third).

So I guess the lesson here is, if life throws you lemons,
figure out a way to draw electricity from them.

It’s not hard, it just requires effort. The above principles
and practices are all simple things to execute. Yet so
many large (and even small) organizations fail to do so.
Part of it is a lack of self-awareness. Inefficiencies can
be hard to spot with a workforce in the 1000s. Another
part isn’t though. When there’s a sea of red tape and
goals aligned solely to departmental revenue increases,
there’s probably a need for you to inject some of the
practices Musk uses to get Tesla Motors innovating.

I couldn’t end this any better than by providing a quote
by the inspiration of Tesla Motors himself, Nikola Tesla.

Start bringing positive change to the agile software
development team you’re a part of.

gerry Claps is the VP of Customer Success at
Blossom.io. He’s passionate about all things Agile, Lean,
Product, and Growth. He has worked as a Business Analyst,
Scrum Master, and Product Owner for both the enterprise and
consultancy. Follow him on twitter (@gclaps)

It’s very important to have a feedback
loop, where you’re constantly
thinking about what you’ve done and
how you could be doing it better.

- elon musK

Failure is an option
here. If things are not
failing, you are not
innovating enough.
 - elon musK

If your hate could be turned into
electricity, it would light up the
whole world.

- niKola tesla

http://www.dzone.com/guides
http://guide.agilealliance.org/guide/cd.html
http://www.forbes.com/sites/steveblank/2014/01/03/tesla-and-adobe-why-continuous-deployment-may-mean-continuous-customer-disappointment/
http://www.martinfowler.com/articles/continuousIntegration.html
https://en.wikipedia.org/wiki/Gigafactory_1
https://en.wikipedia.org/wiki/Nikola_Tesla
https://twitter.com/gclaps

28 dzone’s 2015 guide to code qualit y and soft ware agilit y

dzone.com/guides dzone’s 2015 guide to code quality and software agility

Kevin
london
is a software
developer

at Wiredrive. this list
was distilled from his
real-world code review
best practices. He’s
also pursuing a Masters
in comp sci at georgia
tech and enjoys coding
in Python and django.

Code Review
Checklist

This checklist includes basic things to look for in
your code reviews, but you should also allow new
styles and patterns specific to your own team to
emerge and evolve. when they do, make your own
code review checklist.

remember: Review your own code before
submitting it for a review.

Architecture/Design
 ☐ Single Responsibility Principle: the

idea that a class should have one and only
one responsibility. You might want to apply
this idea to methods as well.

 ☐ Open/Closed Principle: if the language
is object-oriented, are the objects open for
extension but closed for modification?
What happens if we need to add another
one of x?

 ☐ Code Duplication (DRY): don’t
repeat Yourself is a common practice. one
duplication is usually okay, but two are not.

 ☐ Squint-Test Offenses: if you squint
your eyes, does the shape of this code look
identical to other shapes? Are there patterns
that might indicate other problems in the
code’s structure?

 ☐ The Boy Scout Rule: If you find code
that’s messy, don’t just add a few lines and
leave. Leave the code cleaner than you
found it.

 ☐ Potential Bugs: are there off-by-one
errors? Will the loops terminate in the way
we expect? Will they terminate at all?

 ☐ Error Handling: are errors handled
gracefully and explicitly where necessary?
Have custom errors been added? If so, are
they useful?

 ☐ Efficiency: if there’s an algorithm
in the code, is it using an efficient
implementation? (e.g. iterating over a list
of keys in a dictionary is an inefficient way
to locate a desired value.)

Style/Readability
 ☐ Method Names: Methods should

have names that reveal the intent of the
API while fitting into the idioms of your
language and not using more text than is
necessary (e.g. it’s not “send_http_data”
it’s “post_twitter_status”).

 ☐ Variable Names: foo, bar, e: these
names are not useful for data structures.
Be as verbose as you need (depending on
the language). expressive variable names
make code easier to understand.

 ☐ Function Length: When a function is
around 50 lines, you should consider
cutting it into smaller pieces.

 ☐ Class Length: 300 lines is a reasonable
maximum for class sizes, but under 100
lines is ideal.

 ☐ File Length: As the size of a file goes
up, discoverability goes down. You might
consider splitting any files over 1000 lines
of code into smaller, more focused files.

 ☐ Docstrings: For complex methods or
those with longer lists of arguments, is
there a docstring explaining what each of
the arguments does if it’s not obvious?

 ☐ Commented Code: sometimes you’ll
want to remove any commented out lines.

 ☐ Number of method arguments:
consider grouping methods and functions
with three or more arguments in a
different way.

 ☐ Readability: is the code easy to
understand? Do I have to pause frequently
during the review to decipher it?

 ☐ Test Coverage:
new features should
have tests. are the
tests thoughtful? Do
they cover the failure
conditions? Are they
easy to read? How
fragile are they? How big
are the tests? Are they
slow?

 ☐ Testing at the Right
Level: are the tests as
low level as they need to
be in order to check the
expected functionality?
testing at a high level by
accident can create a slow
test suite, so it’s important
to be vigilant.

 ☐ Number of Mocks:
if a test has more than
three mocks in it, you
should check if it is
testing too broadly or
the function is too large.
Maybe it doesn’t need to
be tested at a unit test
level and would suffice as
an integration test.

 ☐ Meets Requirements:
review the requirements
of the story, task, or bug
which the work was filed
against. if it doesn’t meet
one of the criteria, it’s
better to bounce it back
before it goes to Qa.

Communicating
Your Review

 ☐ Ask questions: How does this method
work? If this requirement changes, what else
would have to change? How could we make
this more maintainable?

 ☐ Compliment / reinforce good practices:
one of the most important parts of the code
review is to reward developers for growth and
effort. Few things feel better than getting
praise from a peer. try to offer as many
positive comments as possible.

 ☐ Discuss in person for more detailed
points: on occasion, a recommended
architectural change might be large enough
that it’s easier to discuss it in person rather
than in the comments. similarly, if discussing
a point and it goes back and forth, try to pick
it up in person and finish out the discussion.

 ☐ Explain reasoning: it’s often best both to
ask if there’s a better alternative and justify
why a problem is worth fixing. Sometimes
it can feel like the changes suggested
can seem nit-picky without context or
explanation.

 ☐ Make it about the code, not the
person: it’s easy to take feedback from
code reviews personally, especially if we
take pride in our work. it’s best to make
discussions about the code rather than
about the developer. it lowers resistance,
and it’s not about the developer anyway, it’s
about improving the quality of the code.

 ☐ Suggest importance of fixes: try to offer
many suggestions, not all of which need
to be acted upon. clarifying if an item is
important to fix before it can be considered
done is useful both for the reviewer and the
reviewee. it makes the results of a review
clear and actionable.

Testing
Written BY:

http://www.dzone.com/guides

dzone’s 2015 guide to code qualit y and soft ware agilit y 29

dzone.com/guides dzone’s 2015 guide to code quality and software agility

Accurev by Borland Source Control On-Premise 30 Day Free Trial borland.com

Acunote Project Management SaaS 30 Day Free Trial acunote.com

Aha! Project Management SaaS 30 Day Free Trial aha.io

ALM by HP Project Management On-Premise or SaaS
On-Premise: 60 Day Free
Trial, SaaS: 30 Day Free
Trial

hp.com

AnswerHub by DZone Software
Project Management,
Ideation, Knowledge
Management, Collaboration

SaaS, On-Premise Free trial is 15 days, with
access to all features. dzonesoftware.com

Application Quality and Testing
Tools by CA Test Management On-Premise Available Upon Request ca.com

Application Quality
Management (AQM) Solution
by Original Software

Test Management,
Project Management On-Premise Available Upon Request origsoft.com

Application Quality
Management by Oracle Test Management On-Premise Free oracle.com

Appvance Test Management On-Premise or SaaS N/A appvance.com

Asana Project Management SaaS Available Upon Request asana.com

Assembla Project Management Saas 15 Day Free Trial assembla.com

Basecamp Project Management SaaS 60 Day Free Trial basecamp.com

Blazemeter Test Management On-Premise or SaaS Free Tier blazemeter.com

Blossom Project Management SaaS 14 Day Free Trial blossom.co

Bugzilla by Mozilla Issue Tracking On-Premise Open Source bugzilla.org

Confluence by Atlassian Project Management On-Premise or SaaS Available Upon Request atlassian.com

DataMaker by Grid-Tools Test Management On-Premise 15 Day Free Trial grid-tools.com

softWare Quality

produCt Categories hosting free trial Website

Solutions
Directory

This directory contains solutions for source control, static
code analysis, issue tracking, project management, code
review, and test management. It provides feature data and
product category information gathered from vendor websites
and project pages. Solutions are selected for inclusion based
on several impartial criteria, including solution maturity,
technical innovativeness, relevance, and data availability.

http://www.dzone.com/guides
http://www.borland.com
http://www.aha.io
http://www.origsoft.com
http://www.acunote.com
http://www.ca.com
http://www.hp.com
http://www.oracle.com
http://www.asana.com
http://www.basecamp.com
http://www.blossom.co
http://atlassian.com
http://www.appvance.com
http://www.assembla.com
http://www.blazemeter.com
http://www.bugzilla.org
http://grid-tools.com
http://bit.ly/1UnHAma

30 dzone’s 2015 guide to code qualit y and soft ware agilit y

dzone.com/guides dzone’s 2015 guide to code quality and software agility

softWare Quality

produCt Categories hosting free trial Website

Development Testing Platform
by Parasoft Test Management On-Premise Available Upon Request parasoft.com

EggPlant by TestPlant Test Management On-Premise and
SaaS Available Upon Request testplant.com

Endevor by CA Source Control On-Premise Available Upon Request ca.com

Fitnesse Test Management,
Project Management On-Premise Open Source fitnesse.org

Flow Project Management SaaS 30 Day Free Trial getflow.com

FogBugz Issue Tracking, Project
Management On-Premise or SaaS Available Upon Request fogcreek.com

Gauge by ThoughtWorks Test Management On-Premise Open Source getgauge.io

GitHub Source Control, Issue
Tracking, Code Review On-Premise or SaaS 45 Day Free Trial github.com

IntelliJ IDEA by JetBrains Source Control, Static
Code Analysis On-Premise Free Community Edition jetbrains.com

JIRA by Atlassian Issue Tracking On-Premise or SaaS 7 Day Free Trial atlassian.com

Kanban Tool Project Management On-Premise and or
SaaS 14 Day Free Trial kanbantool.com

LeanKit Project Management SaaS 30 Day Free Trial leankit.com

Mingle by ThoughtWorks Project Management SaaS 30 Day Free Trial thoughtworks.com

NeoLoad by Neotys Test Management On-Premise 25 Day Free Trial neotys.com

Pivotal Tracker Project Management SaaS Available Upon Request pivotaltracker.com

Podio Project Management SaaS Available Upon Request podio.com

PPM by CA Project Management On-Premise Available Upon Request ca.com

ProductPlan Project Management SaaS 30 Day Free Trial productplan.com

Quality Center by HP Issue Tracking, Test
Management On-Premise Available Upon Request hp.com

Rally by CA Project Management,
Test Management

SaaS, On-Premise
available Free Community Edition rallydev.com

Rational product line by IBM
Source Control, Issue
Tracking, Project
Management,

On-premise 90 Day Free Trial ibm.com

Redmine Project Management On-Premise Open Source redmine.org

http://www.dzone.com/guides
http://parasoft.com
http://ca.com
http://getflow.com
http://getgauge.io
http://jetbrains.com
http://leankit.com
http://podio.com
http://rallydev.com
http://redmine.org
http://testplant.com
http://fitnesse.org
http://fogcreek.com
http://github.com
http://kanbantool.com
http://pivotaltracker.com
http://hp.com
http://atlassian.com
http://neotys.com
http://productplan.com
http://thoughtworks.com
http://ca.com
http://ibm.com

dzone’s 2015 guide to code qualit y and soft ware agilit y 31

dzone.com/guides dzone’s 2015 guide to code quality and software agility

softWare Quality

produCt Categories hosting free trial Website

SauceLabs Test Management SaaS Free for Open Source
Projects saucelabs.com

ScrumWorks by Collabnet Project Management On-Premise 30 Day Free Trial collab.net

Silk Portfolio by Microfocus Issue Tracking, Test
Management On-Premise 45 Day Free Trial borland.com

SoapUI Test Management On-Premise Available Upon Request soapui.org

Sprint.ly Project Management SaaS 30 Day Free Trial sprint.ly

Stash by Atlassian Source Control, Code
Review On-Premise Available Upon Request atlassian.com

TargetProcess Project Management On-Premise or SaaS Free, Standard, and On-Site
packages, 30 Day Free Trial targetprocess.com

Tasktop Code Review, Project
Management On-Premise N/A tasktop.com

Team Foundation Server (TFS)
by Microsoft

Project Management,
Test Management,
Source Control, Issue
Tracking

On-Premise Available Upon Request visualstudio.com

TeamForge by Collabnet Source Control, Project
Management On-Premise or SaaS 30 Day Free Trial collab.net

Test Cloud by Xamarin Test Management SaaS Available Upon Request xamarin.com

Test Studio by Telerik Test Management On-Premise Available Upon Request telerik.com

TestComplete Suite by
SmartBear Test Management On-Premise 30 Day Free Trial smartbear.com

TouchTest Test Management SaaS and On-
Premise 30 Day Free Trial soasta.com

Trac by Edgewall Software Issue Tracking On-Premise Open Source trac.edgewall.org

Trello Project Management SaaS Free, Gold Edition Available trello.com

Tricentis Tosca Testsuite Test Management On-Premise 14 Day Free Trial tricentis.com

VersionOne Project Management On-Premise or SaaS 30 Day Free Trial versionone.com

Visual Studio by Microsoft
Source Control, Issue
Tracking, Static Code
Analysis

On-Premise or Saas Free Trial Available visualstudio.com

XL TestView by Xebia Labs Test Management On-Premise Available Upon Request xebialabs.com

YouTrack by JetBrains
Project Management,
Issue Tracker, Change
Management

On-Premise or SaaS 30 Day Free Trial jetbrains.com

Zephyr Test Management On-Premise or SaaS Free Community Edition getzephyr.com

http://www.dzone.com/guides
http://borland.com
http://soasta.com
http://getzephyr.com
http://collab.net
http://visualstudio.com
http://saucelabs.com
http://tasktop.com
http://sprint.ly
http://xamarin.com
http://trello.com
http://targetprocess.com
http://smartbear.com
http://versionone.com
http://jetbrains.com
http://soapui.org
http://collab.net
http://trac.edgewall.org
http://atlassian.com
http://telerik.com
http://tricentis.com
http://xebialabs.com

32 dzone’s 2015 guide to code qualit y and soft ware agilit y

dzone.com/guides dzone’s 2015 guide to code quality and software agility

statiC Code analysis

Bithound.io Code Review JavaScript 90 Day Free Trial bithound.io

Black Duck Open Source Auditing All major languages 14 Day Free Trial blackducksoftware.com

Checkstyle Static Code Analysis Java Open Source checkstyle.sourceforge.net

Clover by Atlassian Code Coverage Java, Groovy 30 Day Free Trial atlassian.com

Code Central by Ncover Code Coverage All major languages 21 Day Free Trial ncover.com

Code Climate Static Code Analysis PHP, Ruby, JavaScript, Python 14 Day Free Trial codeclimate.com

CodeNarc Static Code Analysis Groovy Open Source codenarc.sourceforge.net

CodeRush Static Code Analysis C#, VB10, ASP .NET, HTML,
JavaScript, XAML, C++, 30 Day Free Trial devexpress.com

ConQAT by CQSE Static Code Analysis Java, C#, C++, JavaScript, ABAP,
Ada and many other languages Free cqse.eu

Findbugs Static Code Analysis Java Open Source findbugs.sourceforge.net

Gitcolony Code Review All major languages 30 Day Free Trial gitcolony.com

Infer by Facebook Static Code Analysis Objective-C, Java, or C Open Source fbinfer.com

Klocwork by Rogue Wave Static Code Analysis C, C++, C# and Java Available upon
request roguewave.com

Open Logic Enterprise
Rogue Wave Open Source Auditing All major languages Free Edition openlogic.com

Parasoft Static Code Analysis
C, C++, Java, .NET (C#, VB.NET,
etc.), JSP, JavaScript, XML, and
other languages

Available upon
request parasoft.com

SAVE by Coverity Static Code Analysis C, C++, C# and Java source code 30 Day Free Trial coverity.com

SonarQube Static Code Analysis All major languages Open Source sonarqube.org

Sonograph by
Hello2Morrow Static Code Analysis Java, C#, C/C++ Free for non-

commercial use hello2morrow.com

Squale Static Code Analysis Java, C/C++, .NET, PHP, Cobol, ... Open Source squale.org

Upsource by JetBrains Code Review JavaScript Free 10 User plan jetbrains.com

produCt Categories language support free trial Website

http://www.dzone.com/guides
http://bithound.io
http://checkstyle.sourceforge.net
http://codeclimate.com
http://devexpress.com
http://gitcolony.com
http://openlogic.com
http://www.sonarqube.org
http://squale.org
http://jetbrains.com
http://blackducksoftware.com
http://atlassian.com
http://ncover.com
http://codenarc.sourceforge.net
http://findbugs.sourceforge.net
http://roguewave.com
http://coverity.com
http://cqse.eu
http://fbinfer.com
http://parasoft.com
http://hello2morrow.com

dzone’s 2015 guide to code qualit y and soft ware agilit y 33

dzone.com/guides dzone’s 2015 guide to code quality and software agility

i n t o f e at u r e d s o f t w a r e q u a l i t y p r o d u c t s

diving deeper
Looking for more information on individual code quality and software agility solutions providers? Nine of our partners

have shared additional details about their offerings, and we’ve summarized this data below.

If you’d like to share data about these or other related solutions, please email us at research@dzone.com.

-

BlazeMeter
by blaZemeter

test management projeCt management

features

•	Scalable load testing with JMeter
or WebDriver

•	Test from multiple geographic
locations or on premise

•	Real-time load profile shaping
while test in flight

•	Deep integration with Continuous
Delivery pipelines and APM
platforms.

sourCe Control

statiC Code analysis

issue traCKing



AnswerHub
by dZone softWare

test management projeCt management

features

•	Built in chat with user tagging
notifactions (e.g. @john)

•	Team performance metrics/
visualizations

•	Project stage tracking,
documentation features

sourCe Control

statiC Code analysis

issue traCKing

Telerik Platform
by teleriK

test management projeCt management

features
•	Based on Git
•	Supports Git server
•	Built-in chat and user tagging
•	Integration SDK and API

available


sourCe Control

statiC Code analysis


issue traCKing

Code Climate
by Code Climate

test management projeCt management

features

•	Cycle/Dependency
visualizations

•	Issue tracking integration

•	Custom metrics and queries

•	Technical Debt metricssourCe Control

statiC Code analysis

issue traCKing





YouTrack
by jetbrains

test management projeCt management

features
•	Built-in chat with user

tagging notifactions
•	Custom metrics and

visualizations
•	Built-in project management
•	Agile mgmt tools
•	Large Org performancesourCe Control

statiC Code analysis


issue traCKing



Tasktop Sync
by tasKtop

sdlC projeCt management

features
•	Syncronizes defects, requirements,

tests, help desk tickets, issues and
much more

•	Increases collaboration, visibility
and traceability

•	Reduces errors, traceability gaps and
wasted time

•	Enables non-developers to integrate
tools across the entire development
lifecycle

•	SDLC tool integration

sourCe Control

statiC Code analysis

issue traCKing



Sauce Labs Automated Testing Platform
by sauCe labs

test management projeCt management

features

•	Mobile testing suite of tools

•	Unit testing

•	Functional testing

•	Cloud-parallel VM testing

sourCe Control

statiC Code analysis

issue traCKing

Mingle
by thoughtWorKs

test management projeCt management

features

•	Scrum project features

•	Kanban project features

•	Built in chat with user tagging
notifactions (e.g. @john)

•	Team performance metrics/
visualizations

•	Risk management visualzations
sourCe Control

statiC Code analysis

issue traCKing



FogBugz
by fog CreeK softWare

test management projeCt management

features

•	Focus on executable
documentation

•	Built-in project management

•	API available

sourCe Control

statiC Code analysis


issue traCKing



-

-

-

- -

-

-

-

-

-

-

-

-

-

-

-

-

- - --

-

-

-

-

--- -

-

-

-

-

http://www.dzone.com/guides
mailto:research%40dzone.com?subject=

34 dzone’s 2015 guide to code qualit y and soft ware agilit y

dzone.com/guides dzone’s 2015 guide to code quality and software agility

diving deeper
into Code Quality and softWare agility

Top 10 #Testing and #Agile Twitter Feeds

Code Quality & Software Agility Zones

@lisaCrispin @jamesmarCusbaCh

@jimrbird @WaKaleo

@miChaelbolton @s_Colson @s_2K

@johannarothman @gil_Zilberfeld @mattheWmCCull

Performance Zone
dzone.com/performance

Scalability and optimization are constant
concerns for the developer and operations
manager. The Performance Zone focuses on all
things performance, covering everything from
database optimization to garbage collection,
tool and technique comparisons, and tweaks to
keep your code as efficient as possible.

Agile Zone
dzone.com/agile

In the software development world, Agile
methodology has overthrown older styles of
workflow in almost every sector. Although
there are a wide variety of interpretations and
specific techniques, the core principles of the
Agile Manifesto can help any organization in
any industry to improve their productivity and
overall success. Agile Zone is your essential hub
for Scrum, XP, Kanban, Lean Startup and more.

DevOps Zone
dzone.com/devops

DevOps is a cultural movement, supported by
exciting new tools, that is aimed at encouraging
close cooperation within cross-disciplinary
teams of developers and IT operations/system
admins. The DevOps Zone is your hot spot for
news and resources about Continuous Delivery,
Puppet, Chef, Jenkins, and much more.

Top Code Quality
Refcardz

Top Code Quality
Websites

Top Code Quality
Podcasts

Getting Started with Git
bit.ly/dz-git

Mobile Web Application Testing
bit.ly/dz-mobileweb

Agile Adoption: Improving
Software Quality
bit.ly/agileadopt

Getting Started with Domain-
Driven Design
bit.ly/domaindriven

Ministry of Testing
ministryoftesting.com

DevelopSense
developsense.com/blog

CodeBetter.com
codebetter.com

Testing Podcast
testingpodcast.com

The Agile Life
thisagilelife.com

Git Minutes
episodes.gitminutes.com

http://www.dzone.com/guides
http://www.dzone.com/java
http://www.dzone.com/agile
http://www.dzone.com/devops
http://www.twitter.com/lisacrispin
http://www.twitter.com/michaelbolton
http://www.twitter.com/s_colson
http://www.twitter.com/s_2k
http://www.twitter.com/jamesmarcusbach
http://www.twitter.com/jimrbird
http://www.twitter.com/johannarothman
http://www.twitter.com/gil_zilberfeld
http://www.twitter.com/matthewmccull
http://www.twitter.com/wakaleo
http://bit.ly/1UnHDOS
http://bit.ly/1JsmkXb'
https://dzone.com/apm-tools-performance-monitoring-optimization
http://bit.ly/1NSUp8d
http://bit.ly/1JHhIMc
http://bit.ly/1hscHAu
http://bit.ly/1fRGEcb
http://www.developsense.com/blog
http://www.codebetter.com
http://testingpodcast.com
http://thisagilelife.com
http://episodes.gitminutes.com
http://www.ministryoftesting.com

dzone’s 2015 guide to code qualit y and soft ware agilit y 35

dzone.com/guides dzone’s 2015 guide to code quality and software agility

agile A group of software development
methods that involves fairly short
development cycles with flexible
requirements that evolve as the software is
built. Self-organizing, cross-functional teams
are often another key aspect of Agile.

automated testing A form of
verification that activates the software being
tested and looks for a predicted outcome. It
asserts that the test passed or failed based
on whether the actual outcome matches the
predicted outcome.

behavior-driven development
(bdd) A development methodology
that builds on TDD by adding tools and a
ubiquitous language that allow business
managers to write tests themselves in the
form of user stories.

Code Coverage A measure of what
percentage of the total lines or blocks of code
is executed by your automated tests.

Code revieW A systematic review of
source code performed by a developer
that did not write the code. The resulting
discussion from that review is intended to
identify mistakes overlooked in the initial
development phase and to help improve the
original developer’s skills.

Context-driven testing A testing
philosophy that asserts that there are no best
practices for testing in every context, and
that testing methods must be flexible enough
to evolve with projects that often change in
unpredictable ways.

exploratory testing A form of
test design, test execution, and constant
learning that involves a skilled tester flexibly
using their experience and creativity to
predict issues and experiment with no
pre-determined methodology in an effort to
more effectively test the software.

extreme programming (xp) An agile
development methodology created by Kent
Beck that includes frequent releases, unit
testing all code, extensive code review, and
pair programing. All of these practices have
heavily influenced the software industry.

funCtional testing A testing method
that includes any type of test that checks a
complete section of functionality within the
whole system either through basic manual

testing of the product or through automated
scripts that run expected user actions.

integration testing A testing stage
that occurs after unit testing where software
modules are tested as a group to ensure
that they work together to complete more
complex tasks.

issue traCKing system A tool that
stores, organizes, and presents visualizations
of recorded feature requests and software bugs
with various contextual information to help
those who are tasked with fixing the bugs.

Kanban A work management technique
where the development process is illustrated
through single tasks displayed in cards on a
board for the team to see. On the board, each
task is pulled from a queue by team members
that are responsible for that task, and each
task is tracked from definition to completion.

manual testing Any test where a
person attempts to complete a task with the
software from an end-user’s perspective,
sometimes with additional tools or
monitoring, and decides whether the test
passes or fails by seeing if the actual outcome
matches the desired outcome.

negative testing A test strategy that
explores how unexpected inputs will affect
a system.

pair programming A development
strategy that involves two people coding
together at a single computer, each giving
frequent feedback and working together as
equals, even if skill levels differ significantly.
Some definitions include scenarios where
one person writes code while the other
watches and gives feedback.

positive testing A test strategy
that checks to see if specific inputs yield
expected results.

Quality assuranCe (Qa) or
softWare Quality assuranCe
(sQa) A process, often owned by a separate
department, that examines an organization’s
software engineering practices to ensure
that products are meeting specified
requirements. The department often
includes all software testers.

regression testing Any form of
software verification that checks to ensure
that no functionality gets broken and no
new bugs were created in the process of
adding code to a program.

sanity testing A simple, ad-hoc type of
test that is often manual and used to check

that certain software functionality works
roughly as expected.

sCrum The most well-known agile
methodology. It involves short iterations
of focused effort called “sprints” and
encourages tight collaboration by small, self-
organized teams that focus on quick delivery
and fast responses to changing requirements.

sourCe Control A form of revision
control (also called version control) that
manages changes to a software project
by allowing multiple programmers to
work on the same source code by creating
timestamped copies that can be rolled back,
compared with, or merged into the mainline
source code.

statiC Code analysis A type of
software analysis that measures code
without running it. A variety of complexity,
security, or business metrics can be gathered
depending on the tool used.

teChniCal debt A metaphor coined by
Ward Cunningham to express the future
burdens a software project inherits when
code is written or designed in a quick but
messy way, as opposed to writing better
code that is more time-consuming and
challenging up front.

test-driven development (tdd)
An approach to software development that
uses tests as the design specifications. In
TDD, developers write tests before writing
the actual program code. They move on to
writing new code only when the code they
just wrote passes the original tests.

unit testing A testing method that
checks the functionality of individual source
code units, often single methods, classes, or
interfaces.

usability testing A testing method
that gathers feedback from real-world users
who try to execute a given set of tasks using
the software product. Its purpose is not just
to find bugs but also to ensure that the user
experience is as streamlined as possible.

user aCCeptanCe testing (uat)
A testing method that verifies that the
application satisfies the entire user story
outlined in initial business requirements.

user story A description of a single
action that a hypothetical user wants the
software product to perform. It describes the
type of user and then explains what action
they want to perform and why.

glossary

http://www.dzone.com/guides

36 dzone’s 2015 guide to code qualit y and soft ware agilit y

dzone.com/guides dzone’s 2015 guide to code quality and software agility

Better, more
concrete, and
closer to reality
than reports
from Gartner
and Forrester...
ROBERT ZAKRZEWSKI,
DZONE MEMBER

DZone
Research
Guides

DZONE GUIDE TO

Continuous
Delivery

Understand the role of DevOps,
automation, testing, and other

best practices that allow
Continuous Delivery adoption.

Discover developers, users, and
infrastructure perspectives of

how to build mobile apps with
less pain and better results.

DZONE GUIDE TO

Mobile
Development

Get them all for free on DZone at dzone.com/guides

VISIT THE DZONE AGILE ZONE FOR:

Expert Articles Tutorials Refcardz

Research Guides Whitepapers ...and More

bit.ly/DZ-ConDel bit.ly/DZ-MD

Better identify the root causes
of performance problems and
build a performant foundation

for your applications.

DZONE GUIDE TO

Performance &
Monitoring

bit.ly/DZ-APM

http://www.dzone.com/guides
http://bit.ly/DZ-MD
http://bit.ly/DZ-APM
http://bit.ly/DZ-ConDel
http://www.dzone.com/guides

