
© DZONE, INC. | DZONE.COM

» Introduction

» Installation and IDE

» Starting With R

» Data Structures

» Functions... and more!C
O

N
T

E
N

T
S

INTRODUCTION

WHAT IS R?
R is a highly extensible, open-source programming language used
mainly for statistical analysis and graphics. It is a GNU project
very similar to the S language. R’s strengths include its varying
data structures, which can be more intuitive than data storage in
other languages; its built-in statistical and graphical functions;
and its large collection of useful plugins that can enhance the
language’s abilities in many different ways.

R can be run either as a series of console commands, or as full
scripts, depending on the use case. It is heavily object-oriented,
and allows you to create your own functions. It also has a common
API for interacting with most file structures to access data stored
outside of R.

USES
R’s biggest use case is performing statistical analysis and
developing graphical representations. Its built-in packages allow
for advanced statistical functions and simple graphic creation.
With additional plugins, these abilities can become even more
powerful and customizable. R also allows you to save your scripts
and data when analyzing data, so that you can review and repeat
analysis processes you’ve done in the past, whether to recreate
results or check previous results.

INSTALLATION AND IDE

R can run on many operating systems like Linux, OS X, and
Windows. cran.rstudio.com has download links and instructions
for these different systems. You will need a Fortran compiler in
order to be able to run R. For more extensive details on installation
for your particular system, go to cran.r-project.org/doc/manuals/r-
release/R-admin.html.

RSTUDIO
RStudio is a popular open-source integrated development
environment (IDE) for R. It includes a console for directly
executing R commands, as well as an editor for building longer R
scripts. It is also able to keep track of and view variable data and
access documentation and R graphics in the same environment.
Moreover, RStudio allows you to enable additional R packages
through the interface without a command. RStudio is available
for Windows, Mac, and several Linux operating systems. You can
download RStudio at rstudio.com/products/rstudio/download.

STARTING WITH R

BASIC MATHEMATICAL OPERATIONS
At its simplest, R can function like a calculator. Besides basic
operators or functions, R does not need code to execute basic
calculations. The line 4 + 5 would return the result [1] 9. Since R
often deals with lengthy, possibly tabular datasets, its output includes
index positions—in this case, the [1] that printed with our result.

G
et

 M
or

e
R

ef
ca

rd
z!

 V
is

it
 D

Zo
ne

.c
om

/R
ef

ca
rd

z
232

R
 E

S
S

EN
TI

A
LS

The following basic mathematic operations can be performed:

OPERATOR DESCRIPTION

+ Addition symbol.

- Subtraction symbol.

* Multiplication symbol.

/ Division symbol.

^ Exponent symbol.

%% Modulus symbol (remainder of division).

()
Used as normal to force precedence in mathematical
expressions (the standard order of operations applies).

DECLARING VARIABLES
Variables in R are defined using the <- operator. You can consider
the <- as an arrow pointing from the value of the variable on the
right to the variable name on the left. So the expression x <- 15
would store the value 15 as the variable x. When you declare
a variable in R, it does not automatically print the variable or
its value; that is, the interface does not return anything when
a variable is declared, and will simply ready itself for the next
command. To view the contents of a variable in R, use the variable
name with no additional expressions or functions and execute the
command. This will display the value of the variable.

> x <- 15
> x
[1] 15

Here, the > denotes the command input, and again the output is
printed with its index position within the output.

VECTORS
A vector is the most basic object in R. An “atomic” vector is a linear
(f lat) collection of values of one basic type. The types of atomic
vector are: logical, integer, double, complex, character, and raw.

R Essentials
BY G. RYAN SPAIN

http://www.dzone.com?refcardz
https://cran.rstudio.com/
https://cran.r-project.org/doc/manuals/r-release/R-admin.html
https://cran.r-project.org/doc/manuals/r-release/R-admin.html
https://www.rstudio.com/products/rstudio/download/
http://www.refcardz.com
https://DZone.com/Refcardz
http://www.pivotpodcast.com/

https://www.predix.io/registration/

Predix empowers you with the tools to build and operate
apps for the Industrial Internet of Things. Transform your
company, your industry, and the world. Discover Cloud
Foundry-based microservices, machine connectivity, and
other resources to propel your Industrial Internet journey.
The sky's the limit.

Predix connects machines, big
data, and predictive analytics to
power the Industrial Internet.

Powering the Internet of
(Really Important) Things

GE Digital

https://www.predix.io/registration
http://www.predix.io/registration

© DZONE, INC. | DZONE.COM

3 R ESSENTIALS

ATOMIC
VECTOR TYPE

DESCRIPTION

Logical A vector containing values of TRUE or FALSE (i.e. booleans).

Integer A vector containing integer values.

Double A vector containing real number values.

Complex A vector containing real or imaginary number values.

Character A vector containing character or string values.

Raw A vector containing bytes.

Even when working with individual values, R considers these values as
vectors. For example, in the previous section, when we printed the value
of x, R displayed the results as a vector of length 1 (which is why even a
single value had a position index number assigned to it).

To gather data as a vector, use the c() function, which combines its
arguments into a vector. Here’s a basic example:

> x <- c(1, 2, 3, 4)
> x
[1] 1 2 3 4

This time, we stored a vector as the variable x. When we printed the
value of x, R returned each value of x in order. Note that R did not
return position index values for each element of the vector. R will print
a position index each time the results are forced to break a line
(generally based on the size of the window in which you’re executing
commands, or by the default window size of the console).

Note: To learn more about a function in R, you can use the ? operator or
the help() function. This will give you more information, including a
description, usage, and arguments. To learn more about c(), you can
enter ?c or help(c). For more on help(), enter ?help or help(help).

We can get the same result by using the : operator, which will create
a series from the value of its first argument to the value of its second
argument. When using : you do not use the c() function to combine the
data, as this is done automatically.

> x <- 1:4
> x
[1] 1 2 3 4

Remember that atomic vectors contain values of a single type. If using
the c function with arguments of different data types, it will force the
values into a single type. Two examples of this:

> c(1, TRUE, 2)
[1] 1 1 2
> c(1, "two", 3)
[1] "1" "two" "3"

In the first example, R converted the boolean TRUE to 1, since boolean
values logically correspond with real numbers, but not the other way
around. In the second example, R converted integer number values into
strings (note the quotation marks around the returned values), since
that conversion is much more logical than attempting to convert a
string to an integer.

Operations performed on vectors will affect each element of that vector
individually, and return a new vector of those results. For example,

c(1,2,3) * 2 will return a new vector: 2 4 6. R multiplied each
element of the original vector by two, returning a vector of the same
length as the original, but with modified values.

Vectors can also be used in operations with other vectors.
c(1,2,3) + c(2,3,4) will result in an output of 3 5 7. If the vectors
in the operation are not of equal length, R will recycle values of the
shorter vector, starting again at the beginning of the shorter vector while
still operating in order on the longer vector. Here’s an example:

> c(1, 2, 3, 4, 5, 6) * c(0, 1)
[1] 0 2 0 4 0 6

Notice how the first two operations occurred naturally, but at the third
operation, there was no third element of the shorter vector to use.
Therefore, R started over at the beginning of the shorter vector and
continued the operation. Once the fifth element of the longer vector
was reached, R repeated the process.

If the longer vector is not of a length that is a multiple of the shorter
vector’s length, R will still print the result, but will also return a
message warning you that these lengths do not naturally align.

OTHER DATA STRUCTURES

R has many different data structures for different scenarios.

LISTS
Lists are vectors that allow their elements to be any type of object. They
are created using the list() function.

> x <- list(1, "two", c(3, 4))

In this example, we’ve defined x as a list consisting of three elements:
the number 1, the string "two", and a vector, 3 4, of length 2. We can
examine the structure of x using the str() function.

> str(x)
List of 3
 $: num 1
 $: chr "two"
 $: num [1:2] 3 4

Remember that each element of the list is a vector; 1 is a numeric vector
of length 1, and two is a character vector of length 1.

One particularly interesting ability of a list is that it can contain lists
within it. Had we defined x as x <- list(1, "two", list(3, 4)), the
str() function would have returned:

> str(x)
List of 3
 $: num 1
 $: chr "two"
 $:List of 2
 ..$: num 3
 ..$: num 4

This means that a list is a recursive object (you can test this with the
is.recursive() function). Lists can be hypothetically nested
indefinitely.

FACTORS
A factor is a vector that stores categorical data—data that can be
classified by a finite number of categories. These categories are known as
the levels of a factor.

Say you define x as a collection of the strings "a", "b", and "c":
x <- c("b", "c", "b", "a", "c", "c").

http://www.dzone.com?refcardz

© DZONE, INC. | DZONE.COM

4

Using the factor() function, you can have R convert the atomic
character vector into a factor. R will automatically attempt to determine
the levels of the factor; this will produce an error when factor is given
an argument that is non-atomic. Let’s take a look at the factor here:

> x <- c("b", "a", "b", "c", "a", "a")
> x <- factor(x)
> \# this can also be written as x <- factor(c("b", "a", "b", "c",

"a", "a"))
> x
[1] b a b c a a
Levels: a b c
> str(x)
 Factor w/ 3 levels "a","b","c": 2 1 2 3 1 1
> levels(x)
[1] "a" "b" "c"
> table(x)
x
a b c
3 2 1

By using the factor() function on x, R logically categorized the values
into “levels.” When x was printed, R returned the elements in its
original order, but it also printed the levels of the factor. Examining the
structure of x shows that x is a factor with three levels, lists the levels
(alphabetically), and then shows which level each element of the factor
corresponds to. So here, since "b" is alphabetically second, the 2 in
2 1 2 3 1 1 corresponds with "b".

The levels() function returns a vector containing only the names
of the different levels of the factor. So here, the function levels(x)
returns the three levels “a”, “b”, and “c”, in order (here from the lowest
value of the level to the highest).

The tables() function gives a table summarizing the factor. Using the
table() function on x returned the name of the variable, a list of the
levels of x, and then, underneath, the number of values that occurs in x
corresponding with the above level. So this table shows us that, in the
factor x, there are three instances of the level "a", two instances of "b",
and one instance of "c".

If the levels of your factor need to be in a particular order, you can use
the factor() argument levels to define the order, and set the argument
ordered to TRUE:

> x <- c("b", "a", "b", "c", "a", "a")
> x <- factor(x, levels = c("c", "b", "a"), ordered = TRUE
> x
[1] b a b c a a
Levels: c < b < a
> str(x)
 Ord.factor w/ 3 levels "c"<"b"<"a": 2 3 2 1 3 3
> levels(x)
[1] "c" "b" "a"
> table(x)
x
c b a
1 2 3

Now R returned the levels in the order specified by the vector given to
the levels argument. The < (less than) symbol in the output of x and
str(x) indicate that these levels are ordered, and the str(x) function
reports that the object is an ordered factor.

MATRIXES
A matrix is, in most cases, a two-dimensional atomic data structure
(though you can have a one-dimensional matrix, or a non-atomic
matrix made from a list). To create a matrix, you can use the
matrix() function on a vector with the nrow and/or ncol arguments.
matrix(1:20, nrow = 5) will produce a matrix with five rows
and four columns containing the numbers one through twenty.
matrix(1:20, ncol = 4) produces the same matrix.

 [,1] [,2] [,3] [,4]
[1,] 1 6 11 16
[2,] 2 7 12 17
[3,] 3 8 13 18
[4,] 4 9 14 19
[5,] 5 10 15 20

The matrix will fill by column unless the argument byrow is set to TRUE.

Note that the position indexes are assigned to rows and columns here.
Since a matrix is naturally two-dimensional, R provides column indexes
to more easily interact with the matrix. You can use the index vector
[] to return the value of an individual cell of the matrix. x[1,2] will
return the value of row one, column 2: 6. You can also use the index
vector to return the values of whole rows or columns. x[1,] will return
1 6 11 16, the elements of the first row of the matrix.

You can also create a matrix by assigning dimensions to a vector using
the dim() function, as shown here:

x <- 1:20
dim(x) <- c(5, 4)

This created the same matrix you saw earlier. With the dim() function,
you can also redefine the dimensions of a matrix. dim(x) <- c(4,5)
will “redraw” the matrix to have four rows and five columns.

ARRAYS
What happens if the vector you passed to the dim() function had more
than two elements? If we had written dim(x) <- c(5, 2, 2) we would
have created another data structure: an array.

Technically, a matrix is specifically a two-dimensional array, but
arrays can have unlimited dimensions. When x contained 20
elements—x <- 1:20—executing dim(x) <- c(5, 2, 2) would have
given x three dimensions. R would represent this as a “series” of matrixes:

> x
, , 1
 [,1] [,2]
[1,] 1 6
[2,] 2 7
[3,] 3 8
[4,] 4 9
[5,] 5 10
, , 2
 [,1] [,2]
[1,] 11 16
[2,] 12 17
[3,] 13 18
[4,] 14 19
[5,] 15 20

In the case of an array, the “row” and “column” numbers remain in the
same order, and R will show the other dimensions above each matrix.
In this case, we received two matrixes (based on the third dimension
given) of five rows (based on the first dimension given) and two
columns (based on the second dimension given). R displays arrays in
order of each dimension given—so if we had an array of four
dimensions (say 5, 2, 2, 2), it would print matrixes , , 1, 1, then
, , 1, 2, then, , 2, 1, and lastly , , 2, 2.

Again, you can use index vectors to find a particular element, or
particular elements, of the array. In our three-dimensional array shown
earlier, x[1, 2, 2] will return 16. You can see by the way R has printed
the array that rows come before the first comma, columns come after
the first comma, and the third dimension of the array comes after the
second comma.

DATA FRAMES
A data frame is a (generally) two-dimensional structure consisting of

R ESSENTIALS

http://www.dzone.com?refcardz

© DZONE, INC. | DZONE.COM

5

vectors of the same length. Data frames are used often, as they are the
closest data structure in R to a spreadsheet or relational data tables. You
can use the data.frame() function to create a data frame.

> x <- data.frame(y = 1:3, z = c("one", "two", "three"),
stringsAsFactors = FALSE)

> x
 y z
1 1 one
2 2 two
3 3 three

In this example, we have created a data frame with two columns and
three rows. Using y = and z = defines the names of the columns, which
will make them easier to access, manipulate and analyze. Here, we’ve
used the argument stringsAsFactors = FALSE to make column z an
atomic character vector instead of a factor. By default, data frames will
coerce vectors of strings into factors.

You can use the names() function to change the names of your columns.
names(x) <- c("a", "b") provides a vector of new values to replace
the column names, changing the columns to a and b. To change a certain
column or columns, you can use the index vector to specify which
column(s) to rename.

> names(x)[1] <- "a"
> x
 a z
1 1 one
2 2 two
3 3 three

You can combine data frames with the cbind() function or the
rbind() function. cbind() will add the columns of one data frame to
another, as long as the frames have the same number of rows.

> cbind(x, b = data.frame(c("I", "II", "III"), stringsAsFactors =
FALSE)))

 a z b
1 1 one I
2 2 two II
3 3 three III

rbind() will add the rows of one data frame to the rows of another, so
long as the frames have the same number of columns and have the
same column names.

> rbind(x, data.frame(a = 4, z = "four"))
 a z
1 1 one
2 2 two
3 3 three
4 4 four

cbind() and rbind() will also coerce vectors and matrixes of the
proper lengths into a data frame, so long as one of the arguments of the
bind function is a data frame. We could have used
rbind(x, c(4, "four")) to take the data frame x we defined earlier,
and coerce the vector c(4, "four") to fit into the existing data frame.
But coercion can affect the way your data frame stores your data. In this
case, the vector c(4, "four") would have coerced the integer 4 into the
character "4". Then the data frame would have coerced the entire first
column into a character vector. This makes it safer to use rbind() and
cbind() to bind data frames with each other.

FUNCTIONS

Once the data you need is structured appropriately, R has many
built-in functions for viewing, analyzing, and manipulating that data.
Furthermore, R will let you define your own functions. We’ll brief ly go

over many of R’s helpful functions here. Remember that you can use the
? operator or the help() function to learn more about these functions.

VIEWING DATA AND METADATA
Different data structures contain different metadata to help define the
structure itself and how the data within it should act. These functions
allow you to see your data and metadata in different ways. Remember,
to view the actual data within a variable, input the variable name and
nothing else; R will return the data contained in that variable in the
format most fitting for its data structure type.

FUNCTION DESCRIPTION

summary()

Returns a brief summary of the data based on the data structure
and types of data. Will return minimum, first quartile, median,
mean, third quartile, and maximum values for a numeric vector.
Will return the names of factors along with the count of each
level. Will produce tables for data structures and matrixes,
summarizing each column as its own vector.

str()

Returns a brief overview of the data’s structure, including atomic
type and/or data structure type, dimensions, number of factor
levels, and examples of the data within the structure (truncated
for long data sets). As with summary(), the output will differ based
on the data structure and data type(s).

dim() Gets or sets the dimensions of the data structure.

levels() Gets or sets the levels of an object (usually a factor).

length() Returns the length of an object.

names() Gets or sets the names of an object.

class() Gets or sets the class (type of data structure) of an object.

attributes() Returns relevant attributes of an object.

object.
size() Returns the size in bytes an object is taking in memory.

order()
Returns a vector of indexes in either ascending or descending
order. By default, the first value returned would be the index of
the argument with the lowest value.

rank()

Returns a vector that ranks, in order, each element against
all other elements. In other words, if the first number of the
returned vector is 3, this means that the first element of x is the
third smallest of all the other elements of x.

head() Returns the first elements of an object.

tail() Returns the last elements of an object.

MANIPULATING DATA

FUNCTION EX AMPLES DESCRIPTION

seq() seq(x, y, by = z)

Increments x by z until y is reached/
surpassed. seq(0, 10, by = 5) returns
0 5 10.

R ESSENTIALS

http://www.dzone.com?refcardz

© DZONE, INC. | DZONE.COM

6

FUNCTION EX AMPLES DESCRIPTION

seq()
seq(x, y, length
= z)

Increments x by y-z/(z-1) (i.e. x to y
exactly z times).

rep() rep(x, times = y)
Repeats x for y times. x can be a vector
or factor.

rep() rep(x, each = y)

Repeats the first value of x for y times,
then repeats the next value of x for y
times, until all values of x have been
repeated.

paste()
paste(..., sep = "
", collapse = " ")

Merges string arguments into a single
string, separated by " " (one space).
If character vectors are inserted as
arguments, the paste() will operate on
each element of the vectors, recycling
values as needed. The collapse
argument will merge character vectors
into a single string.

t() t(x)
Transposes rectangular/tabular object x
(a matrix or data frame).

rbind() rbind(x, y)

Combines tabular data by rows. Here,
objects x and y must have the same
number of columns.

cbind() cbind(x, y)

Combines tabular data by columns.
Here, objects x and y must have the
same number of rows.

strsplit() strsplit(x, "regex")

Splits a character vector x into a list of
substring vectors based on a regular
expression.

nchar() nchar(c(x, y))

Counts the number of characters in
each element of a character vector and
returns a vector containing the count of
each of those.

substr() substr(x, y, z)

Returns a substring of character vector x,
starting with position y and ending with
position z.

sort() sort(x)

Sorts the values of vector or factor x
either in ascending or descending order
based on the argument decreasing =.
Ascending order is the default.

MATH FUNCTIONS

FUNCTION DESCRIPTION

abs() Returns the absolute value of an object.

ceiling() Returns the smallest integer greater than a numeric value.

floor() Returns the largest integer less than a numeric value.

trunc() Truncates a numeric value to an integer, toward 0.

cos(),
sin(),
tan(),
acos(),
asin(),
atan()

atan2(),
cospi(),
sinpi(),
tanpi()

Trigonometric functions, such as sine and cosine.

FUNCTION DESCRIPTION

exp()
Computes the exponential function (i.e. the value of e raised to
the power of the argument of the function).

log(),
log10(),
log2()

Computes the natural, common, or binary logarithm. The
argument base = can be used to define the base of the log()
function.

max(),
min() Returns the maximum or minimum values of its arguments.

range()
Returns a vector with the minimum and maximum values of its
arguments.

cummax(),
cummin(),
cumprod(),
cumsum()

Returns the cumulative maximum or minimum values, or the
cumulative product or sum, of its arguments.

mean() Returns the mean value of its arguments.

median() Returns the median value of its arguments.

cor()
Returns the level of correlation of a matrix or data frame, or
two vectors. Uses the Pearson method by default, but other
methods can be set with the method = argument.

cov(),
var()

Returns the variance/covariance of a matrix or data frame, two
vectors, or for var() a single vector.

sd() Returns the standard deviation of the values of its arguments.

> x <- (sample(-25:25, 5)) / 3
> x
[1] 5.666667 7.666667 2.666667 -2.333333 -7.666667
> abs(x)
[1] 5.666667 7.666667 2.666667 2.333333 7.666667
> ceiling(x)
[1] 6 8 3 -2 -7
> floor(x)
[1] 5 7 2 -3 -8
> trunc(x)
[1] 5 7 2 -2 -7
> max(x)
[1] 7.666667
> min(x)
[1] -7.666667
> range(x)
[1] -7.666667 7.666667
> cummax(x)
[1] 5.666667 7.666667 7.666667 7.666667 7.666667
> cummin(x)
[1] 5.666667 5.666667 2.666667 -2.333333 -7.666667
> mean(x)
[1] 1.2
> median(x)
[1] 2.666667
> var(x)
[1] 38.75556
> sd(x)
[1] 6.225396

STATISTICAL FUNCTIONS

FUNCTION DESCRIPTION

fitted() Returns model fitted value from the argument.

predict() Returns prediction values based on model fitted values.

resid() Returns extracted residuals from the argument.

R ESSENTIALS

http://www.dzone.com?refcardz

© DZONE, INC. | DZONE.COM

7

FUNCTION DESCRIPTION

lm() Fits a linear model based on a function given as an argument.

glm()
Fits a general linear model based on a function given as an
argument.

deviance() Returns the value of deviance from a fitted model object.

coef()
Returns coefficients from objects returned by modeling
functions.

confint()
Returns confidence intervals of a fitted model based on
parameters given as articles.

vcov()
Returns an estimated covariance matrix from a fitted model
object.

D-P-Q-R STATISTICAL DISTRIBUTIONS
The following functions calculate distributions in your data. Each of
these functions must be prefixed with either d, p, q, or r, which will
signify whether the distribution is generated based on density, the
distribution function, the quantile function, or random generation. For
example, where the table here says _binom(), you must append either
d, p, q, or r to the beginning of the function. The actual function would
look like rbinom() and not binom(). Each of these functions have
different accepted arguments and outputs. You can use ?dbinom to find
information on all the Binomial Distribution functions.

FUNCTION DESCRIPTION

_norm() Normal distribution.

_binom() Binomial distribution.

_pois() Poisson distribution.

_exp() Exponential distribution.

_chisq() Chi-Squared distribution.

_gamma() Gamma distribution.

_unif() Unified distribution.

CREATE YOUR OWN FUNCTION
There are many built-in functions in R, and many we could not even list
here. If you are unable to find a function you need, though, R allows you
to create your own function using the function() function. Functions
can be created in-console, but often more complex functions are easier to
write as .R scripts, which you can run, copy, or alter as you need.

Creating a function in R is much like creating a variable. Give the name
you want to use for the function, then use the <- operator. After the
operator, you will use function(...), where the ... represents the

argument or arguments that will be provided to the function. You will
then define the function using {} curly braces. See the example below:

> quad <- function(x) {
+ x * 4
+ }
> quad(1:3)
[1] 4 8 12

Here I have defined a function quad(). I have required only one
argument for that function, and I have called the argument x. I used a
curly bracer to begin defining what the function does. (Note the + plus
signs on the left of the console; after hitting return after my first line, R
noticed I was not finished writing my function, and used the plus sign
to indicate it was waiting for more input.) On the next line, I define what
the function does: in this case, I have the function quad() multiply the
argument by four, or quadruple it. On the next line, I finish defining the
function by closing the curly bracers }. This could have all been done on
a single line; I’ve broken it up for readability.

You can also set default values for the arguments passed to your
function. To do so, name the function, then type = and then the default
value. Giving an argument a default value makes that argument optional.

> addminus1 <- function(x, y = 1) {
+ x + y - 1
+ }
> addminus1(3)
[1] 3
> addminus1(3,4)
[1] 6

If needed, functions can also be used as arguments in other functions. These
functions can be predefined or inserted directly (an anonymous function).

OTHER USEFUL OPERATORS AND FUNCTIONS

LOGICAL OPERATORS

OPERATOR DESCRIPTION

< Less than operator.

<= Less than or equal to operator.

> Greater than operator.

>= Greater than or equal to operator.

== Exactly equals operator.

!= Not equal to operator.

| OR operator.

|| OR operator that evaluates the leftmost element of a vector.

& AND operator (evaluated before OR operators).

&& AND operator that evaluates the leftmost element of a vector.

! NOT operator.

R ESSENTIALS

© DZONE, INC. | DZONE.COM

8

LOGICAL FUNCTIONS

FUNCTION EX AMPLES DESCRIPTION

isTRUE() isTRUE(x) Returns TRUE if argument x is TRUE.

xor() xor(x, y)

Returns TRUE if either argument x OR argument
y is TRUE, but NOT if both are TRUE or both are
FALSE (exclusive OR logical).

which() which(x)
Returns the indexes of logical vector x that
are TRUE.

any() any(x)
Returns TRUE if any element of logical vector
x is TRUE.

all() all(x)
Returns TRUE if all elements of logical vector x
are TRUE.

INDEX VECTORS
There are several ways to isolate certain pieces of data from larger data
sets. Index vectors are one way you can do this. There are four types of
index vector, and each is accessed by placing square brackets [] directly
next to the name of the data structure you want to access.

TYPE EX AMPLES DESCRIPTION

Logical x[x > 0]

Checks each element of x and returns
only elements that return TRUE for the
logical indexed expression.

Positive
Integer

x[y]
Returns a subset of x including only
elements at positions included in y.

Negative
Integer

x[-y]

Returns a subset of x including all
elements of x except for elements at
positions included in y.

Named x["y"]
Returns a subset of x including only
elements named y.

> x <- 1:5
> names(x) <- c("one", "two", "three", "four", "five")
> x[x > 3]
four five
 4 5
> x[2]
two
 2
> x[-c(1,4)]
 two three five
 2 3 5
> x["five"]
five
 5

FILES AND DIRECTORIES

FUNCTION DESCRIPTION

read.csv() Reads the contents of the specified .csv file.

write.
csv() Writes to the contents of the specified .csv file.

getwd() Gives the current working directory.

FUNCTION DESCRIPTION

ls() Returns the objects in your local workspace.

list.
files() or

dir()
Returns the files in your working directory.

dir.
create() Creates a directory within the working directory.

setwd() Set a new working directory.

file.
create() Create a new file in the current working directory.

file.
exists() Checks whether a file exists in the working directory.

file.
info()

Returns information about a file. Includes size, whether file is a
directory, permissions in octal notation, modified time, created
time, accessed time, user ID, group ID, username & group name.

file.
rename() Renames a file.

file.
remove() Deletes a file.

file.
copy() Makes a copy of a file in the working directory.

unlink()
Deletes a directory. Use the argument recursive = TRUE to
delete a directory with contents (this will delete the contents).

GRAPHICAL FUNCTIONS
R is known for its extensive, easy-to-use graphical functions. Here are
a few to get you started. Packages gplot and ggplot2 can help you create
even more customized graphics. These are just a few basic graphical
functions you can use in R. While for the sake of length, we can’t go
over all the graphs you can create here, or all the arguments you can
use to customize them, you should get a sense of what kind of graphs
you can create in R.

FUNCTION DESCRIPTION

plot()
Creates a scatter plot; varies based on the data structure(s)
provided.

hist() Creates a histogram from a numeric vector.

dotchart() Creates a dot chart based on a numeric vector and its labels.

barplot() Creates a bar graph from a vector or matrix.

boxplot() Creates a box plot from a formula and a data frame.

heatmap() Creates a heat map from a matrix.

lines() Can add lines to an existing graph or chart.

Here’s a very basic example of a heatmap from function heatmap(
matrix(sample(1:100, 100, replace = TRUE), ncol = 10)):

R ESSENTIALS

© DZONE, INC. | DZONE.COM

9

PACK AGE DESCRIPTION

swirl
A package for R that gives walkthrough tutorials in the R
console. It’s a great hands-on way to get to know R.

ggplot2
Brings to R more graphical capabilities, allowing for the
creation of more complex and more configurable graphs.

RColorBrewer
Contains built-in color palettes for better looking and easier
to read graphics.

data.table
Enhances the abilities of data frames and allows for faster
processing on large data sets.

plyr Simplifies the process of performing split-apply-combine operations.

RESOURCE DESCRIPTION

r-bloggers.com
A site dedicated to rounding up blog posts from expert data
scientists and R programmers.

datacamp.com
This site has some in-browser tutorials that can help you dig
deeper into R.

inside-r.org Has news, how-tos, daily features, and more handy R info.

Big Data Machine
Learning

This DZone Refcard shows patterns for machine learning
using R examples: bit.ly/machinelearningR.

BROWSE OUR COLLECTION OF FREE RESOURCES, INCLUDING:

RESEARCH GUIDES: Unbiased insight from leading tech experts

REFCARDZ: Library of 200+ reference cards covering the latest tech topics

COMMUNITIES: Share links, author articles, and engage with other tech experts

JOIN NOW

DZONE, INC.
150 PRESTON EXECUTIVE DR.
CARY, NC 27513
888.678.0399
919.678.0300

REFCARDZ FEEDBACK WELCOME
refcardz@dzone.com

SPONSORSHIP OPPORTUNITIES
sales@dzone.comCopyright © 2016 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or

transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher. VERSION 1.0

DZone communities deliver over 6 million pages each month to more than 3.3 million software
developers, architects and decision makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, research guides, feature articles, source code and more.

"DZone is a developer's dream," says PC Magazine.

G. RYAN SPAIN is a Publications Editor at DZone. He lives in Raleigh, North Carolina. He received his MFA
in Poetry in 2014 and loves mixing his passions of poetry, science, and technology. When he’s not producing
DZone Refcardz, he enjoys writing poetry, programming with Java, querying with SQL, and analyzing data in R.

ABOUT THE AUTHOR

USEFUL RESOURCES
There’s a lot more you can learn about and do with R than we can cover
in this Refcard. But there are a lot of resources out there to help you
learn more, and there are also a lot of R packages that can make R even
more powerful. Try looking into these resources and packages to step
up your R game. Use the install.packages() function to download a
package (just put the package name in quotation marks as the function’s
argument). You’ll need to load packages on new R sessions using the
library() function, or by using your IDE (in RStudio, you can select
checkboxes in the packages tab to load other installed packages).

R ESSENTIALS

http://r-bloggers.com
http://datacamp.com
http://inside-r.org
http://bit.ly/machinelearningR
https://dzone.com/user/register?step=1
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com

