
BROUGHT TO YOU IN PARTNERSHIP WITH

THE DZONE GUIDE TO

VOLUME I I I

BUILDING AND DEPLOYING

APPLICATIONS
ON THE CLOUD



 DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD2

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD

TABLE OF CONTENTS

The cloud isn’t cool anymore—everyone uses it all the 
time. It’s just Von Neumann machines whose physical 
implementations you don’t (usually) particularly have to 
think about. In that sense, Larry Ellison was right: “All 
the cloud is, is computers on a network.” 

But hang on a minute. Ten years ago, could you serve 
a million simultaneous users without ever talking to an 
IT admin? 

If not, then something about how we move our code 
to production has changed since “cloud computing” 
started trending on Google. 

Overhyped or not, the cloud has deeply changed how 
we build and run software—and not just because 
IaaSes make VMs trivial to spin up and PaaSes make 
environments easy to set up. As a user you know 
what’s changed, and you understand the concept “as 
a service” (well, ever since you started running *nix); 
and, thank goodness, you don’t really have to worry 
about the physical details that make those services run.  

But how can you take advantage of the granularity, 
elasticity, and pre-baked-ness of modern cloud services? 
And, on the flip side, as your applications expand 
outside blade-boxes and even beyond individual 
data centers, how do you design (and troubleshoot) 
applications that treat network links like second-
generation buses, that won’t hang if a service a 
continent (and an SLA) away just isn’t working, and that 
store sensitive data on machines whose geolocation and 
hardware configuration you don’t even know? 

We’ve done our best to pack concrete, immediately 
implementable solutions to these and related problems 
into our 2016 Guide to Developing and Deploying 
Applications on the Cloud. We hope our original 
research, articles and checklists, and pull-out poster 
visualizing the 12-factor methodology will help you 
design and run fast, reliable, easy-to-update cloud-
native applications on any infrastructure, in any 
vertical, for any use case. 

Browse, absorb, test, critique, and let us know what 
you think. 

EXECUTIVE SUMMARY

KEY RESEARCH FINDINGS

FULLSTACK ENGINEERING IN THE AGE OF HYBRID CLOUD
BY JP MORGENTHAL 

THE STEP-BY-STEP GUIDE FOR KEEPING YOUR CLOUD APPLICATIONS 
SECURE  CHECKLIST

BUILDING BLOCKS FOR HIGHLY AVAILABLE SYSTEMS ON AWS
BY ANDREAS WITTIG & MICHAEL WITTIG

ARCHITECTING FOR FAILURE
BY GAURAV PURANDARE

DIVING DEEPER INTO CLOUD DEVELOPMENT

THE 12-FACTOR APP  INFOGRAPHIC

MOVING TO THE CLOUD: TRANSFORMING TECHNOLOGY AND THE TEAM
BY DANIEL BRYANT

SERVERS? WHERE WE’RE GOING WE DON’T NEED SERVERS.
BY IVAN DWYER

FOCUSING ON THE CLOUD IN CLOUD APPLICATIONS
BY NICK KEPHART

EXECUTIVE INSIGHTS ON DEVELOPING & DEPLOYING APPLICATIONS 
ON THE CLOUD  BY TOM SMITH

CLOUD DEVELOPMENT SOLUTIONS DIRECTORY

GLOSSARY

3

4

6

9

12

16

18

20

22

26

30

34

36

40

E D I T O R I A L
JOHN ESPOSITO 
RESE ARCH@DZONE.COM
EDITOR-IN-CHIEF 

CAITLIN CANDELMO
PUBLICATIONS MANAGER

ANDRE POWELL
EDITORIAL OPER ATIONS 
MANAGER

G. RYAN SPAIN
ASSOCIATE EDITOR 

MATT WERNER  
ASSOCIATE EDITOR

MICHAEL THARRINGTON
ASSOCIATE EDITOR

TOM SMITH
RESEARCH ANALYST

B U S I N E S S
RICK ROSS
CEO

MATT SCHMIDT
PRESIDENT & CTO

JESSE DAVIS
EVP & COO

KELLET ATKINSON
VP OF MARKETING 

MATT O’BRIAN
SALES@DZONE.COM
DIRECTOR OF BUSINESS 
DEVELOPMENT

ALEX CRAFTS
DIRECTOR OF MAJOR ACCOUNTS

CHRIS SMITH 
PRODUCTION ADVISOR

JIM HOWARD
SR ACCOUNT EXECUTIVE

CHRIS BRUMFIELD
ACCOUNT MANAGER

A R T
ASHLEY SLATE
DESIGN DIRECTOR

SPECIAL THANKS
to our topic experts, Zone 
Leaders, trusted DZone 
Most Valuable Bloggers, and 
dedicated users for all their 
help and feedback in making 
this report a great success.

WANT YOUR SOLUTION TO BE FEATURED IN COMING GUIDES?  
Please contact research@dzone.com for submission information. 

LIKE TO CONTRIBUTE CONTENT TO COMING GUIDES?  
Please contact research@dzone.com for consideration.

INTERESTED IN BECOMING A DZONE RESEARCH PARTNER?  
Please contact  sales@dzone.com for information.

DEAR READER,

BY JOHN ESPOSITO
EDITOR-IN-CHIEF, DZONE     RESEARCH@DZONE.COM

http://DZone.com/guides
http://dzone.com/guides
https://www.youtube.com/watch?v=rmrxN3GWHpM&feature=youtu.be&t=45m44s
https://www.youtube.com/watch?v=rmrxN3GWHpM&feature=youtu.be&t=45m44s
http://www.google.com/trends/explore#q=cloud%20computing
mailto:research%40dzone.com?subject=
mailto:sales%40dzone.com?subject=
https://dzone.com/pages/zoneleader
https://dzone.com/pages/zoneleader
https://dzone.com/pages/mvb
https://dzone.com/pages/mvb
mailto:research%40dzone.com?subject=
mailto:research%40dzone.com?subject=
mailto:sales%40dzone.com?subject=
mailto:research%40dzone.com?subject=


 DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD3

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD

EXECUTIVE SUMMARY

DEVELOPERS ARE ADOPTING CONTAINERS QUICKLY
DATA    66% of survey respondents say they are evaluating or using 
container technologies in their organization right now. 92% of those 
respondents say that containers are being used or evaluated in 
development. 35% of respondents whose organizations are currently 
using containers release their applications on-demand (several times 
a day); this percentage trends downwards as time between releases 
goes up. 

IMPLICATIONS    Container adoption among developers continues to 
increase. The percentage of respondents who say they are currently 
using containers in their organization has more than doubled since 
our survey last year. This shift has helped organizations deploy and 
service applications more quickly by simplifying the decomposition 
and deployment environments, as we showed in our 2016 Guide to 
Continuous Delivery.

RECOMMENDATIONS    Try modern application container 
technologies, if you haven’t already (and even if you’ve tried LXC 

before). Decomposing your app can make it more resilient and robust, 
allowing for quick recovery from downtime and easier fixes and 
updates to your application code. To understand how far lightweight 
resource isolation can take you, read Ivan Dwyer’s article “Servers? 
Where We’re Going We Don’t Need Servers” on page 26 in this Guide.

THE CLOUD IS EVEN MORE POPULAR FOR 
PRODUCTION THAN FOR DEVELOPMENT AND TESTING
DATA    62% of survey respondents say they perform production 
or deployment on a cloud platform; this is compared to 54% who 
use cloud for development, and only 49% who use cloud for QA or 
testing. Still, 31% of respondents plan on performing QA/Testing on 
the cloud, versus 26% who have plans to start deploying to the cloud 
and 21% who have plans for developing on a cloud platform. 

IMPLICATIONS    Deploying on cloud platforms can increase 
availability and make scaling easier. For deployed applications, 
with real users in hard-to-predict numbers, these benefits become 
especially important. Developers may currently feel a little more 
comfortable keeping pre-production applications closer to home, but 
as more granular as-a-service offerings gain maturity, the cloud will 
be used increasingly at all application lifecycle stages.

RECOMMENDATIONS   Look into cloud platforms to increase application 
availability and scale elasticity. Consider using cloud services ‘farther 
left.’ For a more concrete picture of how to build applications with 
many-9 SLAs, check out Andreas and Michael Wittig’s article “Building 
Blocks for Highly Available Systems on AWS” on page 12 in this Guide.

SECURITY, PERFORMANCE, AND SCALABILITY ARE 
FAR AND AWAY THE BIGGEST FACTORS THAT AFFECT 
DEVELOPERS’ CHOICE OF CLOUD PROVIDER
DATA    87% of respondents said security was a “very important” factor 
when choosing a cloud provider, followed by performance (79%), then 
scalability (73%). The fourth most important factor trailed by fourteen 
percentage points: 59% said price was “very important.”

IMPLICATIONS    Cloud pricing can become a significant pain point, 
but developers are much more concerned about technical and 
governance factors than price alone. This suggests that service levels 
are significantly inhomogeneous over all providers (or else price would 
make more of a difference).

RECOMMENDATIONS    Research and plan at a deep technical level 
before choosing a cloud platform for your application. Be sure to 
know the platform’s strengths and its weaknesses and how well its 
offerings match your application’s needs. For details on how to choose 
a cloud and move your application to the cloud, see Daniel Bryant’s 
“Moving to the Cloud: Transforming Technology and the Team” on 
page 22 below. For the increased importance of a synoptic view of all 
application components running in the cloud, read JP Morgenthal’s 
“Full Stack Engineering in the Age of Hybrid Cloud” on page 6 below.

Cloud technologies have been gaining traction for 
some time now. Increases in connectivity throughout 
the computing world with the creation of more and 
more connected devices, including mobile and IoT 
technologies, as well as more and more connected 
applications on those devices, means cloud computing 
adoption is ever-increasing. Expectations regarding an 
application’s availability are high, and solutions continue 
to emerge to increase availability and make scaling 
applications easier when a user load gets too big. New 
patterns, platforms, services, and software are pushing 
applications and data to the cloud. To help you sort 
through these, we’ve assembled information and advice 
in this guide that can assist you in choosing, setting 
up, and maintaining cloud platforms, and using the 
cloud to optimize your application. This guide includes:

• Articles from six industry experts 

• A directory of cloud tools to consider when 
building a cloud-based application 

• A checklist for making sure your cloud-based 
application is secure 

• Analysis of trends from a survey of over 700 IT 
professionals 

• C-level perspective on cloud computing based on 
from interviews with 28 executives

http://DZone.com/guides


 DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD4

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD

01.  CLOUD PLATFORM ISSUES NEITHER EXPERIENCED NOR EXPECTED, BY 
CLOUD PROVIDER USED

35

COST
ISSUES

AMAZON WEB SERVICES

INTEGRATION
ISSUES

SECURITY
ISSUES

RELIABILITY
 ISSUES

CHANGES IN INTERNAL
PROCESSES/GUIDELINES

APP PERFORMANCE
ISSUES

34
37

30
33

43
43

49

42
38

52

29
3131

27

50
46

44
41

37 3738
35

32

MANAGING MULT.
CLOUD ENVIRONMENTS

34
37

3231

MICROSOFT AZURE GOOGLE CLOUD SERVICES (E.G. GAE, GCC) AVERAGE OF ALL OTHERS

AWS  S T ILL  ON  TOP
When asked what cloud service providers their organization 
uses, an overwhelming amount of respondents to DZone’s 2016 
Cloud survey said they had used Amazon Web Services.  58% of 
respondents said their org used AWS in some way—more than 
twice the runner-up, Microsoft Azure (which 26% or respondents 
said their organization uses). Coming in third were Google Cloud 
Services, which had 17%. 

When cross-tabbed with which issues the respondents expected or 
experienced with their cloud platform, respondents who used each 
of these top three service providers were more likely to respond 
that they “neither experienced nor expected to experience” than 
the average of all cloud service provider users (608 out of our 704 
respondents). See Figure 1 for a breakdown of those providers 
compared to the average of all other providers.

Respondents expected or experienced greater scalability and higher 
availability from using cloud platforms over other benefits we asked 
about (such as better application performance and faster time to 
market), so it makes sense why orgs might want to stick to larger or 
more established cloud providers—they’re seen as more likely to be 
able to have more data centers, more availability zones, more robust 
infrastructures to scale easily and guard against downtime. 

Still, there’s certainly some stick-to-itiveness involved in which 
cloud providers companies are using. Between last year’s DZone 
Cloud survey and this year’s, AWS usage gained just 1%, while 
Microsoft gained 2% and Google lost 2%. Providers such as Heroku, 
Rackspace, and OpenStack barely saw a change (under 1%). Digital 
Ocean saw the biggest boost, jumping from 5% to 8%.

DOCKER  IS  HUGE .  BUT  YOU  KNEW THAT
When we asked about which open-source cloud products devs 
used last year, we didn’t include Docker. We found OpenStack to be 
pretty popular (30% in 2015), with Cloud Foundry and OpenShift 
as runners-up (12% each in 2015). But the majority of our 2015 
respondents (55%) said they had not used an open-source cloud 
product for a business application.

This year, we decided to throw Docker into the mix and add it as 
an option to the same question. Sure, it’s not quite the same as the 
PaaSes or IaaSes it was pitted against, so we’re not going to try to 
compare the results against other open-source options (apples and 
oranges, and all that).

45% of our survey respondents this year answered that they had 
used Docker for a business application. And when asked about 
whether their org was using or looking into using containers 
(something we did ask about in 2015), about 66% said their org 
was either using or evaluating a container technology right 
now—which is up about 20% from last year’s responses, pointing 
to a lot of recent container adoption that seems to match the buzz 
surrounding containers and Docker.

KEY 
RESEARCH 
FINDINGS

02.  DOCKER USAGE COMPARED TO TIME BETWEEN RELEASES

704 IT Professionals responded to  

DZone’s 2016 Cloud Development Survey;  

the demographics of this survey are as follows:

• 67% of these respondents use Java as their 
primary programming language at work.

• 76% have been IT professionals for over 10 years.

• 39% work at companies whose headquarters are 
located in Europe, 35% in the USA.

• 40% work at companies with more than 500 
employees, 16% at companies with more than 
10,000 employees.

CURRENTLY USING IT EVALUATING IT NOT USING IT

ON-DEMAND RELEASES

DAILY RELEASES

37 26 26 20 39 52 44 43 23 22 30 38

WEEKLY RELEASES

MONTHLY RELEASES

http://DZone.com/guides
http://dzone.com/guides


 DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD5

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD

04. PUBLIC, PRIVATE, OR HYBRID CLOUD PREFERENCES OVER ALL RESPONDENTS

We also found that as developers’ time between releases decreased, 
their container usage increased. While devs with all sorts of 
release schedules did say they were evaluating containers, those 
who release “on-demand” were 17% more likely to use containers 
currently than those who estimated “monthly” releases. Since 
containers can make decomposing apps easier, they also make it 
easier to make a change to one part of an app without touching 
anything in another container, so you have to worry less about 
patches turning into bugs.

LA R GER  ORG ,  MORE  HYBR ID  CLOUD
There are plenty of factors that go into deciding whether to choose 
a public, private, or hybrid cloud platform: security, availability, 
scalability, cost, flexibility… the list goes on. For our last three Cloud 
surveys, we’ve asked respondents “Which cloud platform type best 
fits your company’s needs.” The answers haven’t fluctuated much 
between those surveys. About half of respondents prefer hybrid, 
while the other half leans slightly toward private.

We found, however, that there is a direct correlation between the 
size of a respondent’s company and which type of cloud platform 
that respondent thinks best fits that company’s needs. Those in 
small companies (from 1–9 employees) were 15% less likely to 
choose hybrid cloud platforms than those in the largest companies 
(10,000+ employees), with a quite linear trend in between. The 
choice of public cloud platforms trended linearly in the other 

direction, with 36% of those in the smallest companies choosing 
public, versus 9% in the largest companies.

Of course, very small companies are generally less likely to be able 
to handle an all-private cloud infrastructure, just given the number 
of employees they would need in order to maintain it. Public cloud 
is—in the absence of dedicated enterprise IT staff—just easier. But 
that doesn’t negate the advantages of having some of your cloud 
platform private. As cloud computing becomes more widespread, 
hybrid’s popularity will certainly increase; at the same time, as 
public cloud platforms become easier (and cheaper), it is likely to 
close the gap with private amongst those who haven’t jumped on 
the hybrid bandwagon.

PAAS  LOVES  THE  LANGUAGES
We developed a hypothesis about Platforms as a Service—the 
most popular cloud-based service in production amongst our 
respondents. It seemed that, because of how closely PaaSes are 
tied to the language being deployed, that those respondents whose 
organizations used fewer languages would be more likely to use a 
PaaS. Need to use more languages? Maybe you’d go with an IaaS—
more work, but more flexibility.

Actually, when correlated against the number of programming 
languages each respondent said their organization uses(up to four), 
there was an upward linear trend for PaaS usage. Respondents 
who said their org only used one language were 49% likely to say 
their org used a PaaS. Those who said four languages were used at 
their organization were 68% likely. (Data above four languages for 
a single org was insufficient for analysis.)

With multiple PaaSes, however, it seems an organization can 
more easily handle multiple languages. Yes, perhaps a single PaaS 
is tied to a particular language; but multiple PaaSes would allow 
an organization to utilize different languages for different uses, 
without having to build its own platform for each.

For Infrastructures as a Service—the second most popular cloud-
based service in production—data was a little more scattered, 
but still trended upward, up to three languages used. Still, those 
who only selected one language for their organization were only 
49% likely to say their organization uses an IaaS; two-language 
respondents were 57% likely; three languages showed 64%; and 
four languages hopped back down to 54%.

03. PUBLIC, PRIVATE, OR HYBRID CLOUD PREFERENCES, BY COMPANY SIZE

1-9 10-99 100-499 500-9,999 10,000+

PUBLIC PRIVATE HYBRID (PUBLIC + PRIVATE)

46

18

35

49 55

25

20 12

33

55 61

30

9

23

28

05. PAAS USAGE, BY NUMBER OF LANGUAGES USED IN THE ORGANIZATION

1 2 3 4 5+

USE A PAAS DO NOT USE A PAAS

49

51

60

40

63 68 63

37 33 37PUBLIC21

26

53 PRIVATE

HYBRID

http://DZone.com/guides


 DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD6

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD

Fullstack 
Engineering 
in the Age of 
Hybrid Cloud
BY JP MORGENTHAL

T he Hybrid cloud describes an architecture 

that allows businesses to procure platform 

services from multiple sources. This implies 

that these services are divided across some 

physical boundary, each possibly with their own 

disparate characteristics with regard to use and 

operation. For the Full Stack Engineer (FSE)—

an engineer that has experience understanding 

the various layers that comprise an application 

stack inclusive of the physical and logical 

architectures—hybrid cloud will introduce 

additional levels of complexity and challenge 

even the best Full Stack Engineer’s capabilities.

In their November 2015 report, “IDC FutureScape: 
Worldwide Cloud 2016 Predictions — Mastering the Raw 
Material of Digital Transformation,” Analyst firm IDC 
predicts more than 80% of Enterprise IT organizations 
will commit to hybrid cloud architectures by 2017. The 
drivers behind this will be the desire to leverage the best 
and most compliant platform for a given application 
component. While a strong business strategy, it will often 

ignore the consequences of operating these applications 
across a variety of cloud service providers and, more 
importantly, performing root cause analysis when 
something doesn’t work as planned.

A recent IDC report entitled “DevOps and the Cost 
of Downtime: Fortune 1000 Best Practice Metrics 
Quantified” found that—on average—infrastructure 
failure costs large enterprises $100,000 per hour. Critical 
application failures exact a far steeper toll, from $500,000 
to $1 million per hour. This is often due to the lack of 
ownership by any one single group. This difficulty only 
becomes more problematic when applications are being 
divided across cloud boundaries. 

This leaves many enterprises with the considerable 
burden of figuring out how to deploy modern or cloud-
native applications across multiple architectures and 
manage the release and operations of these applications. 
The answer to this problem requires more than just 
tearing down the silos; it requires employing more full 
stack engineers. 

In today’s cloud world, the FSE is someone that 
understands the nature of a distributed application 
regardless if components of the application are 
operating on bare-metal servers in corporate-owned 
data centers or on public clouds. Hence, they may not be 

Q U I C K  V I E W

01
It's predicted that more than 80% 
of Enterprise IT organizations 
will commit to hybrid cloud 
architectures by 2017.

02
Operating these applications across 
a variety of cloud service providers 
will introduce new challenges and 
complexities. 

03
The FSE must now adapt to 
understand applications operating 
across resources that they do not 
directly control.

http://DZone.com/guides
http://dzone.com/guides
https://www.idc.com/research/viewtoc.jsp?containerId=259840
https://www.idc.com/research/viewtoc.jsp?containerId=259840
https://www.idc.com/research/viewtoc.jsp?containerId=259840
http://devopsdigest.com/idc-survey-appdynamics-devops-application-performance
http://devopsdigest.com/idc-survey-appdynamics-devops-application-performance
http://devopsdigest.com/idc-survey-appdynamics-devops-application-performance


 DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD7

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD

an expert on every component involved in making that 
application work, but they understand the basic f low 
of data across the entire application, the impact of the 
various components with regard to performance on the 
application, and which questions to ask of subject matter 
experts to arrive at an understanding when an application 
is not operating at its defined service levels. 

VALUE OF FSE AND THE CASE OF THE CHATTY APPLICATION
A chatty application is one that tends to f lood the network 
with messages regarding activities. These messages 
include the application data itself on a data plane, along 
with management data packets along a control plane. 
While under most normal conditions the chattiness of the 
application is not observable by end users, it may result in 
issues with connectivity and failures due to latency.

Given these outcomes, it can be expected that an end user 
would probably call the service desk to report their issue. 
Supposing the resulting ticket gets routed to the network 
and infrastructure team, they may assess the problem and 
determine that the chatty application is causing issues 
and isolate that traffic using quality of service capabilities 
of the router.  If that ticket gets routed to the level 2 
engineering support team, they may determine that the 
application that failed needs to be modified to better deal 
with latency.

Ultimately, we don’t know which solution is the best 
one. Correcting the issue in the infrastructure means 
implementing QoS rules that may be operational 100% 
of the time even though the problem only occurs 20% 
of the time. Correcting the issue in code means that we 
now need to maintain specialized code for a unique 
circumstance that may be highly dependent upon other 
network events that are occurring, such as a corporate 
town hall meeting over the intranet.

In the end, the FSE could best assess the conditions 
under which the problem occurred and would be able 

to trace the data f low from the network through to the 
application. The FSE may determine that the application 
is unnecessarily chatty and the appropriate fix would 
be to limit messages on the control plane. However, only 
by understanding the context in which the problem 
occurred—the end user asserting that system responds 
with high latency at times—and having the skills to 
assess the function of the application within that context 
can one implement the appropriate solution.

WHAT THE FSE NEEDS TO KNOW
Solving the aforementioned chatty application problem 
requires a certain set of skills that defines the boundaries 
of a full stack engineer. The following is a sampling of 
skills that a full stack engineer might have:

• Networking: The FSE should have a detailed 
understanding of IP networking inclusive of routing. 
Additionally, the FSE should be able to use packet tracing 
and analysis tools.

• Servers: The FSE should have a detailed understanding of 
server configuration management inclusive of operating 
systems and hypervisors. This includes both bare-metal 
and virtual servers, as well as data center tools, such as 
KVM switching and keyboard logging.

• Application Infrastructure: The FSE should have an 
understanding of how various components of application 
infrastructure work, such as databases, message queuing, 
mail servers, web servers, application servers, etc. While 
it’s not feasible for any one individual to know all products 
in this space, there are certain standards these products 
implement, such as SMTP, JMS, APMQ, Tomcat, etc., that 
the FSE should be very knowledgeable about.

• Data Persistence and Modeling: An FSE should have 
understanding for how the data persistence architecture 
may impact performance. This includes:

• How the data is physically stored, for example direct-
attached storage and Storage Area Network (SAN), 

HYBRID CLOUD WILL INTRODUCE 

ADDITIONAL LEVELS OF COMPLEXITY 

AND CHALLENGE EVEN THE BEST 

FULL STACK ENGINEER CAPABILITIES.

ON AVERAGE, INFRASTRUCTURE FAILURE COSTS 

LARGE ENTERPRISES $100,000 PER HOUR. CRITICAL 

APPLICATION FAILURES EXACT A FAR STEEPER 

TOLL, FROM $500,000 TO $1 MILLION PER HOUR.

http://DZone.com/guides


 DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD8

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD

as well as the types of medium used, such as flash, 
Solid State Drives (SSD), or Hard Disk Drives (HDD). 

• How the data is logically represented, such as file or 
database.

• How the data is organized within the logical format.

• Data Flow: For a given application an FSE should be 
knowledgeable in how the data moves between the 
various components of the application and across the 
application infrastructure. This should also account for 
how the physical architecture is connected.

• Information Security: Ideally, the FSE might also be a 
Certified Information Systems Security Professional 
(CISSP), which means that they will have a proven 
understanding of multiple domains surrounding 
information security. At a minimum, the FSE will 
need to understand authentication and authorization, 
firewalling, data loss prevention, and logging.

At this point, the business will have a high likelihood of 
achieving solid root cause analysis in cases of systems 
and service outages, and it will review designs for 
implementation and provide guidance and assurances. Of 
course, the business could get this same result by hiring 
multiple individuals with domain expertise in each of 
these areas; however, even then, they would lose the 
understanding for how these various domains impact 
each other. This is the true value of the FSE.

THE FSE IN A HYBRID CLOUD WORLD
As if being an FSE was not complex enough, the 
introduction of the hybrid cloud architecture has 
emerged, introducing a whole new level of complexity. 
To the aforementioned skills, the FSE must now also 
have understanding for applications operating across 
resources that they do not directly control. This includes 
the public internet, shared Infrastructure-as-a-Service 
(IaaS) and Platform-as-a-Service (PaaS) environments, 
and cloud services with their assorted Application 
Programming Interfaces (API) all operated within a by a 
pay-for-use business model.

This is a real game changer for FSEs in today’s world, 
as they must now attempt to discern new methods of 
analyzing operational performance, leveraging only 
what the cloud service providers have made available. In 
contrast, there is considerably more transparency when 
the FSE has access to the physical device specifications. 
Additionally, the FSE is now expected to present 

estimated costs for operating these applications based 
on usage projections and service pricing—one of the few 
skills that is inherently non-technical.

CONCLUSION
In line with current DevOps thinking, the FSE approach 
raises certain concerns with regard to avoiding the 
creation of a culture of “heroes.” That is, how does an 
organization develop this capability without having this 
capability become a single point of responsibility for all 
systems, and thus become a bottleneck to design and 
delivery. Scalability will certainly be an issue here as it 
will be difficult to find many of these resources.

Businesses are going to have to rely on tooling to help 
with this problem. In this model, the FSEs will need to 
help develop blueprints for analysts to watch for and 
identify common issues, pulling in the FSE for decision 
management. This is akin to surveillance analysts 
in the military, who are responsible for discerning 
intelligence from multiple sources and then providing that 
information to senior military officials who will decide 
on appropriate action. In this case, the FSE can assess the 
intelligence gathered by operations analysts.

Sadly, there are no university programs or training 
courses one can take to become a full stack engineer. 
Some of the knowledge needed will be learned on the job, 
but for most who attain this level of understanding, it 
often comes at the price of personal investments of time 
and money to acquire and use the technologies an FSE 
must know. Not surprisingly, most FSEs come from an 
application development background and learn the other 
skills as a way to deploy and debug their own applications.

The good news is that learning the skills necessary to 
be considered a full stack engineer is definitely worth 
the time and effort. It will be one of the more important 
requirements as companies drive for applied DevOps 
principles and attempt to shift left as much of the 
responsibility for application quality to the development 
stages. Those with the skills to be considered an FSE 
will be paid, on average, 20% – 30% more than typical 
developers and will see easier growth into roles such as 
Chief Architect and Chief Technology Officer.

JP MORGENTHAL  is a Distinguished Engineer with CSC and 
an internationally renowned thought leader in the areas of digital 
transformation, IT modernization, cloud computing and software 
engineering. In 2005, JP founded Avorcor and delivered a multi-tenant 
cloud platform for API-enabling existing retail, logistics and warehouse 
management platforms leveraging technologies only now becoming 
mainstream in 2016, such as microservices, APIs and IoT. JP is sought 
after for his ability to demonstrate the application of technology for positive 
business outcomes as well as his ability to represent these ideas and 
concepts to C-level executives. JP is the author of four trade publications 
with his most recent being “Cloud Computing: Assessing the Risks.” 

http://DZone.com/guides
http://dzone.com/guides


 DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD9

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD

T H E  S T E P - B Y - S T E P  G U I D E  F O R 

KEEPING YOUR CLOUD APPLICATIONS SECURE
While cloud adoption is accelerating rapidly, security and data privacy professionals are stretched to the limit keeping up. 

How do you ensure data in the cloud is secure? Which cloud applications can be trusted with business critical information? 

Cloud apps reside outside the perimeter, requiring a different breed of security solutions that follow the data, application, and 

user. Let’s explore a step-by-step cloud protection plan to help protect valuable corporate data from breach and exfiltration.

STEP 01  DISCOVERY
Are employees using software applications your IT department doesn’t 
know about? Yes they are!  

 ☐ Use cloud app detection tools to identify what’s being used (by whom and how often) and 
whether critical corporate data is involved. 

 ☐ Consider a Cloud Access Security Broker (CASB); challenge the vendor to provide a Shadow 
IT Assessment to learn how big a shadow IT problem you are dealing with.  

STEP 2  RISK ASSESSMENT 
How do you know which apps present the biggest risk? Know which apps 
to sanction, monitor, or block (the good cloud/bad cloud challenge).

 ☐ Consider a rating system to identify cloud app risk attributes—this will help focus your 
protection in the right places: bit.ly/cloudcomprisks.

 ☐ Make sure the rating and reporting system can readily upload, anonymize, compress, and 
cache log data for shadow IT analysis and easily deliver automated risk assessment reports.

STEP 3  USER COACHING
Do all your employees know about common cybercrime tactics? Do 
your developers and other IT staff know the OWASP Top 10? The Cloud 
Controls Matrix?

 ☐ Reduce the Gilligan effect (remember Gilligan’s Island? Gilligan unknowingly caused 
damage everywhere he went). There will always be a Gilligan, but security awareness 
training will lessen the effect.  

 ☐ Employ constant reminders and more formalized quarterly training; this is a simple and low 
cost way to reduce risk of malware.

STEP 4  POLICY ENFORCEMENT 
Security policy enforcement must be highly granular and real-time. 
These can be harder to achieve for cloud applications.

 ☐ Set policy controls based on user activity, using tools and business rules that are content 
and context aware based on user group, device, location, browser, and agent.  

 ☐ Consider using a secure web gateway (on-premises, public cloud, or hybrid), plus an 
integrated CASB solution with advanced data loss prevention (DLP). 

STEP 5  PRIVACY & GOVERNANCE 
How are you addressing privacy and governance? Data in the cloud 
requires unique data-centric security policies.  

 ☐ Use appropriate encryption – it’s essential in any context. But for cloud security in 
particular, tokenization (substitution of secure for non-secure data, complementing a secure 
lookup table) can be especially practical.

 ☐ Make sure encryption doesn’t impact application functionality (searching, sorting, etc.). If 
any of these are made significantly more difficult, users will figure out how to avoid it.

STEP 6  ENCRYPTED TRAFFIC MANAGEMENT
How are you maintaining privacy while selectively decrypting for security reasons?

 ☐ Consider addressing SSL and other forms of encrypted traffic to/from the cloud.

 ☐ Measure the impact of SSL/TLS on application performance and on payload visibility to 
internal security professionals.

 ☐ Tip: For industries whose traffic is more than 50% encrypted (like financial services 
and healthcare), policy-based traffic decryption may require a dedicated SSL visibility 
subsystem and/or specialized network architecture.

STEP 7  INCIDENT RESPONSE 
How do you identify and quickly respond to malicious activity?

 ☐ Avoid the “car alarm syndrome!” Too many false alarms and alerts can be “needles hiding in 
needles” in the haystack.

 ☐ Consider beefing up incident response with a dedicated forensics function. Malicious 
software deliberately hides its tracks, and low-level complexity introduced by cloud 
deployment makes intuitive human interfaces especially key for incident response (e.g. 
security analytics, free-form search, and integration with 3rd party SIEM systems).

Even if you’re not ready to make a big investment in a  
CASB solution, it’s time to start managing cloud risk. To learn 
more about how to move to the cloud with confidence, view 
this webcast: dc.bluecoat.com/Forrester_Webinar

BY LISA ROM, SENIOR MANAGER OF AMERICAS MARKETING, BLUE COAT SYSTEMS

http://DZone.com/guides
https://www.sans.org/reading-room/whitepapers/analyst/2015-state-application-security-closing-gap-35942
http://bit.ly/cloudcomprisks
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://cloudsecurityalliance.org/download/cloud-controls-matrix-v3-0-1/
https://cloudsecurityalliance.org/download/cloud-controls-matrix-v3-0-1/
http://dc.bluecoat.com/Forrester_Webinar


 DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD1 0

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD

http://DZone.com/guides
http://dzone.com/guides
http://bit.ly/1SOd83f


 DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD1 1

DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD

“Hybrid cloud [is] used by 38% of organizations today ... by the end of 2016, two 
thirds (66%) of organizations expect to be utilizing [hybrid].” -IDG

BLOG    iron.io/blog WEBSITE    iron.ioTWITTER    @getiron

Container-based Job Processing  BY IRON.IO

CASE STUDY
Second only to ESPN, Bleacher Report is a growing force for team-specific 
sports content. Bleacher Report delivers real-time sports scores, news, 
and team updates via the Team Stream mobile app. With over 12 million 
downloads of the Team Stream app, users get a personalized fan experience 
wherever they are.

The Bleacher Report ops team has long held 99.9% uptime as a primary goal. 
In order to achieve this goal, changes to the infrastructure had to be made. 

“Because our system was already worker based, it was easy to experiment 
with Iron.io and we had a functioning prototype copy of our existing system 
in less than a day,” recalls Eddie Dombrowski, Sr Software Engineer.  “A 
week later and we were able to migrate our code base to use Iron.io.”

STRENGTHS

• Any cloud deployment, public, private, or hybrid

• Scalable processing workers as a service

• Serverless developer experience

• Ability to incorporate existing security policies

• Increased speed and agility through containerized 
microservices

NOTABLE CUSTOMERS

CATEGORY
Enterprise job 
processing

NEW RELEASES
Continuous

OPEN SOURCE?
Yes

• Twitter

• Zenefits

• Google

• Whole Foods

• Turner

The advancements in cloud technologies continue to provide 
developers with the capabilities to build and ship applications 
quicker and more effectively. The next evolution of the cloud 
lies in even more intelligent systems that can react and adapt 
to internal and external events with automated workflows. To 
fully realize this serverless future, there will be a convergence 
between a few ongoing trends:

•  MICROSERVICES
Decoupling application components as individual 
services that perform a single responsibility enables 
workload independence and portability

•  CONTAINERS
Building, deploying and running code within 
a lightweight, containerized runtime ensures 
consistency from development to production

•  EVENT-DRIVEN COMPUTING
Breaking apart from the traditional request/response 

model allows workflows to react to dynamic 
environments automatically

•  DEVOPS
Automated resource provisioning, configuration, 
and management brings it all together at the 
infrastructure layer to abstract away everything but 
the API

Contrary to how it may sound, though, the holy grail of 
DevOps isn’t NoOps. The real point is to make operations 
such a natural extension to the development process that it 
doesn’t require a special skill set to run code at scale in any 
environment. The continued evolution of cloud infrastructure 
services and development platforms are enabling this type 
of serverless future, where developers can build and deploy 
distributed applications with confidence.

WRITTEN BY DAVE NUGENT 
DEVELOPER EVANGELIST LEAD, IRON.IO

What Will it Take to Have a Serverless Future?

S P O N S O R E D  O P I N I O N

PARTNER SPOTLIGHT

http://bit.ly/1VxSavL
http://bit.ly/1SOd83f
http://bit.ly/1SOdjeZ
http://Iron.io
http://Iron.io
http://Iron.io
http://Iron.io


 DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD1 2

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD

Building Blocks for 
Highly Available 
Systems on AWS

BY ANDREAS WITTIG & MICHAEL WITTIG

H igh availability describes a system 

operating with almost no downtime. 

Even if a failure occurs, the system is able 

to recover automatically—although a short 

service interruption might be necessary. 

When talking about high availability, 

we refer to the AEC-2 classification of 

Harvard Research Group: “minimally 

interrupted computing services  . . . during 

most hours of the day and most days of 

the week throughout the year.”

UPTIME MATTERS
Downtimes are painful. Customers aren't able to place orders 
in your online shop, access your content, or interact with 
your customer support team. An outage causes direct (e.g. less 
orders) and indirect (e.g. loss of trust) costs. It is also a stressful 
situation for everyone involved in operating a system.

Building highly available systems was expensive in the past. 
For example, distributing a system across isolated data centers 
resulted in noticeable costs, as a second data center involved 
purchasing f loor space, racks, hardware, and software.

Thanks to the services and infrastructure AWS is offering, 

operating highly available systems has become much 
more affordable. That's why highly available systems are 
becoming the new standard even for start-ups, small, and 
mid-sized companies.

A highly available system reduces risks for your business and 
avoids burned out operations engineers.

HIGH AVAILABILITY ON AWS
AWS offers more than 70 different services. Some of them 
offer high availability by default:

• SQL database (RDS with Multi-AZ deployment)

• No-SQL database (DynamoDB)

• Object storage (S3)

• Message queue (SQS)

• Load balancer (ELB)

• DNS (Route 53)

• Content Delivery Network (CloudFront)

The availability of your system depends on its weakest 
part. Whenever you are adding a new AWS service to your 
architecture, ask yourself the following questions:

1. Is this service highly available by default?

2. If not, how can I use the service to be able to recover from a 
failure automatically?

There should always be a positive answer at acceptable costs 
to one of these two questions.

Q U I C K  V I E W

01
AWS offers services like RDS, 
DynamoDB, and S3 which let you 
build highly available systems.

02
Decoupling your services by using 
load balancers or queues is another 
building block for HA architecture. 

03
AWS offers data centers in different 
regions worldwide with Availability 
Zones, which distribute your 
workload and allow you to recover 
even if a whole data center fails.

http://DZone.com/guides
http://dzone.com/guides


 DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD1 3

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD

EC2 IS NOT HIGHLY AVAILABLE BY DEFAULT
High availability is a key principle of AWS. Nevertheless, 
Werner Vogels, CTO of Amazon.com, is quoted with saying 
“Everything fails, all the time.” This doesn’t imply AWS is 
offering unreliable services. The opposite is true. The quote 
visualizes how AWS is treating failure: by planning for it.

An important part of AWS is not highly available by default: 
virtual machines (EC2 instances). A virtual machine might fail 
because of issues with the host system or due to networking 
issues. By default, a failed EC2 instance is not replaced, but 
AWS offers tools to recover from failures automatically.

AWS offers data centers in different regions worldwide. 
Each region consists of at least two isolated data centers, 
called Availability Zones. Distributing your workload on 
multiple servers in at least two Availability Zones allows 
you to recover even if a whole data center fails.

Launching EC2 instances in multiple Availability Zones 
is easy and comes at no extra cost. You are able to do so 
manually or by using a tool called Auto Scaling Groups. 
An Auto Scaling Group automates the creation of multiple 
EC2 instances based on the same blueprint. It also allows 
you to evenly distribute a f leet of servers across multiple 
Availability Zones.

1ST PREREQUISITE FOR HIGH AVAILABILITY: 
STATELESS SERVER
To be able to spread your workload on multiple servers, you 
need to get rid of state stored on a single server. If your EC2 
instances are stateless, you can replace them whenever you 
need to without losing data.

Your applications probably need to store data—but where 
do you store your data if not on your EC2 instances? 
Outsourcing your data to storage services might help. As 
mentioned, AWS offers the following data stores:

• SQL database (RDS with Multi-AZ deployment)

• No-SQL database (DynamoDB)

• Object storage (S3)

All these storage services offer high availability by default. 
So you are able to use them as a building block without 
introducing a single-point-of-failure.

If your legacy applications are storing data on disk, using 
one of those three storage options is impossible. Currently 
there are two options:

• Use the beta service Elastic File System, which offers storage 
available through NFS.

• Synchronize state between your EC2 instances (e.g. with 
distributed file systems like GlusterFS).

Unfortunately there is no production-ready, out-of-the-box 
service available from AWS right now.

2ND PREREQUISITE FOR HIGH AVAILABILITY: 
LOOSE COUPLING
Another prerequisite is to decouple your virtual machines 
from incoming requests. To be able to distribute your 
workload on multiple, automatically replaced EC2 
instances, you are in need of a reliable and static entry 
point into your system.

Depending on whether incoming requests need to be processed 
synchronously or asynchronously there are two different 
services available on AWS to act as an entry point into your 
system: a load balancer (ELB) for synchronous requests or a 
queue (SQS) for asynchronous requests. Both are common 
building blocks for a highly available system on AWS.

CONCLUSION
AWS offers infrastructure and services that you can use 
as building blocks for highly available systems. Compared 
to on-premise environments, the risk of an outage can be 
reduced dramatically without the need of a big budget. 
That’s why high availability is becoming the new standard 
for systems running in the cloud.

ANDREAS WITTIG  is a Cloud Specialist focusing on AWS and 
DevOps. He is author of Amazon Web Services in Action (Manning). 
He helps his clients gain value from AWS. As a software engineer 
he develops cloud-native applications. He migrated the complete 
IT infrastructure of the first bank in Germany to AWS. Andreas is 
constantly creating new products and services based on bleeding 
edge technology to keep on learning.

MICHAEL WITTIG  is author of Amazon Web Services in Action 
(Manning). He helps his clients gain value from AWS. As a software 
engineer he develops cloud-native real-time web and mobile 
applications. He migrated the complete IT infrastructure of the first 
bank in Germany to AWS. He has expertise in distributed system 
development and architecture, with experience in algorithmic trading 
and real-time analytics.

HIGHLY AVAILABLE SYSTEMS ARE BECOMING 

THE NEW STANDARD EVEN FOR START-UPS, 

SMALL, AND MID-SIZED COMPANIES.

A HIGHLY AVAILABLE SYSTEM REDUCES 

RISKS FOR YOUR BUSINESS AND AVOIDS 

BURNED OUT OPERATIONS ENGINEERS.

http://DZone.com/guides
http://Amazon.com


 DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD1 4

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD

Built and optimized to run on 
cloud and containers

Advanced load balancing
and caching

Use independently or with
load balancing services

Custom health checks for
high availability

Visibility into the performance
of your infrastructure 

Let us be your guide.

Migrating to
the cloud?

Learn more at:
nginx.com/cloud

http://DZone.com/guides
http://dzone.com/guides
http://www.nginx.com/cloud


 DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD1 5

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD

NGINX Plus is the complete application delivery platform for the modern web.

BLOG    nginx.com/blog WEBSITE    nginx.com/cloudTWITTER    @nginx

NGINX Plus  BY NGINX

CASE STUDY

MuleSoft offers a leading cloud-based integration platform that enables 

enterprises to easily and securely connect apps, data, and devices. 

MuleSoft’s challenge? Meet customer performance and availability 

requirements, with little visibility into the customers’ applications or 

upstream configurations. MuleSoft relies on NGINX Plus for load balancing, 

monitoring, and more. NGINX Plus enables MuleSoft to accurately forward 

requests to thousands of upstream workers with minimal latency. In 

addition, with NGINX Plus MuleSoft can easily ensure end-to-end SSL 

encryption of customer traffic. NGINX Plus gives MuleSoft flexibility in its 

cloud platform to innovate faster and provides them with the scale and 

performance they need.

STRENGTHS

• HTTP, TCP, and UDP load balancing

• Easy to deploy in any environment

• Advanced monitoring and management tools

• Rich security controls

NOTABLE CUSTOMERS

CATEGORY
Application Delivery

NEW RELEASES
2-3 major releases per year 
with regular updates between

OPEN SOURCE?
Open Source & 
Commercial

• Airbnb

• AppNexus

• Discovery Education

• Groupon

• Netflix

• Uber 

• Wix

• Zendesk

• Blue Jeans

The cloud helps you get applications up quickly - but you still 
need to optimize your infrastructure if you want high-performance 
applications. NGINX has built the leading cloud-native application 
delivery software, so we’ve assembled these five tips to help you 
get the speed you need.  

TIP 1. SIZE RESOURCES TO FIT
Sharing physical resources, such as RAM, with other people’s 
VMs can cause unpredictable performance slowdowns. To reduce 
contention, use a dedicated host, or size your VM CPU, storage, 
and other requirements to use entire actual physical resources. 
Then use the following tips to make your application as hardware-
independent and resilient as possible.   

TIP 2. USE A REVERSE PROXY SERVER 
Use a reverse proxy server to interface with the Internet and a separate 
application server to deliver your site’s services, then optimize each 
function. This speeds up overall performance and provides benefits 
such as security controls and monitoring capabilities.

TIP 3. USE MULTIPLE APP SERVERS WITH LOAD BALANCING 
Use your reverse proxy server as a load balancer for multiple 
application servers. The number of servers scales dynamically 

to match user demand, cutting costs. You can use NGINX load 
balancing alongside cloud capabilities such as Elastic Load 
Balancing on Amazon Web Services.  

TIP 4. CACHE STATIC AND DYNAMIC CONTENT 
Cache static files – GIFs, JPEGs, CSS files, and so on – on the 
reverse proxy server. Then cache application-generated files 
briefly, for instance for one second, to give your application 
server a big break.  

TIP 5. MEASURE AND MONITOR 
Measure performance and monitor uptime and responsiveness. 
Then, experiment with each aspect of your implementation to 
optimize it. 

Read more of our blog posts to learn about cloud-native 
flawless cloud-native application delivery at scale. 

WRITTEN BY FLOYD EARL SMITH
TECHNICAL MARKETING WRITER, NGINX

5 Tips for Optimal Cloud Performance

S P O N S O R E D  O P I N I O N

Built and optimized to run on 
cloud and containers

Advanced load balancing
and caching

Use independently or with
load balancing services

Custom health checks for
high availability

Visibility into the performance
of your infrastructure 

Let us be your guide.

Migrating to
the cloud?

Learn more at:
nginx.com/cloud

PARTNER SPOTLIGHT

http://DZone.com/guides
http://bit.ly/20R1bzS
http://bit.ly/1WBrppZ
http://bit.ly/1SOfgYN
https://www.nginx.com/resources/glossary/reverse-proxy-server/
https://www.nginx.com/blog/load-balancing-with-nginx-plus/
https://www.nginx.com/blog/load-balancing-with-nginx-plus/
https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/elasticloadbalancing/
https://www.nginx.com/blog/benefits-of-microcaching-nginx/
https://www.nginx.com/products/live-activity-monitoring/
https://www.nginx.com/products/on-the-fly-reconfiguration/
http://nginx.com/blog


 DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD1 6

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD

Architecting 
for Failure
BY GAURAV PURANDARE

T he design of all credible, fault-

tolerant architectures is based 

on one extremely important principle: 

“Anything that can go wrong, will go 

wrong.” - Murphy’s Law
Murphy’s Law makes it necessary to consider failures an 
integral part of any system, something that can be particularly 
tricky in cloud environments because users expect near-100 
percent uptime. Today, there are many organizations that 
embrace the cloud in the belief that they are automatically 
shielded from infrastructure-related issues, or that those issues 
are “just handled” by their cloud provider without impacting 
an application’s functionality. Although this may be the case 
sometimes, there are many failures you still need to account for 
in your application design.

ISOLATE COMPONENTS
As the level of complexity in applications continues to increase 
through new layers of abstraction and the introduction of 
cutting edge technology, isolation becomes a powerful aid 
in anticipating and mitigating failures. Isolating individual 
application components to different systems not only reduces 
overall complexity, but it also provides clarity on the resources 
utilized. Maxed-out resources are often an indicator for 
(imminent) failure, and isolation can help pinpoint such 
issues. Further, when component isolation is combined with 
replication, it prevents applications from having single points of 
failure, adding resilience and making failures less likely overall.

DETERMINE THE REASONS FOR FAILURES
HARDWARE AND INFRASTRUCTURE
Even though the risk of hardware failure might appear to be a 
dwindling issue, it cannot be ignored altogether. Applications 
should always be developed to be prepared for hardware 
failures.

For example, having sticky sessions between a load balancer 
(LB) and the servers sitting behind that LB causes all traffic for 
a specific user session to be routed to a specific server. In the 
event of this server failing, a user would find the application or 
service unavailable.

Paradoxically, rapid success can breed failure as well. An 
application that experiences rapid adoption may not be able to 
cope with the corresponding server or networking load. If an 
application supports auto-scaling, then all implicated servers 
should be configured to start all necessary services at system 
boot up in order to scale out when demand spikes. Regular health 
checks (industry best practice is to do this every five minutes or 
less) within and via the LB infrastructure become essential.

Similarly, if failure occurs with a database server (assume the 
worst case scenario, such as the primary or master server being 
impacted), there needs to be a configuration in place to elect 
a new primary or master node. Application libraries need to 
adjust their database connections, which ideally should be an 
automated process.

SOFTWARE AND CONFIGURATION
Apart from expected, well-known and well-understood issues 
(such as resource over-utilization), the application should 
be able to cope with systemic and global changes. A classic 
example  here is the leap second bug from 2012, which caused 

01
There are all kinds of failures 
you need to account for in your 
application design when working in 
cloud environments.

02
Isolating individual application 
components reduces overall 
complexity and provides clarity on 
resources utilized. 

03
Make it a point to learn the lessons 
each failure offers to prevent the 
issue from recurring.

Q U I C K  V I E W

http://DZone.com/guides
http://dzone.com/guides


 DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD1 7

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD

many issues for Linux servers. Today, applications are 
prepared for this issue, so the latest leap second (in 2015) had a 
much smoother transition. Although no one can predict when 
the next undiscovered issue of this magnitude will strike, 
by following major industry blogs and key inf luencers on 
Twitter, you can discover and address new issues swiftly once 
they have been identified.

Sometimes it is neither the hardware, nor the application, 
but ancillary configuration that can cause failure. Perhaps 
it’s a simple firewall rule change, or the lack of a static IP/
address for a specific component that is referenced by several 
others. This is exacerbated when multiple people or teams 
collaborate on an application. A useful strategy to avoid such 
issues is to restrict access to critical rules and configuration to 
specified individuals that are both trusted and have a holistic 
understanding of the overall environment.

BE PROACTIVE
Having proper monitoring in place will help you proactively 
determine possible failures before they become an issue. 
Build scripts to perform daily sanity tests and automate port 
scanning and access controls, so you’re not wasting time and 
won't get sloppy with essential (but repetitive) tasks. That way, 
you only need to pay attention if your script issues an alert.

However, be sure to also monitor the monitoring scripts 
themselves. If your monitoring system doesn’t show a status of 
“all green,” we know we have a problem. However, if it shows 
all green across the board, it is still a best practice to confirm 
that there isn’t a more nefarious issue with the monitoring 
system itself and to verify that the correct metrics and 
parameters are being monitored.

REHEARSE FAILURE
Replicate your critical systems and then simulate failure. 
Review error messages and check the remedial actions 
documented on your recovery checklists. Try to determine 
the maximum scalability of different components in your 
system. While such measures might seem like overkill for 
a casual application, they are a worthwhile investment for 
all mission critical ones. This particular precaution won’t 
necessarily decrease your failure rate, but it will help you 
detect and respond to issues faster, whenever they occur on a 
key production system.

NEVER STOP LEARNING, NEVER STOP TUNING
Even with the best architecture, the most reliable 
technologies, and optimal operations, failures—big and 
small—will occur. When they do, make it a point to learn 
the lessons each failure offers and to prevent the issue from 
recurring. Perform a root cause analysis. Discuss failures 
with engineering, with QA, with DevOps, and with the team 
consuming the app or service that was ultimately impacted. 
Update your checklists and use each failure to make yourself 
smarter and your systems more resilient.

CLOUD ARCHITECTURE BLUEPRINT

To give an example of an architecture designed for failure, 
the above diagram illustrates a high-level architecture based 
on Built.io Flow. All internet-facing services make use of an 
Elastic Load Balancer (ELB) layer to balance traffic across a 
pool of Amazon EC2 instances associated with a corresponding 
auto-scaling group. These EC2 instances span across multiple 
Availability Zones, thus avoiding downtimes for zone failures.

Because of built-in redundancy, a connection failure to 
a database instance like Redis or MongoDB is handled 
gracefully by the application. If connectivity issues are 
observed for a primary/master database server, for example, 
the application can immediately reconnect to a newly elected 
primary/master server.

Remember: design for failure so things don’t fail.

BEST PRACTICES TOOLS/TECHNIQUES

ISOLATE 
COMPONENTS

• Review architecture diagrams

• Replicate components

HARDWARE AND 
INFRASTRUCTURE

Perform stress testing using tools like Loader.io

SOFTWARE AND 
CONFIGURATION

Validate application configurations (e.g., if a 
config file is stored in JSON, validate it using 
JSONLint or an equivalent tool)

BE PROACTIVE
Build port scanning scripts, Cloud-Checkr 
works great for AWS

REHEARSE FAILURE
Test your system by stopping or deleting a 
random component. For larger operations, 
consider deploying a tool like Chaos Monkey

GAURAV PURANDARE  is Senior DevOps Engineer at Built.io, a 
technology provider with solutions enabling organizations to quickly 
create, integrate, and scale apps across web, mobile, and IoT. His 
passion for architecting cloud applications pairs with his years 
of experience managing and operating multi-tier, highly available 
applications. He is a certified AWS Solution Architect – Associate 
level and holds certified MPN Competency for Microsoft Azure.

PUB-SUB
MESSAGING

REDIS INSTANCES

SERVICE C

MONGODB INSTANCES

ACROSS MULTIPLE AVAILABILITY ZONES

ACROSS MULTIPLE AVAILABILITY ZONES

AMAZON SQS

FLOW.BUILT.IO

SERVICE A

SERVICE B

SERVICE D

ELASTIC LOAD
BALANCER

EC2 INSTANCES BEHIND
ASG  SPANNED  ACROSS
MULTIPLE AVAIL. ZONES

AUTO-SCALING
GROUP (ASG)

EC2 INSTANCES
WITH DB

http://DZone.com/guides
http://Loader.io


 DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD1 8

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD

IoT Zone
dzone.com/iot

The Internet of Things (IoT) Zone features 
all aspects of this multifaceted technology 
movement. Here you’ll find information related 
to IoT, including Machine to Machine (M2M), 
real-time data, fog computing, haptics, open 
distributed computing, and other hot topics. 
The IoT Zone goes beyond home automation 
to include wearables, business- oriented 
technology, and more.

DIVING DEEPER
TOP 10 #CLOUD TWITTER FEEDS

DZONE CLOUD-RELATED ZONES

Integration Zone
dzone.com/integration

Enterprise Integration is a huge problem space 
for  developers, and with so many different 
technologies to choose from, finding the most 
elegant solution can be tricky. The EI Zone 
focuses on communication architectures, 
message brokers, enterprise applications, ESBs, 
integration protocols, web services, service-
oriented architecture (SOA), message-oriented 
middleware (MOM), and API management. 

TOP CLOUD
WEBSITES

TOP CLOUD
RESOURCES

Getting Started with OpenStack
bit.ly/startopenstack

Cloud Foundry  
bit.ly/startcloudfoundry

Essential PostgreSQL 
bit.ly/startcloudcomputing

AWS Whitepapers

Understanding Cloud 
Computing Vulnerabilities 

International Journal of Cloud 
Computing

Cloud Harmony 
cloudharmony.com 

Netflix Tech Blog 
techblog.netflix.com

Cloud Tech News
cloudcomputing-news.net

Cloud Zone
dzone.com/cloud

The Cloud Zone covers the host of providers 
and utilities that make cloud computing 
possible and push the limits (and savings) 
with which we can deploy, store, and host 
applications in a flexible, elastic manner. 
This Zone focuses on PaaS, infrastructures, 
security, scalability, and hosting servers.

@BGRACELY @KRISHNAN

@THECLOUDNETWORK @ARCHIMEDIUS

@RANDYBIAS @JEFFBARR @JAMESURQUHART

@WERNER @UTOLLWI @KEVIN_JACKSON

I N T O  C L O U D  D E V E L O P M E N T

TOP CLOUD
REFCARDZ

http://DZone.com/guides
http://dzone.com/guides
http://dzone.com/iot
http://dzone.com/integration 
http://bit.ly/startopenstack
http://bit.ly/startcloudfoundry 
http://bit.ly/startcloudcomputing 
https://aws.amazon.com/whitepapers/
http://cloudcomputing.ieee.org/images/files/publications/articles/CC_Vulnerabilities.pdf
http://cloudcomputing.ieee.org/images/files/publications/articles/CC_Vulnerabilities.pdf
http://hipore.com/ijcs/contents.html
http://hipore.com/ijcs/contents.html
https://cloudharmony.com/
http://techblog.netflix.com/
http://www.cloudcomputing-news.net/
http://dzone.com/cloud
https://twitter.com/bgracely
https://twitter.com/bgracely
https://twitter.com/krishnan
https://twitter.com/TheCloudNetwork
https://twitter.com/Archimedius
https://twitter.com/randybias
https://twitter.com/jeffbarr
https://twitter.com/jamesurquhart
https://twitter.com/werner
https://twitter.com/utollwi
https://twitter.com/Kevin_Jackson


 DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD1 9

DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUDS P O N S O R E D  O P I N I O N

One unified platform that brings IT and business together to 
transform ideas into applications

BLOG    mendix.com/blogs WEBSITE    mendix.com  TWITTER    @mendix

Mendix Platform  

CASE STUDY
LV= Insurance adopted Mendix to pursue initiatives that weren’t 
making it to the top of the agenda because the time and cost of doing 
it the traditional way wasn’t worth it. The company is now rapidly 
delivering new applications that generate major cost savings and help 
sustain its growth in a competitive market.

Projects include the LV= Broker Portal, which was delivered in 15 days, 
and end-to-end insurance products with capabilities spanning customer 
self-service, administration, claims and fulfillment. By taking a modular 
approach and building reusable components, LV= can now launch new 
products in just 6 weeks.

This approach has saved LV= an estimated £5 million since 2012 while 
earning it the coveted Celent Model Insurer Award.

STRENGTHS
• Platform facilitates IT-business collaboration, improving project 

success rates.

• Visual model-driven development delivers 6x productivity over 
hand-coding.

• Full app delivery cycle support: design, build, test, deploy, manage 
and iterate.

• Open platform enables easy integration with any system, cloud 
service or data source.

• 1-click deployment on major cloud platforms (AWS, Azure, Bluemix, 
HP Helion, Pivotal).

NOTABLE CUSTOMERS

CATEGORY
aPaaS, High 
Productivity

NEW RELEASES
Monthly

OPEN SOURCE?
Yes

• ABN Amro

• ING

• Sprint

• Chubb Group

• Merck

• TNT 

• Erie Insurance

• MIT

According to Gartner’s Hype Cycle, we have passed the top of 
the hype around Platform-as-a-Service, which means it is a good 
moment to assess PaaS adoption in the enterprise.  

But first, we need to clarify what we mean with PaaS. In general, 
we can distinguish 3 layers of PaaS: 

• Foundational PaaS: the layer in which we stop talking 
about infrastructure and switch to an app-centric view of 
the world.  

• PaaS: platforms that take code as input and run it as 
an app (aPaaS), platforms that take integration flows as 
input and execute them (iPaaS), or platforms that store 
and query your data (dbPaaS). 

• Model-Driven PaaS: platforms that take models as input 
and execute them. They are also called High-Productivity 
aPaaS (Gartner) or low-code platforms (Forrester).

If you look at these different PaaS types, you would think that 
Model-Driven PaaS follows PaaS adoption and is more of a niche  

market. In the enterprise, the opposite is true. The simple reason is 
that Model-Driven PaaS delivers business value quicker.  

PaaS adoption is driven by the need for digital innovation. In order 
to innovate, companies must become software companies, with 
faster, more agile software delivery cycles. PaaS makes deployment 
and operations more efficient but lacks a vision for making app 
development faster.  

That’s where Model-Driven PaaS comes in. Model-driven 
development enables companies to get to market 6 times faster 
and with 70% less resources than code-based approaches. It also 
provides a common language to engage the business, improving 
user acceptance and project success rates.  

Enterprises see the need for digital innovation. They are changing 
the way they deliver software, focusing on creating smaller, cross-
functional teams and shorter feedback cycles. For enterprises, their 
platform of choice is low-code, model-driven and highly productive. 

WRITTEN BY JOHAN DEN HAAN
CTO AT MENDIX

PAAS TO MODEL-DRIVEN PAAS:

How Enterprises Can Accelerate 
Time to Business Value

I N T O  C L O U D  D E V E L O P M E N T

PARTNER SPOTLIGHT

http://bit.ly/23HaJ5V
http://bit.ly/1raUHA0
http://bit.ly/1Nj6l5n


Dependency Dependency

Build Release

Log
Storage
Service

Log
Analysis
Service

Routing Layer

Run3

1 2

{code}

Codebase

Logs

PRODUCTION ENVIRONMENT

Processes

App
Service

App
Service

stdout

A:
A:

1
2

1
2
3

1

B:
B:
B:

C:

Configuration File

:80

:867:5000

:23

the 12 factors

The 12-Factor App
Modern web applications run in heterogeneous environments, scale elastically, update frequently, and 
depend on independently deployed backing services. Modern application architectures and development 
practices must be designed accordingly. The PaaS-masters at Heroku summarized lessons learned from 
building hundreds of cloud-native applications into the twelve factors visualized below.

Codebase
One codebase, many deploys, 
strict version control

Dependencies
Explicitly declare and isolate 
dependencies

Configuration
Store config in each deploy 
environment, preferably using 
environmental variables

Backing Services
Treat backing services as resources 
(neutral as to local vs. third-party) 
located via config

Build, Release, Run
Strictly separate build, release, and 
run; never change code at runtime

Port Binding
Bind every service to a port and 
listen on that port; don't rely on 
runtime server injection

Concurrency
Distinguish process types (e.g. 
web, background worker, utility) 
and scale each type independently

Dev/Prod Parity
Maximize dev/prod parity by 
minimizing gaps in time (between 
deploys: hours), personnel 
(authors=deployers), and environment 
(use adapters for backing services)

Logs
Log by writing all output streams 
to stdout; rout streams using 
non-app services

Admin Processes
Run one-off/admin processes (db 
migration, REPL , one-time scripts) 
in same environment as normal 
processes

Disposability
Make processes start up quickly 
(<4s from launch to ready) and shut 
down safely (for web process: stop 
listening, finish current requests, 
exit; for worker process: return 
current job to work queue)

Processes
Keep all processes stateless and 
share-nothing; store state (with 
other persistent data) in a stateful 
backing service

Cloud
Backing
Service

Email
Backing
Service

Stateful
Database

Production

Dev Dev Dev

Test Test

CREATED BY DZONE.COM

Manifest

A

B

C



 DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD2 2

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD

MOVING TO THE CLOUD:

Transforming 
Technology and 
the Team
BY DANIEL BRYANT

Developing new software for—or migrating 
existing applications to, the cloud is 

inherently a transformative process. As we 
have written about previously, the approach 
to architecture and design must change, and 
topics, such as distributed computing and 
fault tolerance, become critical. As with any 
transformative process within a business, 
there are some fundamental processes that 
must be established.

The first is setting clear goals. If you are working as a developer 
or architect, it is essential that the goal of moving to the cloud is 
clear for you. Is it cost reduction, a decrease in time-to-market for 
products, or an increased ability to innovate? The second process 
required is defining measures of success—i.e., how do we know we 
are making progress? Are we saving money week over week? Are 
we deploying more applications per month, or have we run more 
experiments this quarter? The final process is establishing clear 
expectations of communication. For example, do we report current 
work within a daily standup, what progress reports should be 
delivered, and how do we communicate issues?

A (CLOUD-BASED) JOURNEY OF A THOUSAND 
MILES, BEGINS WITH...
START SMALL
When an organization is attempting to introduce cloud computing, 
small experiments should be conducted first. In our consulting 
work at OpenCredo we often recommend creating a simple proof 
of concept (POC) based on a subset of business functionality, 

which should be conducted separately from ‘business as usual’ 
(BAU) activities. We have also recommended the use of ‘hack days’ 
(or a ‘hack week’, depending on scope) where an IT or software 
development team is given free reign to experiment with the new 
technology available.

Criteria for POC
• Business functionality is limited to a single department. This 

limits communication and governance overhead, e.g. a new 
payment service.

• Required functionality is provided as a ‘vertical’ (self-contained) 
application with minimal external integration points, e.g. a new 
customer sign-up site/page.

• Buy-in is achieved with the team responsible for the work.

Q U I C K  V I E W

01
Share clear goals, define measures  
of success (KPIs), set 
communication expectations.

02
Start small with your cloud 
migration, chose a vendor based on 
your use cases, be aware of cloud 
geography, and design ‘cloud-native’ 
applications.

03
Don’t forget the people and the 
organizational transformation required 
to support a cloud migration.

GOAL METHODS

COST SAVINGS

• Scaling compute resource to real-time demand (for both 
user-generated traffic and batch tasks), which removes 
need to over-provision

• Reduced TCO of infrastructure (no hidden costs of 
maintenance staff; no data center insurance, electricity, 
or cooling)

INCREASED 
INNOVATION

• Compute resources for experiments can be acquired on 
demand

• Experiments can be implemented at scale (the cost of 
which would be prohibitive to run on-premise)

• Access to cutting edge ‘as-a-service’ technology, e.g. 
machine learning platforms

DECREASED
TIME-TO-
MARKET

• Compute resources can be acquired on-demand without 
the need for capacity planning

• Environments can be replicated on demand for testing or 
staging, or for entering new geographic markets

http://DZone.com/guides
http://dzone.com/guides
https://dzone.com/articles/developing-software-cloud


 DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD2 3

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD

The key goal of this stage within the plan is for the IT team to 
become familiar with the cloud paradigm (for example, we still 
frequently see the look of amazement when developers realize 
they can spin up and access powerful hardware within seconds), 
which paves the way for the rest of the business to adapt to the 
cloud paradigm (e.g. different billing mechanisms and approval 
processes), and enables the evaluation of the various cloud 
platforms in relation to the typical use cases within the business.

ALL CLOUDS ARE NOT CREATED EQUAL—CHOOSE WISELY
Each cloud platform has inherent properties, strengths, and 
weaknesses. For example, Amazon Web Services (AWS) offers 
a breadth of services, but the orchestration of components 
required to deliver the specified functionality can at times be 
complex. Google Cloud Platform (GCP) offers a narrower, more 
clearly-defined range of functionality, but the offerings are 
more typically opinionated. The strong (‘big’) data processing 
focus of GCP was a major contributor for Spotify migrating 
their infrastructure to this platform. Microsoft Azure has 
a strong set of offerings and is often a compelling platform 
choice if the existing organization is heavily dependent on the 
Microsoft stack.

The primary goal for this stage of a cloud migration is to 
determine and catalogue the primary use cases that will be 
implemented within the initial six to twelve months of work, 
and then map these requirements to the offerings from the 
various cloud vendors.

BE AWARE OF GEOGRAPHY 
The geographical range of the cloud is often a key enabler. No 
longer does expansion into a new geographical market take years of 
planning and infrastructure contract negotiations. Now, we simply 
select a different ‘region’ from our cloud vendor’s user interface, 
deploy our required stack, and we are good to go. The f lipside of this 
ease of deployment is that care must be taken in regards to where 
data f lows and is stored at rest. Data sovereignty is often a critical 
component of many business operations, and accidentally sending 
data across international borders for information processing may 
violate regulations and compliance mandates.

Any plan to migrate applications to the cloud must include an 
approach to data requirements (‘due diligence’), and the legal 
and regulatory constraints must clearly be communicated to 
the IT team and across the business. In addition, deployment of 
applications across multiple geographic regions and availability 
zones is highly recommended in order to mitigate the risk of 
unavailability and data loss.

TUNING APPS TO THE CLOUD
Much is currently being written about the benefits of creating 
software systems as clusters of ‘microservices.’ Regardless of 
how small your services are, any software that is deployed to the 
cloud will benefit from adhering to many of the same technical 
goals, best codified as ‘Twelve-Factor’ applications. Obviously, 
not all existing applications can be migrated to this format—
the requirement for ‘stateless’ applications, in particular, is 
troublesome for many applications written before the advent of 
cloud technologies. However, the fact that almost all components 
within a cloud will be communicating over a network means 
that developers should become familiar with fundamental and 
advanced distributed computing principles.

The completion of this stage within a cloud migration plan should 
result in a catalogue of applications to be migrated (or created), 
with the associated technical, ‘non-functional’ requirements 
or constraints clearly enumerated. Validation of all functional 
and nonfunctional requirements must be included within an 
automated build pipeline. In relation to the previous section of 
this article, it is worth paying special attention to applications 
communicating across ‘availability zones’ (essentially datacenters) 
and across geographical regions. What may appear as a small 
gap in an architecture diagram can add significant latency or 
potential for failure.

DON’T FORGET THE ORGANIZATION 
(AND THE PEOPLE!)
ORGANIZATIONAL DESIGN AND TRANSFORMATION
Often the first sign of organizational design struggles appears as 
a team moves from the proof-of-concept to the implementation 
phase of cloud migration. As soon as implementation expands 
beyond one team, then the complexity of interactions increases. 
This can often be challenging on a technical level, but it is almost 
always challenging on an organizational level. Look for red f lags 
like queues of work, long delays, or ‘sign offs’ on work as it moves 
around an organization, as well as for teams pulling in different 
directions (or using competing technologies).

We often work with the senior management C-level within 
organizations, as—unless alignment and buy-in is achieved at 
this level—any changes made within the rest of organization can 
easily unravel. 

THE IMPORTANCE OF DEVOPS
Although the term ‘DevOps’ has become somewhat overused 
(and still isn’t truly defined), we believe that the concepts behind 
it—such as (1) a shared understanding and responsibility across 
development and operations; (2) automation, with principles 
and practices driving tooling, not the other way around; and 
(3) creating signals for rapid feedback—are vital for success 
within a cloud architecture. As the number of application 
components is typically higher within a cloud-based application 
(in comparison with more traditional platforms), we often see 
problems emerge rapidly when teams are misaligned on goals, 
solving the same problem in multiple different ways; when 
cargo-culting of automation, or the incorrect use of off-the-shelf 
‘DevOps tooling’ occurs; and when an absence of situational 
awareness is rampant.

We have seen DevOps implementations create fear within 
organizations, and we have also seen suboptimal processes 
being automated (automated failure is still failure!). We believe 
that the concepts and goals behind the ‘DevOps’ movement are 
vital in the wider business context and the current economic 
climate, where time to market and speed of innovation are clear 
competitive advantages.

DANIEL BRYANT  (@danielbryantuk) is Chief Scientist at 
OpenCredo, a software consultancy and delivery company dedicated 
to helping clients deliver better software faster. Currently, Daniel 
specializes in continuous delivery, DevOps methodologies, and 
leveraging container-based platforms such as Docker, Mesos and 
Kubernetes. He is also a leader within the London Java Community, 
and a contributor to the Java Community Process (JCP).

http://DZone.com/guides
http://journalofcloudcomputing.springeropen.com/articles/10.1186/s13677-015-0049-1
https://www.gartner.com/doc/reprints?id=1-2QQX6UM&ct=151027&st=sb
https://www.gartner.com/doc/reprints?id=1-2QQX6UM&ct=151027&st=sb
https://aws.amazon.com/
https://cloud.google.com/
https://news.spotify.com/us/2016/02/23/announcing-spotify-infrastructures-googley-future/
https://azure.microsoft.com/en-us/
https://dzone.com/articles/forget-big-part-moment-think
http://www.infoq.com/presentations/7-sins-microservices
http://12factor.net/
http://book.mixu.net/distsys/single-page.html
https://www.somethingsimilar.com/2013/01/14/notes-on-distributed-systems-for-young-bloods/
https://www.youtube.com/watch?v=ugZ7ScHohQc&list=PLzA2sNPAqK1RcVGsFl7up4Phqs6LlmmiY&index=7
https://opencredo.com/the-business-behind-microservices-redux/
https://opencredo.com/the-business-behind-microservices-redux/
http://shop.oreilly.com/product/0636920030355.do
https://opencredo.com/devops-and-it-operations/
https://opencredo.com/defining-devops-and-driving-the-transformation/
https://en.wikipedia.org/wiki/Cargo_cult_programming
https://en.wikipedia.org/wiki/Situation_awareness
https://en.wikipedia.org/wiki/Situation_awareness
https://www.youtube.com/watch?v=Ty6pOVEc3bA
https://opencredo.com/the-risk-of-devops-tools-automated-failure/
https://www.nginx.com/blog/adopting-microservices-at-netflix-lessons-for-team-and-process-design/


 DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD24

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD

Simple. Powerful. Secure.
Find out why New Relic helps you build and run great software at 

newrelic.com/why

©2008-16 New Relic, Inc. All rights reserved.

Mobile Developers
End-to-end visibility, 
24/7 alerting, and 
crash analysis.

Front-end Developers
Reduce resolution times 
and spend more time 
writing new code.

IT Operations
Faster delivery. 
Fewer bottlenecks. 
More stability. 

App Owners
Track engagement. 
Pinpoint issues. 
Optimize usability.

One source of truth.
See all your data. Boost performance. Drive accountability for everyone.

http://DZone.com/guides
http://dzone.com/guides
http://bit.ly/1NxxNXL


 DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD2 5

DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD

Shift, re-fit or modernize. No matter your approach, New Relic gives you the data you 
need to make your efforts a success, with 100% visibility into your entire stack.

BLOG    blog.newrelic.com WEBSITE    www.newrelic.comTWITTER    @newrelic

New Relic Software Analytics Cloud  BY NEW RELIC

CASE STUDY

Founded in 2006, Veracode’s automated, cloud-based service safeguards 

web, mobile, and cloud applications for more than 800 organizations 

worldwide, including three of the top four banks in the Fortune 100. 

The company deployed New Relic to monitor both its customer-facing 

platform and internal business systems, but an area where the software 

analytics solution particularly shines is in helping Veracode make the 

best use of public cloud resources. “We use New Relic and the data we 

get from Amazon Web Services to get a full picture of application health 

and performance in the cloud,” says Patrick Hetherton, director of SaaS 

operations at Veracode. “Plus the insight we get from New Relic helps us 

be cost-effective with our cloud usage.” 

STRENGTHS

• Performance monitoring across applications, browsers, cloud 

infrastructure, and more 

• Customer experience management for web and mobile channels 

• Proactive root cause analysis anywhere in the stack 

• Extensible platform offering partner integrations, open APIs, 

and 100+ plugins 

• Secure, multi-tenant SaaS architecture delivering value out of 

the box within minutes

NOTABLE CUSTOMERS

CATEGORY
APM

NEW RELEASES
Daily

OPEN SOURCE?
No

• Hearst 

• Trulia  

• Lending Club 

• MercadoLibre 

• MLBAM 

• Tapjoy

• HauteLook and 
Nordstromrack.com

The cloud provides many benefits to dev and ops teams, 
including no infrastructure to build or maintain, faster rollout 
of new app versions, and greater elasticity.  

These practices—critical to companies that aspire to compete 
with software—require your monitoring tools to adapt to a new 
reality of very transient workloads running on highly modular 
architectures. These three capabilities need to be top-of-mind 
when evaluating a monitoring system for the cloud. 

1. LOW FRICTION 
One thing many users love about the cloud is just how easy 
it is to get started. Your monitoring solution should be no 
different. Ideally, you should be able to begin monitoring 
virtual server loud computing cinstances such as Amazon’s 
EC2, often in as little as one minute. In addition, when you 
build new applications, they should be instrumented with a 
monitoring system with instant-on availability so that there is 
no lag between deployment and visibility. 

2. FULL-STACK VISIBILITY  
When a cloud application issue strikes, the clock is ticking. 

To quickly narrow down the scope of a problem, you need to 
be able to rapidly discern trends and changes across both the 
cloud services and your code. Your monitoring solution should 
be able to marry data from your cloud provider, the underlying 
operating system, and the application or service running on 
top to provide a complete view of health and status.  

3. DYNAMIC WORKLOAD VISIBILITY 
Since virtual server instances like Amazon EC2 can last a very 
short time, it’s easy for the list of instances in your monitoring 
solution to quickly fill up with a lot of “gray servers” that no 
longer report health and status. With physical servers, this is 
useful information—perhaps someone unplugged the server’s 
power or network connection, and you might want to stroll 
over to the data center and check things out. But for cloud 
servers, seeing a gray server often doesn’t present any useful 
information. Bottom line: it’s important for your monitoring 
solution to automatically remove this cruft.

WRITTEN BY ABNER GERMANOW
SR. DIRECTOR, STRATEGIC CAMPAIGNS & EVANGELISM, NEW RELIC

3 Keys to Cloud Monitoring Success

S P O N S O R E D  O P I N I O N

PARTNER SPOTLIGHT

http://bit.ly/1Ve9O7Z
http://bit.ly/1VydodD
http://bit.ly/1VydodD
http://Nordstromrack.com


 DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD2 6

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD

Servers?
Where We’re Going We 

Don’t Need Servers.

BY IVAN DWYER

“I DON'T KNOW HOW TO TELL YOU THIS, BUT  
YOU'RE IN A TIME MACHINE.”
Advancements in application architecture patterns all have a 
core purpose: developer empowerment. In today’s fast-paced 
and ultra-competitive world (where every company has to be 
a software company), organizations are doing all they can to 
enable their developers to ship applications faster. With such 
high expectations, what could possibly be more promising than a 
serverless world?

Despite the implications, serverless computing doesn’t mean 
getting rid of the data center through some form of black magic 
that powers compute cycles in thin air. At its core, the concept 
promises a serverless experience for developers, who never have to 
think about provisioning or managing infrastructure resources to 
power workloads at any scale. This is done by decoupling backend 
jobs as independent microservices that run through an automated 
workf low when a predetermined event occurs. These events 
arise from a variety of sources—from an application, as with a 
webhook; in the real world, as with a sensor capture; within a 
system, as with a database change; or on a schedule, as with a cron 
job. The event then triggers the workf low behind the scenes—spin 
up, execute, tear down. Rinse and repeat at massive scale. This 
form of event-driven computing shifts configuration from the 
systems layer to the application layer, thus turning the DevOps 
mantra Infrastructure as Code into Infrastructure in Response to Code. 

“THERE'S SOMETHING VERY FAMILIAR ABOUT ALL THIS.”
Cloud computing has come a long way in recent years. Virtualized 
infrastructure resources with elastic auto-scaling capabilities, 
platforms that abstract operations for delivery and management, 
along with a wide range of complementary toolkits, have all 
come together to provide developers with a highly effective 
environment for building large scale distributed applications. 

With these continued advancements across the entire cloud stack, 
what makes this serverless trend any different?

The primary difference lies in the nature of the workloads. Simply 
put, an application behaves different than a job. When we push 
an application to the cloud, we do so thinking about where it will 
live and how it will run. This is because it has a known IP address 
and an open port to accept incoming requests. On the other hand, 
when we build a job, we do so only thinking about when it will 
execute. In breaking away from the traditional request/response 
model towards an event-driven model, automated workf lows 
react to dynamic environments accordingly. Even though there 
is compute involved, it’s completely outside of the development 
lifecycle, thus making the paradigm “serverless.”

In order for such laissez-faire development to pass even the 
most basic smoke test, there must first be a discrete unit of 
compute that we’re confident is consistent from development 
to production. Container technologies such as Docker provide a 
lightweight runtime environment that isolates job processes with 
its dependencies, clearly specified through a standard packaging 
format. Compared to VMs, which have a wider scope, containers 
provide only what is needed for each individual job, minimizing 
its footprint and ensuring its consistency. If we then follow the 
commonly accepted characteristics of microservices when writing 
our code—loosely coupled, stateless services that each perform 
a single responsibility—what we’re left with is a collection 
independent and portable workloads that can be executed at will 
without the need for oversight. Fire away.

“WHAT ABOUT ALL THAT TALK ABOUT SCREWING UP 
FUTURE EVENTS?”
While event-driven computing patterns have existed for some 
time, the serverless trend really caught on with the introduction 

01
The convergence of microservices, 
containers, event-driven patterns, and 
DevOps automation lay the foundation 
for a serverless architecture.

02
The next evolution of developer 
empowerment, this further abstracts 
away the underlying operations to 
power workloads at any scale.

03
The best practices here will let you build 
highly reactive systems, responding to 
the ever-changing environments of the 
modern world with highly streamlined, 
automated workflows.

Q U I C K  V I E W

http://DZone.com/guides
http://dzone.com/guides


 DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD27

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD

of AWS Lambda in late 2014. Microsoft has a similar offer with 
WebJobs, and Google recently announced its version with Google 
Functions. For a solution independent of any sole infrastructure 
provider, Iron.io offers a container-based serverless computing 
platform that is available in any cloud, public or private.

Lest we forget: the more abstraction put forth, the more 
activity happening behind the scenes. To actually reap the 
benefits of a serverless architecture, one must fully grasp the 
software development lifecycle and underlying operations to 
avoid it becoming a hapless architecture. The following is an 
introduction to the process of building Docker-based serverless 
jobs along with some best practices to help get you started.

BUILDING THE JOB
Developing with Docker is a breeze, as you can work across 
multiple languages and environments without clutter or conflict. 
When your job is ready to build, you specify the runtime by 
writing a Dockerfile that sets the executable, dependencies, and 
any additional configuration needed for the process. 

• Choose a lightweight base layer. This can be a minimal Linux 
distribution such as Alpine or Busybox. 

• Keep the layers to a minimum. Don’t run an update on the OS 
and consolidate RUN operations inline using && when possible.

• Limit the external dependencies to only what’s needed for the 
process itself, and vendor ahead of time so there’s no additional 
importing when the job is started. 

UPLOADING THE JOB IMAGE
Each serverless job is built as a Docker image and uploaded to a 
registry, where it can be pulled on demand. This can be a third 
party public image repository such as Docker Hub, Quay.io, or 
your own private registry. 

• Incorporate the job code into a CI/CD pipeline, building the 
container image and uploading to a repository.

• Version your images using Docker Tags and document properly. 
Don’t rely on :latest as what should always run.

SETTING EVENT TRIGGERS
With such a potentially wide range of event sources, there can be 
a tendency for the associated jobs to pile up quickly. It is crucial 
to set the triggers properly to ensure the right workf lows are 
kicked off and that no data is lost in the process.

• Map each job to your API (at a minimum within your 
documentation, but you can also set endpoints for direct 
requests). Using an API Gateway is a common way to manage 
events and endpoints across systems.

• Use a load balancer for synchronous requests and a message 
queue for asynchronous requests to throttle and buffer requests 
when load is high. 

CONFIGURING THE RUNTIME ENVIRONMENT
Operational complexities such as service registration and 
container orchestration are abstracted away from the 
development lifecycle; however it is not recommended to just 
“set it and forget it” when running in a production environment.

• Profile your workloads for their most optimal compute 

environment. For example, some workloads are more memory 
intensive and need more memory allocated. 

• Set how many concurrent jobs can execute at any given time. 
This can help keep costs down and ensure you don’t overload 
the system.

• Determine what happens when the job fails. If you want to 
auto-retry, set the maximum number of times with a delay in 
between.

SECURING AND MONITORING THE JOB
To be production-grade, wrapping the environment with proper 
security and monitoring is essential. Given the levels of abstraction 
that serverless computing provides, it’s even more important to 
gain insight into what’s happening behind the scenes.

• Payload data should be encrypted at the source and then 
decrypted within the job code itself. Public key is a common 
technique in this scenario.

• Connections to databases from within a job process that are 
outside the network should be secure, either through a VPN or 
IP whitelisting.

• Inspect stdout and stderr for each job process. You can pipe 
these logs to syslog or a 3rd party logging service.

• Maintain a real-time dashboard of all queued, running, failed, 
and finished jobs. 

“WHAT HAPPENS IN THE FUTURE?”
With this serverless computing trend, the gap between the 
infrastructure layer and the application layer narrows even 
further. A well orchestrated container f leet combined with a 
well choreographed set of workloads leads to more intelligent 
systems across the board. The event-driven patterns set forth in 
this article provide developers and architects a way to respond 
to the ever-changing environments of the modern world, where 
everything from our bodies to the planet is connected. The next 
evolution in cloud computing will stem from these patterns to 
create predictive systems that can learn and adapt accordingly. 
A workload-aware global compute cloud that knows what, 
when, and where best to run workloads is the ultimate vision for 
developer empowerment in this modern cloud era. It won’t take 
a f lux capacitor to get there—we’re already on our way as an 
ecosystem to enable this future.

IVAN DWYER  is the head of business development at Iron.io, 
collaborating with ecosystem partners across the entire cloud stack 
to form meaningful strategic and technical alliances. Iron.io is a 
leading provider of serverless computing for the modern Enterprise, 
with its Docker-based job processing platform.

NOTIFICATION

STREAM

WEBHOOK

SCHEDULE

SYNC

ASYNC

MESSAGE QUEUE
PULL

PUSH
LOAD BALANCER

API
GATEWAY

End-to-end lifecycle of a serverless workload

http://DZone.com/guides
https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/documentation/articles/web-sites-create-web-jobs/
https://cloud.google.com/functions/docs
https://cloud.google.com/functions/docs
https://www.iron.io/
https://docs.docker.com/engine/reference/builder/
https://www.iron.io/microcontainers-tiny-portable-containers/
http://www.alpinelinux.org/
https://busybox.net/
https://hub.docker.com/
https://quay.io/
http://Iron.io
http://Iron.io


 DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD2 8

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD

Santa Clara Convention Center
September 13–15

Register now: www.jenkinsworld.com

Jenkins World

Jenkins World will bring together  
the largest gathering of Jenkins users  
in the world, including Jenkins experts, 
continuous delivery thought leaders  
and companies offering complementary 
technologies for Jenkins. Jenkins World will 
provide opportunities for attendees to learn, 
explore and network face-to-face, as well as 
to help shape the future of Jenkins.  

The event for 
everything Jenkins:  
community, CloudBees 
and ecosystem.

http://DZone.com/guides
http://dzone.com/guides
http://bit.ly/1SqaiHN


 DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD2 9

DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD

Based on the time-tested, proven, extensible, and popular Jenkins automation platform.
Advanced CD Pipeline execution and management.

BLOG    blog.cloudbees.com WEBSITE    www.cloudbees.comTWITTER    @cloudbees

CloudBees Jenkins Platform  BY CLOUDBEES, INC.

CASE STUDY

Morningstar Inc. - Leading provider of independent investment research 

CHALLENGE: Improve build processes while laying the groundwork for an 
organizational move to continuous delivery and a DevOps culture

SOLUTION: Use continuous integration with the CloudBees Jenkins Platform to 
increase automation, improve consistency, lower administrative overhead, and 
facilitate the adoption of continuous delivery practices and a DevOps culture

RESULTS: 
• Administration time and overhead reduced 80%
• Time to resolve typical support issues reduced by 70%
• Release cycles shortened 

STRENGTHS

• Enable Continous Delivery as a Service for your teams.

• Self-service access to Jenkins for all project teams.

• Deploy Jenkins servers in seconds.

• Fast installation on private cloud.

• Elasticity and High Availability for Jenkins.

NOTABLE CUSTOMERS

CATEGORY
DevOps Automation 
Platform

NEW RELEASES
Bi-annually

OPEN SOURCE?
Yes

• Netflix

• Orbitz

• Nokia

• Lufthansa

• TD Band

• Apple

Continuous delivery (CD) is the practice of automatically and 
continuously building, testing and deploying software. CD is an 
extension of continuous integration (CI) and provides the foundation 
for DevOps. CD enables IT organizations to reduce time to market, 
increase software quality, lower costs and gain competitive advantage.   

Small IT organizations, the decision to run CD on a public cloud is 
easy; they leverage the cloud heavily to reduce costs and increase 
agility. They are able to run CD as a Service – to instantly provision 
resources for teams and scale-up/down as needed. In fact, Jenkins, 
a popular open source automation server, is available in pre-built 
machine images for Amazon EC2 and Microsoft Azure. 

For enterprises, concerns around security and compliance represent 
a barrier to using the public cloud for CD. Executing CD on a public 
cloud entails provisioning access to valuable code and assets. 
Therefore, many enterprises host public-facing infrastructure on 
public clouds and host back-end sensitive code, services and 
databases on internal private clouds. However, CD infrastructure 
is also a great workload for private clouds. CD as a Service 
implemented on a private cloud lowers costs, provides the benefits 
of elasticity and scalability and also secures valuable assets.

The CloudBees Jenkins Platform - Private SaaS Edition is an 
elastic, scalable Jenkins-based platform that enables organizations 

to offer CD as a Service on an OpenStack private cloud or on an 
AWS Virtual Private Cloud with an interface to the datacenter.  

CloudBees Jenkins Platform - Private SaaS Edition benefits three 
key roles: 

• Shared services manager: Set-up a fault tolerant Jenkins 
as a Service on your private cloud in minutes 

• Jenkins administrator: Self-service access to the 
CloudBees Jenkins Platform for teams, enabling instant 
onboarding of new Jenkins projects 

• Developers: Jenkins as a Service accelerates software 
delivery by providing immediate access to resources 

Bringing together proven cloud technologies with the power of 
the CloudBees Jenkins Platform, Private SaaS Edition accelerates 
adoption of CD and DevOps, while addressing security concerns 
and providing the advantages of the cloud. Learn more.

WRITTEN BY KALYAN (KAL) VISSA
SR. PRODUCT MANAGER, CLOUDBEES

Enabling Continuous Delivery as a Service

S P O N S O R E D  O P I N I O N

PARTNER SPOTLIGHT

http://bit.ly/1WBrXfx
http://bit.ly/1Qi8tEZ
http://bit.ly/1SnFS5O
https://www.cloudbees.com/products/cloudbees-jenkins-platform/private-saas-edition


 DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD3 0

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD

Focusing on the 
Cloud in Cloud 
Applications
BY NICK KEPHART

Remember TCP slow start? CIDR notation? 
For a long time networking knowledge 

has been pushed to the back of most 
developers’ minds. But recently, a networking 
renaissance has kicked off with developers 
leading the charge. Major services are 
flirting with HTTP/2 for pipelining and 
multiplexing. Some mobile developers are 
even building their own transport stacks to 
control application experience delivered to 
end users on high-latency or low-bandwidth 
connections. Developers are jumping back 
into the networking fray. 

Let’s talk about the Ops in DevOps for a moment. Brush up 
on networking, because as you re-architect your applications 
for IaaS and microservices, the network is becoming an 
increasingly critical enabler, or inhibitor, of your application 
experience. Your users are ever more dispersed across 
networks, just as application services are spread over 
more and more IaaS regions, API endpoints, and external 
services. You don’t have to look far to find name brand cloud 
applications that have been knocked out by network failures, 
from Netf lix to Craigslist, Salesforce to Playstation.

THE CHANGING STRUCTURE OF APPS AND THE NETWORK
Three trends that are reshaping application development are also 
changing the relationship between application and network.

IaaS: As cloud-based infrastructure becomes more common, 
application f lows increasingly traverse public Internet links. 
Hosting your site on AWS? Azure? Softlayer? Google? Each 
provider has different peering policies, global POPs, and 
traffic management that can lead to dramatically different 
end-user experiences. Google peers widely, meaning that it is 
rarely more than one or two networks away from your users. 
AWS and Microsoft, on the other hand, focus on backhauling 
traffic across or between continents on their own backbone to 
have greater control.

Microservices: Developers are increasingly slicing up 
application services into ephemeral, scale-out workloads. 
Often based on Linux containers using iptables-based NAT, 
these services are causing an explosion in intra- and inter-
data center network traffic. Within the data center, this causes 
more variable network I/O and a drive to smarter routing 
policies, reshaping the switching, routing, and load-balancing 
landscape. Outside the data center, this is creating more strain 
on peering links and requires careful planning for key inter-
DC routes.

Composable apps: Most importantly, applications are being 
composed of multiple parts. We’ve already seen a rise in APIs, 
from payments to chat-based support. Some of the APIs are 
full-f ledged services. Take Lumberyard, the new game engine 
from AWS; developers will find themselves increasingly 
composing applications from diverse publishers’ disparate 

01
The move to cloud applications 
is making developers take a 
harder look at their networks and 
how they affect performance.

02
IaaS, microservices, and 
composable applications are 
powering the transition to new 
network requirements.

03
Cloud applications must make 
different assumptions about key 
variables such as loss, latency, 
and reliability.

Q U I C K  V I E W

http://DZone.com/guides
http://dzone.com/guides


 DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD3 1

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD

network locations. I’ve seen this happen even within the 
enterprise data center, with integrations surrounding the 
Salesforce and ServiceNow ecosystems that have become 
critical business services.

DELIVERING YOUR BITS
How do these changes manifest themselves? They directly 
impact variables that your users and your operations teams 
care about.

• Increasing loss: With traffic traversing best-effort Internet 
links, pay special attention to network health. Be prepared to 
adapt routing or peering preferences based on observed loss in 
the network, and regularly monitor the performance of your 
ISPs or CDNs.

• Increasing latency: As traffic travels long distances between 
API endpoints, IaaS data centers, and individual containers, 
your app needs to handle highly variable conditions. Test out 
message queues, API calls, and critical transactions across a 
range of tolerances.

• Less reliability: Develop your application to gracefully handle 
outages of critical services caused by device failures, route 
leaks, or DNS problems. Recent network and infrastructure 
outages have taken down entire services for hours, from 
popular IaaS providers to large CDNs.

DEVELOPERS MEETING THE NETWORKING CHALLENGE
Cloud-native architectures get a lot of attention, but you 
can go deeper on the network side too. Interestingly, many 
developers are beginning to take on this challenge to 
optimize the delivery of their applications. Here are a few 
examples of how you might consider improving your own 
application experience. The right course of action, if any, will 
of course depend on your applications and users.

Get network savvy: You can get a surprisingly rich view of 
how your application is delivered over the network. This isn’t 
just your grandfather’s ping. New monitoring techniques, 
such as detailed network path tracing and active probing, 
identify specific network segments and service providers 
that have performance degradation. Sophisticated services 
like ThousandEyes can provide a detailed view of both web 
and network performance across data centers, ISPs, CDNs, 
and IaaS providers. There should be no excuse for being in 
the dark about network performance.

Get automated: Having visibility into both application and 
network performance is step one. You’ll want to make sure 
that you tie your monitoring into your on-call ticket apps, 
like PagerDuty or xMatters, with carefully crafted escalation 
rules to ensure you aren’t unnecessarily awakened from 
your beauty sleep. I’ve seen some teams go even further and 
use alerts to power load balancers or change DNS records 
that can take racks, pods, or entire data centers out of 
rotation if performance is degraded.

Try new content delivery strategies: Content delivery 
networks can host a wide variety of content and make 

it quickly accessible to a global audience. Of course, this 
means you have another service provider to manage. Some 
applications, such as Netf lix, have built out their own CDN to 
minimize the network distance to its users. For applications 
that rely on audio or video streaming—which is particularly 
sensitive to packet delay and loss, misordered arrival, and 
jittery TCP round-trip times—a CDN, whether built or 
bought, can make a huge difference. 

Experiment with network architectures: Some developers 
aren’t satisfied with the network services that they can 
procure from major providers. So they’ve built their own. 
Riot Games unveiled their architecture of new POPs, dark 
fiber leases, tweaked routing preferences, and peering with 
major ISPs across the U.S. The result? Higher percentages of 
League of Legends players experienced under 80ms latency, 
a desirable threshold for multiplayer gaming. Tying in SDN 
to control this architecture, and Riot Games expects to push 
the boundaries even further. 

If you dare, build new network stacks: With users on 
high-latency and low-bandwidth networks, sometimes 
the standard HTTP/TCP/IP stack doesn’t cut it. Facebook’s 
mobile app team shipped their latest Android app for 
developing countries with its own custom messaging 
protocol over TLS and TCP, rather than using HTTPS. This 
reduces data use on 2G networks and works with image 
servers in the Facebook CDN to deliver exact-sized image 
delivery that otherwise would eat up tons of bandwidth. This 
is a great tutorial on building the network stack.

MAKING YOUR CLOUD APP-READY, AND VICE VERSA
Application development today has a rich set of services 
and infrastructure that can be used to construct ever-more 
powerful applications. But this has left many applications 
more exposed to the whims of the network. Using new 
network monitoring techniques and architectures, 
developers can better control the end-user experience. So 
break out an O’Reilly book, chat with your favorite Ops 
member, and refresh your networking knowledge. It’s time 
to get your cloud app-ready, and your app truly cloud-ready.

NICK KEPHART  leads Product Marketing at ThousandEyes, 
which develops Network Intelligence software, where he reports 
on Internet health and digs into the causes of outages that impact 
important online services. Prior to ThousandEyes, Nick worked to 
promote new approaches to cloud application architectures and 
automation while at cloud management firm RightScale.

YOU DON’T HAVE TO LOOK FAR TO FIND NAME 

BRAND CLOUD APPLICATIONS THAT HAVE 

BEEN KNOCKED OUT BY NETWORK FAILURES

http://DZone.com/guides


 DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD3 2

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD

API Connect integrates IBM StrongLoop and IBM API 
Management with a built-in gateway, allowing you to create, 

run, manage, and secure APIs and Microservices.

Unparalleled, integrated user experience.

IBM apiconnect

ibm.biz/apiconnect

http://DZone.com/guides
http://dzone.com/guides
http://bit.ly/23HaSGh


 DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD3 3

DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD

• Unified Console

• Quickly run APIs and microservices

• Manage API's with ease

• Readily secure APIs and microservices

• Create API's in minutes

Developers have high expectations from cloud services.  Since 
I'm a developer, I’m probably biased, but as we are typically the 
ones spending the most time working with cloud providers and 
services, our needs are pretty important. Here are five of those 
needs, ranked in completely random order.  

1) PROPER DOCUMENTATION 
While the benefits of good documentation may obvious, 
not all providers deliver – and you can certainly tell when 
documentation was considered a lower priority for a cloud 
provider. Your docs should be clear, direct, with little to no 
marketing fluff. Users should not require a login just to read your 
docs. I want to see how your service works before I sign up. 

2) A COMMAND LINE TOOL 
Provide a command line tool that can be installed via npm and 
easily updated. If you don’t use npm, make it easy to find the 
download link and provide clear instructions on how to update 
the CLI. To make this even easier, the tool itself should prompt 
developers when new versions exist. 

3) A DEVELOPER PORTAL 
This goes hand in hand with the CLI. Anything I do with the 
CLI should be available via a web-based portal as well. Not 

all developers prefer the CLI, so providing multiple ways of 
accomplishing tasks gives the developer options. The portal 
should also make it easy for me to track usage and billing 
information. 

4) DON’T HIDE/OBFUSCATE PRICING INFORMATION 
While developers care more about the technical aspects of 
your service, we also want it to be easy to figure out what 
we can expect to pay. If your payment policies are difficult 
to explain, then that’s a good sign that you should look into 
simplifying your offerings.  

5) PLAYS WELL WITH OTHERS 
Your service may be cool. It may be the best thing since sliced 
bread. But your service isn’t the only one out there. Make it easy 
to integrate with other services, even your competition. Make it 
easy to leave your service if need be. That may seem crazy, but 
as a developer, I want to know I can change my mind about your 
service with little to no pain in migration. 

WRITTEN BY RAYMOND CAMDEN
STRONGLOOP / NODE.JS DEVELOPER EVANGELIST, IBM

5 Things Developers Need from the Cloud

PARTNER SPOTLIGHT

S P O N S O R E D  O P I N I O N

IBM API Connect is a complete solution that addresses all aspects of the API lifecycle - 
Create Run, Manage, Secure - for both on-premises and cloud environments. 

BLOG developer.ibm.com/answers/topics/apim/ WEBSITE ibm.com/software/products/en/api-connectapim/TWITTER  @ibmapiconnect

API Connect  BY STRONGLOOP AND IBM

API LIFECYCLE
IBM API Connect offers features to manage the API lifecycle, including:

Create—create high-quality, scalable and secure APIs for application servers, 
databases, enterprise service buses (ESB) and mainframes in minutes. 

Run—take advantage of integrated tooling to build, debug and deploy APIs and 
microservices using the Node.js or Java.

Manage—create and manage portals that allow developers to quickly discover  
and consume APIs and securely access enterprise data, and monitor APIs to 
improve performance.

Secure—Administrators can manage security and governance over APIs and the 
microservices. IT can set and enforce API policies to secure back-end information 
assets and comply with governance and regulatory mandates.

STRENGTHS
• Simplify discovery of enterprise systems of record for automated 

API creation

• Provide self-service access for internal and third-party developers 

through a market-leading gateway

• Ensure security and governance across the API lifecycle

• Unify management of Node.js and Java microservice applications

• Increase flexibility with hybrid cloud deployment

FEATURES

CATEGORY
API Management

NEW RELEASES
TBA

OPEN SOURCE?
No

http://Node.js
http://bit.ly/23HaSGh
http://ibm.co/1Sqn3ig
http://ibm.co/1WcNxGs
http://bit.ly/1WcMTc0


 DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD3 4

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD

I n order to gather insights on developing and 

deploying apps on the cloud we interviewed 28 

executives, from 23 companies, actively involved in 

cloud-based applications for their own companies 

or their clients. All of the executives have extensive 

experience developing and deploying applications 

on the cloud. Specifically we spoke to:

Neeraj Gupta, S.V.P. Product & Engineering, Apcera | Jad Naous, Product 
Lead, AppDynamics | Ez Natarajan, V.P. Head Cloud Services Business 
Unit, Beyondsoft | Alon Girmonsky, CEO and Founder, BlazeMeter 
| Kunal Bharati, Cloud Architect and Nishant Patel, CTO, Built.io | 
Sacha Labourey, CEO, Cloudbees | Deirdre Mahon, CMO and Fraser 
McKay, V.P. of Products, Cloud Cruiser | Flint Brenton, CEO, CollabNet 
| Ali Din, Senior V.P. and CMO and Walid Elemary, V.P. Product 
Development, dinCloud  | Mike Masterson, Director of Strategic Business 
Development, Dynatrace | Gabe Monroy, CTO and Jasen Hansen, Chief 
Architect, Engine Yard | Fred Simon, Co-Founder and Chief Architect, 
JFrog | Jim Frey, V.P. of Products and Ian Pye, Co-Founder and Principal 
Engineer, Kentik | Johan den Haan, CTO, Mendix | Mounil Patel, V.P. 
Strategic Field Engagement, Mimecast | Arvind Mehrotra, President 
and Global Business Head – Infrastructure Management Services, NIIT 
Technologies | Faisal Memon, Product Manager, NGINX | Jens Eckels, 
Director, PaaS Business Group, Oracle | Pat Harper, SVP Operations and 
Sara Pilling, V.P. Strategic Communications,  PGi | Joan Wrabetz, CTO, 
Quali | Partha Seetala, CTO, Robin Systems | Nick Kephart, Senior 
Director Product Marketing, ThousandEyes | Kiran Bondalapati, CTO 
and Co-Founder, ZeroStack

Here’s what we learned from the executives:

01

The companies we spoke with tend to be agnostic with regards to 
frameworks, platforms, functionality, software, tools, languages, 
and cloud-types. They know they have to be able to work with what 
their clients are using. What they use varies by the layer of the 
stack they’re working with. The most frequently used languages 
are Java, Ruby on Rails, and Go—with Go becoming the prevalent 
programming language for cloud software.

02

The most important elements of cloud-based applications are 
scalability, security, cost savings, integration/connectivity, and 
stability/availability. The ability to scale up or down depending on 
consumer needs and wants is critical from a reliability standpoint, 
as well as from a cost perspective. Anything added to the cloud 
stack is able to scale both vertically and horizontally. Security has 
gained importance as companies capture more consumer data 
with personally sensitive information. The cloud is a means to an 
end, it provides quick and endless innovation for companies.

03

Multiple problems are being solved by cloud-based applications. 
The cloud enables small companies to compete efficiently 
by establishing processes that allow them to move at warp 
speed with extreme reliability. Complex applications are able 
to integrate with each other. Orchestration makes everything 
work together on a common platform, enabling companies to 
solve problems and make smarter business decisions. Customer-
facing cloud-based apps can be changed very quickly as business 
requirements change or as monitoring dictates.

Executive Insights

on Developing and 

Deploying Applications 

on the Cloud
BY TOM SMITH

01
Build platform-agnostic cloud-
based apps to ensure they will 
work anywhere and prevent being 
locked-in to a particular cloud.

02
Scalability, security, and the ability 
to control costs are the key reasons 
why companies are going to cloud-
based apps.

03
Cloud-based applications will be 
at the forefront of connecting all 
data—video, voice, IoT—every 
device will be connected.

Q U I C K  V I E W

http://DZone.com/guides
http://dzone.com/guides
http://www.apcera.com/
https://www.appdynamics.com/
http://www.beyondsoft.com/old/index.php?app=index&act=index&lang=en
https://www.blazemeter.com/
https://www.built.io/
https://www.cloudbees.com/
http://www.cloudcruiser.com/
http://www.collabnet.com/
https://www.dincloud.com/
http://www.dynatrace.com/en/index.html
https://www.engineyard.com/
https://www.jfrog.com/
https://www.kentik.com/
https://www.mendix.com/
http://www.mimecast.com/
http://www.niit-tech.com/
http://www.niit-tech.com/
https://www.nginx.com/
http://www.oracle.com/index.html
https://www.pgi.com/
http://www.qualisystems.com/
http://robinsystems.com/
https://www.thousandeyes.com/
http://www.zerostack.com/


 DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD3 5

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD

04

Among those we interviewed, there was little agreement with 
regards to the skills that make someone good at developing and 
deploying applications on the cloud. Knowledge of business 
requirements, realizing business value, ability to solve problems, 
a desire to learn, and knowledge of scalability and security were 
the skills that were mentioned most frequently. However, more 
than 20 other skills were mentioned, and we’re sure the list will 
continue to evolve.

05

The biggest evolution in the development and deployment of cloud-
based applications has been the move to continuous delivery, 
automation, containers, and microservices. Now all processes and 
handoffs are automated. We are close to completing the process 
of committing code to run in production in an automated way. 
Developers are creating cloud-based apps built on microservices 
with more complex functionality in conjunction with business 
people developing business processes on the platform. There is 
much wider distribution with more frequent deployments in 
shorter time frames due to the virtualization of environments and 
increased automation. 

06

The biggest obstacles to success developing and deploying 
applications on the cloud are: 1) the complexity of the cloud; 2) 
philosophical differences; 3) ability to scale; and 4) DevOps and 
automation. Most companies don’t understand the complexity 
of the cloud, the multi-tenancy, scalability, and security aspects. 
Problems are more exacerbated for apps in the cloud. Legacy 
apps that were barely maintained do not meet the native app 
requirements of the cloud. There’s a philosophical resistance to 
change. The network is moving to where the company is no longer 
in direct control. Scale is critical, as are performance, availability, 
speed and redundancy. You must be able to scale in an automated 
way. The DevOps footprint has made a staggering impact on the 
cost and time to delivery; however, few enterprises have adopted a 
true DevOps mentality or methodology.  

07

The biggest concerns regarding the development and deployment of 
cloud-based applications are security; the speed with which new 
technology is emerging and change is taking place; and the inability 
to just move legacy apps to the cloud. New technology is emerging 
rapidly, allowing companies to adopt—and customers to enjoy— 
quickly. There are a lot of moving parts and complexity to keep up 
with. There are no standards with regards to orchestration and 
security. In two years we’ll end up with a clear winner to manage 
containers and deployments. It’s a little risky to decide on a 
framework today. Security on the cloud is superior to security at the 
enterprise level, yet there are still regulatory and compliance issues 
with which you must contend. Trying to move legacy apps to the 
cloud is not always the best fit—you need to change to cloud-based 
architecture and deployment.

08

The future for cloud-based applications is very bright, with 
a lot of visionary ideas. The three themes we heard revolve 
around the continued ubiquity and scale of the cloud, driven 
by microservices and the increased emphasis on security as 
consumers become more savvy about the precarious nature of 
their data in cloud-based apps. On-premises and cloud-based 
apps will continue to co-exist in a cloud- and device-agnostic 
world, and the majority of apps will be in the cloud. Cloud-based 
apps will continue to disrupt business processes. Microservices 
and products like Amazon Lambda will enable the evolution 
of the platform as a service, allowing it to handle the running, 
implementation, and management of apps, empowering 
developers to focus on writing code. Customers will feel more 
confident on public clouds with acceptable levels of security and 
customization, as there will be more security, trust, and legal 
requirements regarding personal data that is collected.

09

Three things for developers to keep in mind when working with 
applications for the cloud: security, scalability, and performance. 
Keep security on the top of your mind as more and more apps get 
hacked. Security, trust, and reliability go hand in hand. It’s also 
important to isolate each tenant’s data and protect sensitive data. 
Design for scale and performance. The app must be able to handle 
large spikes during certain times of the day or month. Push to the 
cloud for fast iteration, frequent deployments, and quality apps.

10

Parting thoughts. When we asked respondents what we failed to 
ask regarding cloud-based applications, here’s what they told us:

• Not every cloud vendor is the same. Companies should look 
at vendors who provide easy, continuous integration/delivery 
environments, rapid spin-up and tear-down for testing, and 
transparent updates of infrastructure.

• Containerize—containers facilitate portability and allow you to 
work in every type of cloud.

• Share what you know. Everyone benefits from open 
collaboration.

• Know where the budget will come from; costs can rise as the 
application scales quickly.

• Re-architect from a microservices standpoint to help move apps, 
manage them, and give you more connectivity in more places.

• Developers will still need to program and collaborate. The 
entire team needs to move to a collaboration orientation.

• Test for failure—this is one of the models of Netflix.

• Commit to lifelong learning and you’ll always be able to use 
what you learn.

TOM SMITH  is a Research Analyst at DZone who excels 
at gathering insights from analytics—both quantitative and 
qualitative—to drive business results. His passion is sharing 
information of value to help people succeed. In his spare time, you 
can find him either eating at Chipotle or working out at the gym.

http://DZone.com/guides


 DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD3 6

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD

PRODUCT CLASSIFICATION PUBLIC / PRIVATE FREE TRIAL WEBSITE

ActiveState Stackato
Virtual Machines, App Containers, 
aPaaS, DBaaS

Private by provider, Private 
on-premise, Hybrid

Limited by storage activestate.com

Amazon EC2 Virtual Machines Public
750 hours, Limited 
by storage

aws.amazon.com

Anypoint Platform by MuleSoft iPaaS Public, Hybrid, On-premise Available by request mulesoft.com

Anypresence aPaaS, mBaaS
Public, Private by provider, 
Private on-premise

Pilot program 
available

anypresence.com

Apache CloudStack Virtual Machines Public, Private by provider Open Source cloudstack.apache.org

Apprenda
App Containers, aPaaS, DBaaS, 
MBaaS

Private on-premise, Hybrid Limited by storage apprenda.com

Armor Complete Virtual Machines Private Available by request armor.com

AT&T iPaaS, CDN Public, On-premise Available by request synaptic.att.com

Atomsphere by Dell Boomi iPaaS Public Available by request boomi.com

AWS Elastic Beanstalk Application Containers, aPaaS Public Limited by storage aws.amazon.com

Baasbox mBaaS Public, Private on-premise 30 days baasbox.com

Bluebox Cloud by IBM Virtual Machines Private, Hybrid Available by request blueboxcloud.com

Celigo iPaaS Public Available by request celigo.com

CenturyLink AppFog App Containers, aPaaS, DBaaS Public 7 days centurylinkcloud.com

CenturyLink Cloud Virtual Machines, App Containers
Public, Private by provider, 
Hybrid

30 days centurylinkcloud.com

Clever Cloud App Containers, aPaaS, DBaaS Any No free trial clever-cloud.com

Cloud 66 iPaaS, Container Management, CI On-premise Available by request cloud66.com

Cloud Elements iPaaS Public, Private, Hybrid Available by request cloud-elements.com

CloudBees Jenkins Platform CI as a Service Private, On-premise Available by request cloudbees.com

This directory contains databases and database performance tools to help you store, organize, and 

query the data you need. It provides free trial data and product category information gathered from 

vendor websites and project pages. Solutions are selected for inclusion based on several impartial 

criteria, including solution maturity, technical innovativeness, relevance, and data availability.

Solutions  Directory

http://DZone.com/guides
http://dzone.com/guides
http://activestate.com
http://aws.amazon.com
http://mulesoft.com
http://anypresence.com
http://cloudstack.apache.org
http://apprenda.com
http://armor.com
http://synaptic.att.com
http://boomi.com
http://aws.amazon.com
http://baasbox.com
http://blueboxcloud.com
http://celigo.com
http://centurylinkcloud.com
http://centurylinkcloud.com
http://clever-cloud.com
http://cloud66.com
http://cloud-elements.com
http://cloudbees.com


 DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD37

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD

PRODUCT CLASSIFICATION PUBLIC / PRIVATE FREE TRIAL WEBSITE

cloudControl App Containers, aPaaS, DBaaS Public, Private on-premise 14 days cloudcontrol.com

CloudOne Virtual Machines Private Available by request oncloudone.com

CloudScape by RISC Networks Cloud Migration Management Public Available by request riscnetworks.com

Data Cloud Surround by 
Dimension Data Virtual Machines, App Containers Public, Private Available by request dimensiondata.com

Datapipe Virtual Machines Private by provider None datapipe.com

DCHQ aPaaS, Container Management Public, Private Free tier available dchq.io

Digital Ocean Virtual Machines Public None digitalocean.com

DivvyCloud Cloud Infrastructure Automation Public, Private Available by request divvycloud.com

Docker Swarm Container management Any Open Source docker.com

EMC Cloudscaling Elastic 
Cloud Virtual Machines

Public, Private by provider, 
Hybrid

None cloudscaling.com

Engine Yard App Containers, aPaaS Public 500 hours engineyard.com

FatFractal
Virtual Machines, App Containers, 
aPaaS, DBaaS, MBaaS

Public, Private on-premise, 
Hybrid

30 days fatfractal.com

Flowgear iPaaS Public 14 days flowgear.net

Fujitsu Cloud Infrastructure as 
a Service Virtual Machines Public, Private Available by request fujitsu.com

Fujitsu Cloud Platform as a 
Service iPaaS Public, Private, On-premise Available by request fujitsu.com

G Platform by Indra Gnubila aPaaS, DBaaS, iPaaS Public Available by request gnubila.com

Google App Engine App Containers, aPaaS Public None cloud.google.com

Google Compute Engine Virtual Machines Public None cloud.google.com

Heroku App Containers, aPaaS, DBaaS Public
Limited by storage 
and 8 instances

heroku.com

Hosting.com Virtual Machines Any None hosting.com

HP Helion Public Cloud Virtual Machines, iPaaS, DBaaS Public Limted by storage hp.com

IBM Bluemix
Virtual Machines, App Containers, 
aPaaS, iPaaS, DBaaS, MBaaS

Public, Hybrid 30 days
ibm.com/software/
bluemix/

IBM Softlayer Virtual Machines Any 30 days ibm.com

Informatica iPaaS Public, Hybrid, On-premise 30 days informatica.com

Interlok by Adaptris iPaaS Public Available by request adaptris.com

http://DZone.com/guides
http://cloudcontrol.com
http://oncloudone.com
http://riscnetworks.com
http://dimensiondata.com
http://datapipe.com
http://dchq.io
http://digitalocean.com
http://divvycloud.com
http://docker.com
http://cloudscaling.com
http://engineyard.com
http://fatfractal.com
http://flowgear.net
http://fujitsu.com
http://fujitsu.com
http://gnubila.com
http://cloud.google.com
http://cloud.google.com
http://heroku.com
http://Hosting.com
http://hosting.com
http://hp.com
http://ibm.com/software/bluemix
http://ibm.com/software/bluemix
http://ibm.com
http://informatica.com
http://adaptris.com


 DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD3 8

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD

PRODUCT CLASSIFICATION PUBLIC / PRIVATE FREE TRIAL WEBSITE

Internap Virtual Machines
Public, Private by provider, 
Hybrid

None internap.com

Interoute Virtual Machines Public Available by request interoute.com

IronWorker by Iron.io
aPaaS, Container Management, 
iPaaS

Private Available by request iron.io

ITapp by ServiceNow Cloud Infrastructure Management Public, Private 14 days itapp.com

Jelastic
Virtual Machines, App Containers, 
aPaaS, iPaaS

Any
Two weeks with 
hosting partner

jelastic.com

Jitterbit iPaaS, Cloud Migration Public, Hybrid, On-premise 30 days jitterbit.com

Joyent Virtual Machines
Public, Private on-premise, 
Hybrid

Free tier available joyent.com

Kii mBaaS Any Free tier available kii.com

Kinvey mBaaS
Private by-provider, Private 
on-premise

Limited by storage kinvey.com

Kony MobileFabric aPaaS, iPaaS, mBaaS
Public, Private on-premise, 
Hybrid

90 days kony.com

Krystallize Technologies Cloud Performance Management Public Available by request krystallize.com

Kubernetes Container management Any Open Source kubernetes.io

Kumulos mBaaS Private by-provider
Free until app is 
deployed

kumulos.com

Linode Virtual Machines Public, Private by provider None linode.com

Lunacloud
Virtual Machines, App Containers, 
iPaaS, DBaaS, Model-Driven PaaS

Public None lunacloud.com

Mendix App Platform aPaaS, DBaaS, Model-Driven PaaS Any Free tier available mendix.com

Microsoft Azure
Virtual Machines, App Containers, 
aPaaS

Public 30 days azure.microsoft.com

MIOedge by MIOsoft
aPaaS, Analytics-as-a-Service, 
iPaaS

Public, Private Available by request miosoft.com

Modulus by Progress Software
aPaaS, Container Management, 
Cloud Infrastructure Management

Public Available by request modulus.io

NaviSIte Virtual Machines Public, Private on-premise None navisite.com

New Relic APM Application Performance Monitoring Public 14 days newrelic.com

Nginx Plus Virtual Machines Public, On-premise 30 days ngnix.com

NTT Communications Virtual Machines Private Available by request ntt.com

OpenStack Virtual Machines Public, Private on-premise Open Source openstack.com

Oracle Cloud
aPaaS, DBaaS, iPaaS, App 
Containers, Virtual Machines

Any Available by request cloud.oracle.com

http://DZone.com/guides
http://dzone.com/guides
http://internap.com
http://interoute.com
http://Iron.io
http://iron.io
http://itapp.com
http://jelastic.com
http://jitterbit.com
http://joyent.com
http://kii.com
http://kinvey.com
http://kony.com
http://krystallize.com
http://kubernetes.io
http://kumulos.com
http://linode.com
http://lunacloud.com
http://mendix.com
http://azure.microsoft.com
http://miosoft.com
http://modulus.io
http://navisite.com
http://newrelic.com
http://ngnix.com
http://ntt.com
http://openstack.com
http://cloud.oracle.com


 DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD3 9

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD

PRODUCT CLASSIFICATION PUBLIC / PRIVATE FREE TRIAL WEBSITE

OrangeScape Visual PaaS aPaaS Public, Private, On-premise Available by request orangescape.com

Outsystems Platform
aPaaS, iPaaS, DBaaS, MBaaS, 
Model-Driven PaaS

Any 30 days outsystems.com

Peak 10 Virtual Machines Public, Private Available by request peak10.com

Pivotal CF App Containers, aPaaS, DBaaS Public, Private on-premise 90 days pivotal.com

Profitbricks Virtual Machines Public, Private by provider 14 days profitbricks.com

Rackspace Open Cloud Virtual Machines, DBaaS Any Free tier available rackspace.com

Red Hat Enterprise Linux 
Openstack

Virtual Machines, App Containers, 
DBaaS

Public, Private on-premise 90 days redhat.com

Red Hat JBoss Enterprise 
Application Platform for xPaaS App Containers, aPaaS Any Open Source openshift.com

Rollbase by Progress Software aPaaS, Model-Driven PaaS Any 30 days telerik.com

Salesforce1
App Containers, aPaaS, iPaaS, 
DBaaS, Model-Driven PaaS

Public Limited by storage salesforce.com

SAP HANA
Virtual Machines, App Containers, 
aPaaS, iPaaS, DBaaS, MBaaS

Public 30 days sap.com

SingleHop Virtual Machines Public, Hybrid Available by request singlehop.com

SkyOnDemand by TerraSky iPaaS Public, Hybrid, On-Premise Available by request terrasky.com

SnapLogic iPaaS Public, Hybrid, On-Premise Available by request snaplogic.com

Sungard Virtual Machines Public, Private by provider None sungard-as.com

Verizon Terremark Virtual Machines Any None verizon.com

Virtustream Cloud IaaS Virtual Machines Private by provider, Hybrid None virtustream.com

vSphere by VMware
Virtual Machines, Cloud 
Infrastructure Management

Hybrid Available by request vmware.com

webMethods Cloud by 
Software AG aPaaS, iPaaS Private, On-Premise Available by request softwareag.com

Windstream Virtual Machines
Public, Private on-premise, 
Hybrid

None windstream.com

WorkXpress PaaS aPaaS, DBaaS, MBaaS
Public, Private on-premise, 
Private by-provider

30 days workxpress.com

WSO2 App Cloud
Virtual Machines, App Containers, 
aPaaS, DBaaS, MBaaS

Public, Private on-premise, 
Hybrid

Free tier available wso2.com

Youredi iPaaS Public Available by request youredi.com

Zayo Virtual Machines Public, Private, On-premise 30 days zayo.com

http://DZone.com/guides
http://orangescape.com
http://outsystems.com
http://peak10.com
http://pivotal.com
http://profitbricks.com
http://rackspace.com
http://redhat.com
http://openshift.com
http://telerik.com
http://salesforce.com
http://sap.com
http://singlehop.com
http://terrasky.com
http://snaplogic.com
http://sungard-as.com
http://verizon.com
http://virtustream.com
http://vmware.com
http://softwareag.com
http://windstream.com
http://workxpress.com
http://wso2.com
http://youredi.com
http://zayo.com


 DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD4 0

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO BUILDING AND DEPLOYING APPLICATIONS IN THE CLOUD

APPLICATION CONTAINER
A lighter-weight, more granular 
resource isolation than a virtual 
machine (no need for hypervisor, kernel 
shared across containers, isolation 
within userspace).

AMAZON WEB SERVICES (AWS)
A huge suite (>50 by count) of *aaS 
provided by Amazon; many services 
highly elastic; availability regions 
distributed globally; largest public 
cloud provider by far.

BASE (BASIC AVAILABILITY, SOFT STATE, 
EVENTUAL CONSISTENCY)
An approach to storage that divides 
physical or virtual storage medium into 
independently addressable chunks 
('blocks'); increases performance by 
narrowing search space (specified as a 
path) for a particular store or retrieve 
operation; often accessed via logical 
abstraction layer that adds metadata 
(filesystem, DBMS).

CLOUD BROKER
(Like any other broker) abstracts away 
from provider details to offer users 
easier access to cloud computing 
resources; often provides simplified 
API and/or human UI, data lifecycle 
management, and focused service 
integrations and aggregations.

CLOUDBURSTING
When an application that normally 
runs in a private datacenter adds 
additional public cloud resources in 
response to demand.

CONTENT DELIVERY NETWORK (CDN)
Physically distributed servers that 
provide (often static) content along paths 
optimized per user; decrease transport 
time and overall network load; simplify 
per-machine resource management; 
prevent DoS by distributing (and thereby 
absorbing) requests.

CLOUD COMPUTING (FOLLOWING NIST)
Ubiquitous, convenient, on-demand 

access to shared computing resources; 
offers on-demand self-service (without 
human interaction), broad network 
access, resource pooling (dynamically 
assigned as workloads vary), location 
independence (to varying degrees), 
rapid elasticity, metered service 
(charging only for resources used); 
generally offered at three fundamental 
service levels (IaaS, PaaS, SaaS); 
deployed for use within an organization 
(private cloud), for any organization 
or individual (public cloud), or some 
combination (hybrid cloud).

DEVOPS
The breaking of siloes between 
development and operations; the co-
incentivization of features and uptime; 
involves automating as much of the 
release pipeline as possible, converging 
code branches and deployment 
environments wherever practical, 
providing transparency and feedback 
from production to all stakeholders, rapid 
deployment and recovery from failures, 
continuous delivery, etc.

HIGH AVAILABILITY
Highly available systems are fully or 
acceptably operational most of the time, 
where the approach of 'most' to 100% 
is often characterized by 'number of 
nines' (90% = one nine, 99.999% = 
five nines, etc.); requires redundancy 
(with clean handoffs), automatic failure 
detection (and often self-repair), and 
usually extensive testing and simulation.

INFRASTRUCTURE-AS-A-SERVICE (IAAS)
Basic computing resources (virtual 
servers, containers, storage, transport, 
database, caching, networking) offered 
according to the cloud computing 
paradigm (see definition above).

LOAD BALANCER
Distributes inbound requests across a 
server cluster, often (but not necessarily) 
via round-robin (request 1 is routed to 
server 1, request 2 to server 2, etc.).

MICROSERVICE ARCHITECTURE
Describes applications built as 
collection of single-process services 
communicating over constrained 
and easily managed channels (often 
HTTP), where each service does one 
well-defined business level task or set 

of tasks and scales independently of 
other services. Microservice component 
boundaries map onto bounded contexts 
in Domain-Driven Design. The aim is 
to make changes easier, deployment 
faster, technology<->business match 
tighter, infrastructure more automated, 
conceptual and data models more 
flexible, and applications more resilient 
to failure.

MODEL-DRIVEN PAAS
A rapid application delivery (RAD) 
platform in the cloud; aimed at low-
code business users and/or developers 
who need to build new enterprise 
applications quickly; may allow deeper 
access from code (e.g. Salesforce 
Lightning -> Force.com).

MULTI-TENANCY
Describes running one software 
instance for each client/user, where 
users are isolated by metadata within 
the application architecture. Ideal 
for some kinds of many-user SaaS 
(e.g. Force.com); less ideal where 
deeper schema flexibility and resource 
isolation are required. 

OBJECT STORAGE
An approach to storage that marks 
chunks of data ('object') with 
application- or use-case-specific 
metadata and a unique identifier (key). 
More loosely coupled with physical 
medium and more tightly coupled with 
object use than block storage.

SERVICE LEVEL AGREEMENT (SLA)
A contract that quantitatively specifies 
resources offered, with availability 
(often uptime and response time); see 
'high availability' for one common type 
of cloud SLA.

SOFTWARE-DEFINED NETWORKING (SDN)
An approach to networking that 
separates data and control. In non-
software-defined networks, control 
(generation of routing tables) and data 
(packet forwarding) are both located in 
routers. In software-defined networks, 
control across routers is abstracted 
into a central controller, which can 
determine routing programmatically 
across the entire network.

GLOSSARY

http://DZone.com/guides
http://dzone.com/guides
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://Force.com
http://Force.com



