
THE DZONE GUIDE TO

DATA
PERSISTENCE
VOLUME I I I

BROUGHT TO YOU IN PARTNERSHIP WITH

DZONE’S 2016 GUIDE TO DATA PERSISTENCE2

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO DATA PERSISTENCE

TABLE OF CONTENTS

Say you’re building an app. You’re putting your data in boxes
with labels like 0x9000000, messing with it a bit, maybe putting
those boxes in other boxes. Sometimes you’re working with the
data, and sometimes you’re holding the data so you can work
with it later. Some things don’t really fit in boxes though, so you
start thinking in loops, then functions and monads (whether
you call them that or not), then objects and messages (then
maybe more functions). Now you can work with representations
of users, handshakes, contracts, sensor readings, whatever. And
then you think about users’ names and locations, handshakes’
protocols and signatures, APIs’ methods and arguments... and
then how all of these are related. You add new certificates and
users, but not in order, so logically sequential data gets put in
physically non-sequential boxes—and you have to start jumping
over boxes. You decide to quit this box-juggling insanity and add
new and powerful abstractions: first a nice file system, then a
full-fledged database management system, and you’re back to
writing code.

Then maybe you start selling things and you add an Orders
table. Now you have to rewrite half your code. So you hire a
database administrator to handle that whole storage and query
abstraction just so you don’t have to worry about it anymore.
Suddenly three tables with two inner joins and one (gasp) outer
join swell to fifty, sixty, seventy billion rows, and it takes three
hours to make a simple histogram for someone in the business
strategy office, and you think do I really need anything except
purchase sums for this graph? You read about column-oriented
databases and get your DBA on board to spin up an analytics-
only instance of Apache Cassandra. You’ve gone from x86 to
Java to SQL to CQL and you’re happy and hip – and you’re all
giddy to be writing actual code again.

That’s how databases should work. They don’t always. Maybe
you and your DBA have conflicting constraints, or maybe
you’re your own DBA – and maybe you just want to keep things
simple and clean (relational?), or maybe even just use the
file system because you don’t think you need the complexity
and opacity of a DBMS. And is it really worth all that polyglot
complexity just to store those user-user relationships in a
specialized graph database?

Technical decisions around persistence are hard, but our 2016
Guide to Data Persistence will help you handle data better. We
cover everything from current DBMS and ORM usage to modern
database engines’ data structures and access patterns to storing
data on a mobile device. Give it a read and let us know what
you think.

EXECUTIVE SUMMARY

KEY RESEARCH FINDINGS

HOW THREE FUNDAMENTAL DATA STRUCTURES
IMPACT STORAGE & RETRIEVAL

BY VADIM TKACHENKO

A SURVEY OF ORM LIBRARIES FOR ANDROID AND IoS

BY AGNIESZKA KOZUBEK-KRYCUŃ + PAWEŁ POSKROBKO

HOW TO CHOOSE A DBAAS
BY WILL SHULMAN

FINDING THE DATABASE FOR YOUR USE CASE
CHECKLIST

DIVING DEEPER INTO DATA PERSISTENCE

EXECUTIVE INSIGHTS ON DATA PERSISTENCE

BY TOM SMITH

SOLUTIONS DIRECTORY

GLOSSARY

3

4

8

12

16

18

19

20

22

25

E D I T O R I A L
John Esposito
research@dzone.com
EDITOR-IN-CHIEF

G. Ryan Spain
DIRECTOR OF PUBLICATIONS

Matt Werner
SENIOR EDITOR

Moe Long
EDITOR

Michael Tharrington
EDITOR

Tom Smith
RESEARCH ANALYST

Andre Powell
PROJECT COORDINATOR

B U S INE S S
Rick Ross
CEO

Matt Schmidt
PRESIDENT & CTO

Jesse Davis
EVP & COO

Kellet Atkinson
VP OF MARKETING

Matt O’Brian
DIRECTOR OF BUSINESS
DEVELOPMENT

Alex Crafts
sales@dzone.com
DIRECTOR OF MAJOR ACCOUNTS

Chelsea Bosworth
MARKETING ASSOCIATE

Caitlin Zucal
MARKETING ASSOCIATE

Aaron Love
MARKETING ASSOCIATE

Chris Smith
PRODUCTION ADVISOR

Jim Howard
SR ACCOUNT EXECUTIVE

Chris Brumfield
ACCOUNT MANAGER

A R T
Ashley Slate
DESIGN DIRECTOR

SPECIAL THANKS to our topic
experts, Zone Leaders, trusted
DZone Most Valuable Bloggers, and
dedicated users for all their help
and feedback in making this report
a great success.

WANT YOUR SOLUTION TO BE FEATURED IN COMING GUIDES?
Please contact research@dzone.com for submission information.

LIKE TO CONTRIBUTE CONTENT TO COMING GUIDES?
Please contact research@dzone.com for consideration.

INTERESTED IN BECOMING A DZONE RESEARCH PARTNER?
Please contact sales@dzone.com for information.

DEAR READER,

BY JOHN ESPOSITO
EDITOR-IN-CHIEF, DZONE

http://dzone.com/guides
mailto:research%40dzone.com?subject=
mailto:sales%40dzone.com?subject=
mailto:research%40dzone.com?subject=
mailto:research%40dzone.com?subject=
mailto:sales%40dzone.com?subject=

DZONE’S 2016 GUIDE TO DATA PERSISTENCE DZONE’S 2016 GUIDE TO DATA PERSISTENCE3

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO DATA PERSISTENCE

EXECUTIVE SUMMARY

THE RELATIONAL PARADIGM REMAINS DOMINANT IN
PRODUCTION, LESS SO IN NON-PROD ENVIRONMENTS
DATA In production environments, the two most mature commercial
RDBMS offerings (Oracle and MySQL) are each used by about half
of our respondents—by far the most popular DBMSes. Including SQL
Server (at 34%), the top three DBMSes have remained well ahead
of all competitors among both enterprise developers (represented by
our survey respondents) and IT professionals at large (represented by
the DBMS ranking aggregator db-engines.com). MongoDB comes in a
distant fourth (21%), well ahead of other NoSQL data stores.

IMPLICATIONS Even as use cases multiply and applications
grow more distributed, relational storage and SQL query access are
not going anywhere—nor should they. The flexibility and low up-front
commitment offered by document-oriented databases makes them
an attractive second choice in both production and dev/prototyping
environments, and the relative maturity of several document-oriented
DBMSes (such as MongoDB and Couchbase) makes them suitable for
production as well.

RECOMMENDATIONS Get sharper at SQL. Keep up with
advances in RDBMS technology. (For more on some recent advances
in storage engines see Vadim Tkachenko's article on page 8). Consider

other storage models, but factor the additional decades of optimization
enjoyed by SQL query and storage engines into your choice of DBMS.

POLYGLOT PERSISTENCE IS NOW VERY COMMON,
THOUGH NOT VERY POLY
DATA Nearly as many respondents (38%) typically use two storage
models in their applications as those who use one storage model (40%).

IMPLICATIONS “NoSQL” is better understood as “Not Only SQL”
as interest grows in matching the persistence mechanism to the structure
of the data to be persisted—tabular or not, independent of scale.

RECOMMENDATIONS Don’t limit yourself to one storage model;
consider which data and which access patterns are best suited to
which model, and be willing to persist data in multiple appropriate
stores. Microservices and containers may help keep multi-store
architectures clean.

DBAS ARE HANDLING SCALE EFFECTIVELY
DATA 22% of respondents didn’t know whether their databases
were partitioned or not.

IMPLICATIONS Nearly a quarter of developers can build
applications without knowing how their database handles scale—in
other words, without worrying about volume-related decisions their
DBAs are making for them.

RECOMMENDATIONS Hire excellent DBAs who know how to
distribute large volumes of data under flexible read/write conditions.
Storage abstraction should be as tight as possible—which means both
an app-matched storage model and an appropriate partitioning policy.

MATCH BETWEEN DATA STRUCTURE/ACCESS AND
STORAGE MODEL SHOWS ROOM FOR IMPROVEMENT
DATA Only 22% of respondents use a specialized graph DBMS to
store data that is naturally modeled as a graph. ORMs remain popular
among a significant majority (58%) of respondents.

IMPLICATIONS In many cases objects and tables do map very
well—the so-called object-relational impedance mismatch often does
not apply. But specialized object stores (e.g. PostgreSQL) do exist and
map storage and access more straightforwardly than an ORM. The
mismatch between graphs and relational stores is more severe, and
the low rate of graph DBMS adoption may indicate both less familiarity
with methods used to store and query graphs as well as less ecosystem
maturity (at both DBMS and connector/framework levels).

RECOMMENDATIONS Use ORMs with eyes wide open, and
consider an object-relational database (such as PostgreSQL or
Informix) as an alternative. Build graph processing skills (which—
from a hierarchical, object-oriented perspective—may seem trickier to
acquire than they really are), and consider a graph-first DBMS (such as
Neo4j or OrientDB). (For more on how to choose the right DBMS for
your use-case, see the checklist on page 18.)

For all the sophistication and reliability of the big three
relational DBMSes, the ideal of optimal data storage and
retrieval presents an ever-moving target. Data access
patterns vary with main memory and SSD cost, client
hardware capabilities, network reliability and throughput,
user expectations, and application architecture—all of
which are changing rapidly and often independently. DBMS
technology is advancing at multiple levels, from new query
languages to easier APIs to more diverse storage models, even
to logical and physical structures implemented in innovative
storage engines and local or distributed file systems. To help
you navigate the sea of data persistence, we’ve focused
this publication on three axes: how developers and DBAs
are choosing the right DBMS (including how many they are
using); which tools and abstractions developers are using
to make data storage and retrieval easier to code and more
robust under suboptimal runtime conditions; and what new
database technologies are emerging. This guide includes:

• Expert knowledge for implementing data persistence
and database best practices.

• A directory of tools to consider for storing and
retrieving data.

• A checklist for choosing the right database for your
use case.

• Analysis of trends in the space based on feedback
from almost 600 IT professionals.

http://db-engines.com/

DZONE’S 2016 GUIDE TO DATA PERSISTENCE4

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO DATA PERSISTENCE

M
YS

Q
L

C
A

S
S

A
N

D
R

A

P
O

S
TG

R
ES

Q
L

M
O

N
G

O
D

B

O
R

A
C

LE

M
S

 S
Q

L
S

ER
V

ER

IB
M

 D
B

2

A
LL

 O
TH

ER
S

49
% 56

%

26
%

56
%

7% 9%

21
% 26

%

51
%

37
%

35
%

25
%

15
%

9%

31
%

51
%

NON-PRODUCTIONIN PRODUCTION

01. DATABASE MANAGEMENT SYSTEMS IN PRODUCTION VS.
NON-PRODUCTION ENVIRONMENTS

ORACLE, MYSQL, AND SQL SERVER REMAIN HEAD-AND-
SHOULDERS ABOVE THE REST; ORACLE AND MYSQL
REMAIN NECK-AND-NECK
The two most mature commercial DBMS offerings (Oracle and
MySQL) are used in production by 51% and 49% of respondents,
respectively—significantly ahead of the third-ranked DBMS
(SQL Server, at 34%). The top three, and the tight race between
the top two, have not changed in years, among our survey

respondents as well as on the DBMS ranking aggregator db-
engines.com. The nearest NoSQL challenger, MongoDB, remains
a distant fourth in production environments.

NOSQL—ESPECIALLY DOCUMENT-ORIENTED—DBMS
ADOPTION IS SIGNIFICANTLY GREATER IN NON-
PRODUCTION ENVIRONMENTS
Non-production environments are more friendly to less mature
and less thoroughly supported database management systems
and also more likely to be affected by desire to optimize for
structural fit and ease of access. In production, where data
stores are often managed by specialist non-developers, factors
other than developer experience and optimal match between
data processing and storage and retrieval algorithms weigh
into DBMS selection more heavily. NoSQL and generally less
mature and/or less supported offerings should therefore be
more popular in non-production environments. DBMSes that
implement simpler storage models well-suited to lightweight
prototyping—especially, therefore, document-oriented DBMSes
—should gain an extra boost in development environments.

Accordingly, the gap between production and non-production
usage is greatest for the two most mature commercial
DBMS offerings: Oracle (at 51% in production vs. 37% in non-
production) and SQL Server (34% in production vs. 25% in
non-production), and the gap between the most popular NoSQL
offering in production (MongoDB, at 20% adoption) and the
least popular of the top three (SQL Server, at 34%) enters within
the survey’s margin of error in non-production environments
(where MongoDB enjoys 25.4% adoption vs. SQL Server’s 24.6%).

MongoDB’s (static-schema-free) document orientation, familiar
JSON-like document format (ordered lists supporting a variety
of types), and widespread connector availability make it easy
to set up without heavyweight data modeling and relatively
straightforward to use for many less-data-intensive applications
without cramping application architecture or code. Indeed,
many non-relational stores are easier to spin up quickly than
a full-power RDBMS. Some benefits of the relational model
(especially integrity enforcement) are less relevant in non-
production environments, where updates don't always need

KEY
RESEARCH
FINDINGS

02. POLYGLOT PERSISTENCE: HOW MANY PERSISTENT
STORAGE MODELS DO YOUR APPLICATIONS TYPICALLY USE?

583 IT Professionals responded to
DZone’s 2016 Data Persistence Survey; the
demographics of this survey are as follows:

• 69% of these respondents use Java as their
primary programming language at work.

• 68% develop primarily web applications.

• 66% have been IT professionals for over 10 years.

• 45% work at companies whose headquarters are
located in Europe, 27% in the USA.

• 44% work at companies with more than 500
employees, 19% at companies with more than
10,000 employees.

NUMBER OF STORAGE MODELS PER APPLICATION

10

20

30

40

0 14

http://dzone.com/guides
http://db-engines.com
http://db-engines.com

DZONE’S 2016 GUIDE TO DATA PERSISTENCE DZONE’S 2016 GUIDE TO DATA PERSISTENCE5

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO DATA PERSISTENCE

04. PERSISTENCE-RELATED TECHNOLOGIES RESPONDENTS
MOST ENJOY WORKING WITH

58
ORM

58
OTHERS

JPA

JDBC

36
HIBERNATE

36

8
ENTITY
FRAMEWORK

5

SPRING
DATA

16
ZEND

.3

to propagate across all entities. For a conceptual overview of
key-value, column-oriented, document-oriented, and graph
databases, see this recent article by Saravanan Subramanian.
To map use cases to storage models, see the selection matrix on
page 18.

Note: of the top three DBMSes, only MySQL enjoys greater
adoption in non-production vs. production environments.
MySQL is especially likely to be many developers’ default non-
production RDBMS, presumably because it is popular, open-
source, mature, familiar, and supported by a strong community.
(For the importance of familiarity in developers’ preference
for a particular data persistence technology, see the upcoming
section on matching storage model to data structure.)

APPLICATIONS ARE ALMOST AS LIKELY TO USE TWO
STORAGE MODELS AS ONE
Developers may use more than one storage model in different
applications with no reference to the work done by the
application; variety by developer speaks more about the human
than about the technology. But variety of storage models within
a single application indicates “polyglot” persistence—that
is, how many storage models are used to persist data where
technical and business needs overlap. Among our respondents,
nearly as many respondents typically use two storage models
in their applications (38%) as use one (40%). This result confirms
that “NoSQL” is better understood as “Not Only SQL” because
the most popular storage model (given DBMS and query
language usage data) remains relational. Based on DBMS
adoption data, the second most popular storage model by user
count is probably document-oriented; but because other storage
models (especially column-oriented, graph, and key-value) are
particularly well suited to analytical processing of many data
rows, further research is required to discover storage model
usage by data volume. In any case, the near-parity between one
and two storage models per application indicates increasing
interest in matching persistence mechanism to the structures
of data to be persisted. (For more on how to choose the right
DBMS for your use-case, see the checklist on page 18.)

MATCHING STORAGE MODEL TO DATA STRUCTURE:
MODELING GRAPH DATA
Graph structures do not fit the relational model comfortably. In
a relational database, most (Shannon) information is stored in
the columns and rows of each table; the schema is a technical
construct designed to enforce data integrity, make the data
model more legible, and make the querying model more
efficient; not to encode more information. In a graph, however,
most information is stored in the structure of the nodes and the
edges; additional information about nodes and edges is treated
as metadata. Yet many real-world entities are most naturally
represented as graphs: social, travel, and trade networks;
packet routes; control f lows; etc. Storing graph structures in
tabular storage is inelegant and inefficient even at first, static-
only glance; but the problem gets worse in a dynamic setting.
Because a graph’s computational complexity may diverge
wildly from its combinatorial complexity, reducing a graph to a
relational schema (e.g. two-column mapping tables that relate
a row in one table to a row in another—that is, modeling nodes
as columns and edges as rows in a new table) may work far
better for some algorithms than for others (in ways that are not
immediately obvious from the graph itself).

Nevertheless, three factors encourage developers and DBAs to
store data that is naturally modeled as a graph in a relational
DBMS: first, the maturity of relational DBMSes; second, the
simplicity and familiarity of SQL (which 90% of respondents use
regularly); and third, the availability and maturity of powerful
object-relational mappers (ORMs) that make relational data
easily accessible (often with automatic and highly effective
optimizations) from application code.

Accordingly, only a small minority (20%) of respondents persist
data that is naturally modeled as a graph in a specialized graph
DBMS. Further, more respondents store naturally-graph data in
a relational database without explicit modeling of edges as rows
(39%) than with node-node mapping tables (31%). We expect this
distribution to change as graph DBMSes and query languages
grow more familiar, as tooling ecosystem around these DBMSes
approaches the maturity of ORMs, as inefficiencies introduced
by storage-structure mismatch grow more expensive as graph

03. HOW DO YOU TYPICALLY PERSIST DATA THAT IS
NATURALLY MODELED AS A GRAPH?

31

20 10

39 Rel. database
without explicit
modeling of
edges as rows

Specialized
graph DBMS

Other

Rel. database
with node-node
mapping tables

(modeling edges)

dzone.com/articles/a-primer-on-open-source-nosql-databases
http://worrydream.com/refs/Shannon%20-%20A%20Mathematical%20Theory%20of%20Communication.pdf

DZONE’S 2016 GUIDE TO DATA PERSISTENCE6

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO DATA PERSISTENCE

data volume increases, and as use cases (and corresponding
storage and retrieval algorithms) grow more varied.

Two possibly linked correlations are also worth noting.
First, the largest chunk of respondents who store graphs in
a relational database without explicit modeling of edges use
Oracle (25%)—probably the most mature and most thoroughly
optimized RDBMS. Second, the largest chunk of respondents
who store graphs in relational database WITH node-node
mapping tables use MySQL (24%), which is also the only
RDBMS that gains popularity in non-production vs. production
environments. This difference may be a function of both the
greater likelihood that MySQL will be used for experimental
purposes – where graph problems, insofar as conceptually
farther from actuarial use (for which relational databases are a
more natural fit), are more likely to appear.

MATCHING PROCESSING APPROACH TO STORAGE MODEL:
USE AND ENJOYMENT OF ORMS
Most developers use SQL (90%) but the relational algebra
does not naturally capture object-orientation. Objects do not
fall into Venn diagrams; but objects and relational tables do
share enough structure that, for many simple (few-join) access
patterns, the so-called object-relational impedance mismatch
does not cause catastrophic performance or integrity loss.
Accordingly, object-relational mappers (ORMs) are not only
widely used, but also preferred by a majority of developers. In
response to our question, “What persistence-related technology
do you most enjoy working with?” 58% of respondents
answered that they most enjoy working with ORMs. Of
these, 70% specifically enjoyed working with Hibernate—
probably a function of both Hibernate’s maturity and also
our respondents’ heavy focus on Java. Although the tail of
most-enjoyed data persistence technologies was quite long (26
distinct technologies), Spring Data emerged as the most popular
comprehensive data access framework by far (16%).

REASONS DEVELOPERS ENJOY WORKING WITH A DATA
PERSISTENCE TECHNOLOGY
Just under two-thirds of all respondents who named the
persistence-related technologies they enjoy working with also
specified why they enjoyed working with those technologies.
Grounded-theoretic “bucketing” analysis yielded seven
(somewhat overlapping) reasons to enjoy a persistence
technology (listed in order of popularity): ease of use, simplicity,
adherence to standards, familiarity, performance, high level
of control, and scalability. The most popular reason by far
was ease of use (34%), followed by simplicity in distant second
(21%). The top four reasons relate more directly to developer
experience than to outcomes (such as performance and
scalability), as the wording of the question (“enjoy”) indicated.
Additional research is required to determine how developer
experience relates to persistence-related technology selection,
especially because many less-familiar (NoSQL) technologies are
optimized for scalability and general performance for certain

use cases. (For more on how to choose the right DBMS for your
use case, see the checklist on page 18.)

HANDLING SCALE: DATA IS PARTITIONED AS FREQUENTLY
AS IT IS NOT, BUT THIS IS OFTEN SUCCESSFULLY MADE
INVISIBLE TO DEVELOPERS
Modern storage engines, across all storage models, are highly
optimized for current hardware, access patterns, and network
performance. Theoretically massive inefficiencies of the
relational storage model sometimes dominate the advantages
offered by a higher degree of maturity among RDBMSes,
although newer engines store data in structures that are less
narrowly tuned to read-heavy loads using slow (spinning)
physical media than (for example) B+ trees. But as Big Data
strategies aggressively drive data storage and processing needs,
data scale becomes increasingly difficult to manage.

To keep performance and availability high, data is often
partitioned on physical and logical lines. Among our survey
respondents, 38% partition data in some way (vertical,
horizontal, or functional) vs. 40% who do not—a difference
within the survey’s margin of error (5%). Two research
followups would prove interesting: first, what specific
data volumes (or velocities), application requirements, and
infrastructure constraints drive what kinds of partitioning;
and second, which storage models are more likely to require
partitioning (although application constraints presumably
affect both choice of storage model and partition size/need).
It would appear, however, that distributed data techniques
designed to manage CAP trade-offs are often effective: 22% of
respondents—most of whom are developers and not DBAs—
were not even aware of whether or not their databases were
partitioned—a sign that, for nearly a quarter of developers,
physical splitting of data had no visible impact on their
development work.

05. DATABASE PARTITIONING: DO YOU SPLIT UP YOUR DATABASE
WHEN IT GETS TOO BIG?

NOT
 SURE

YES

NO

22

40

38

http://dzone.com/guides

DZONE’S 2016 GUIDE TO DATA PERSISTENCE DZONE’S 2016 GUIDE TO DATA PERSISTENCE7

DZONE’S 2016 GUIDE TO DATA PERSISTENCES P O N S O R E D O P I N I O N

Enhanced, fully compatible, open source, drop-in replacement database software
that provides superior performance, scalability and value.

BLOG percona.com/blog WEBSITE percona.com TWITTER @Percona

Percona Server BY PERCONA

CASE STUDY
Big Fish is a huge mobile game provider, who has distributed more than 2 billion top-
grossing games to date. As a data-driven company, Big Fish’s database infrastructure
must be fast, reliable, and scalable. They’ve standardized on Percona because the
technology has the required features and performance, and our support team is
always there to quickly resolve challenging issues. Big Fish relies on a number of
Percona software solutions to optimize its database infrastructure, including Percona
Server. Percona Server provides greater visibility into the database infrastructure
than MySQL Server, with access to user statistics and response time distribution that
enables administrators to improve capacity planning. This helps to control costs by
reducing the amount of hardware that needs to be purchased.

In addition, Percona services such as consulting and support help Big Fish handle
evaluating fast storage, performing upgrades, performance and configuration audits,
as well as day-to-day operations.

STRENGTHS

• MySQL, MongoDB versions

• All features and benefits of community edition

• Enterprise-ready, with free enterprise features and functionality

• Optional storage engines included

• High performance and availability for optimal cloud deployment

• Includes Authentication and Audit Plugins

NOTABLE CUSTOMERS

CATEGORY
DBMS

NEW RELEASES
Typically one quarter after Oracle and
MongoDB GA releases; regular feature
and maintenance updates.

OPEN SOURCE?
Yes

• Yelp

• Facebook

• Alcatel-Lucent

• Cisco

• Singular

• BBC

Query performance is one way to look at MySQL performance.
MySQL should react to application queries quickly, with the correct
responses. Analyzing query response times is often a good way to
spot problems.

From an application standpoint, query responses consist of three
different parts: the MySQL server running the query, network
contributions, and application processing.

There are a number of tools that let you examine server query
patterns (Percona Toolkit, SolarWinds Database Performance
Analyzer, MySQL Enterprise Monitor, etc.). These tools reveal which
queries are being executed and their response times. Captured
at regular intervals, this information can reveal application-side
performance problems:

• If the MySQL server is getting the same query mix, and the
response times are the same, it is unlikely that it is a MySQL
server problem.

• More frequent specific queries might be an application-side
problem. For example, a malfunctioning cache often has a major
inflow of specific queries. An increase in traffic often causes a
proportional increase in queries.

• Less inflow of some (or all) queries might also indicate an
application-side problem. For example, you might find a caching
layer is overloaded, reducing the inflow of queries to MySQL.
It could also be a MySQL issue. Take a look at the Processlist
in this case. Severe bottlenecks, such as a locked table, might
pass fewer (or block all) queries.

• MySQL might be the issue if a similar or smaller number of
queries are processed, but with higher response times.

In addition to examining the “query fingerprint,” investigate the
number of threads running as plotted by the monitoring system.
If there are more threads running than CPU cores available,
chances are you might be dealing with a bottleneck related to CPU
saturation, disk IO or table/row-level lock contention. In this case
MySQL needs to be checked out.

For more specific help with query tuning, see the Percona Data
Performance Blog, or our ebook, Practical MySQL Performance
Optimization.

Queries Tell the Story

WRITTEN BY PETER ZAITSEV
CEO AND CO-FOUNDER OF PERCONA

https://www.percona.com/blog/
http://percona.com
http://twitter.com/Percona
https://www.percona.com/blog/
https://www.percona.com/blog/
https://learn.percona.com/ebook-practical-mysql-performance-optimization-chp1
https://learn.percona.com/ebook-practical-mysql-performance-optimization-chp1

DZONE’S 2016 GUIDE TO DATA PERSISTENCE8

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO DATA PERSISTENCE

How Three
Fundamental Data
Structures Impact
Storage & Retrieval
B Y V A D I M T K A C H E N K O

A s our daily dependence on
applications grows, our

expectations for those applications
also grow. We want applications to
be always up, bug free, easy to use,
secure, and high performance.

It’s a simple relationship: data performance powers application
performance, which in turn powers business performance. And
just like there are a growing number of applications that process
data, there are an equally growing number of ways to store the
data. How you store and retrieve that data matters.

In order to get peak performance, it is important to understand
the differences between the storage engines. Using one of these
algorithms can affect the way your queries perform. This article
will discuss data storage algorithms and why you should care
about how they operate.

DATA STORAGE AND RETRIEVAL
First, let’s talk about how we interact with data. There are two
primary data actions: store it, and later retrieve it. Above that,
we apply some structure to the data. There are mainly two ways
of doing this:

• A relational database management system (RDBMS) , or
“SQL data.”

• A non-relational database, or “NoSQL data.”

While data can be stored in many different ways, we need to
effectively organize the data in order to search it and access it.
In the case of SQL and NoSQL, both solutions build special data
structures called “indexes.” The data structure chosen often
helps to determine the performance characteristics of the store
and retrieve commands.

B-TREES
A traditional and widely-used data structure is called “B-tree.”
B-tree structures are a standard part of computer science text
books, and are used in most (if not all) RDBMS products.

B-tree data structures' performance characteristics are well
understood. In general, all operations perform well when the
data size fits into the available memory. (By memory, I mean the
amount of RAM accessible by the RDBMS in either the physical
server or virtual server.) This memory limit is usually a hard
restriction. Below is a general chart I like to use to demonstrate
B-tree performance characteristics.

Q U I C K V I E W

01
Data performance powers
application performance, which in
turn powers business performance.

02
Data performance needs to be tuned
and managed in order to be correctly
optimized for applications.

03
The type of data structure inherent
in your storage engine can help
optimize database performance.

Data Size

Th
ro

ug
hp

ut

Memory Size

Flash Storage

Hard Drives

http://dzone.com/guides

DZONE’S 2016 GUIDE TO DATA PERSISTENCE DZONE’S 2016 GUIDE TO DATA PERSISTENCE9

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO DATA PERSISTENCE

This chart clearly illustrates a couple of points:

• As soon as the data size exceeds available memory,
performance drops rapidly.

• Choosing a flash-based storage helps performance, but
only to a certain extent—memory limits still cause
performance to suffer.

B-tree-based structures were designed for optimal data retrieval
performance, not data storage. This shortcoming created a need for
data structures that provide better performance for data storage.

So when is B-tree a good solution for your applications? The
chart above provides clues:

• When data size doesn’t exceed memory limits

• When the application is mostly performing read (SELECT)
operations

• When read performance is more important than write
performance

Events that might exceed B-tree performance limits include:
accepting and storing event logs; storing measurements from a
high-frequency sensor; tracking user clicks; and so on.

In a majority of cases, it is possible to solve B-tree performance
issues with more memory or faster physical storage (see
previous chart). But when hardware adjustments aren’t an
option, a different data structure can help.

Two new data structures were created for write-intensive
environments: log structured merge (LSM) trees and Fractal
Trees®. These structures focus on data storage performance
rather than data retrieval.

(Keep in mind that the graph shows asymptotic theoretical
trends. Real performance graphs vary hugely with the specific
implementation and software involved.)

Before going into LSM and Fractal Tree details, let’s discuss the
“key-value” concept.

In any storage structure, data can presented in a key => value
format. This is familiar to NoSQL users, but probably not to
RDBMS users. RDBMSes instead use primary keys associated

with tables, and the data is internally represented as primary_
key => table_columns.

For example, a user account may need the following data:

user_id; user_name; user_email; user_address;
account_name; user_zip; user_year_of_birth

This would be represented (using a primary key) as:

user_id => user_name; user_email; user_address;
account_name; user_zip; user_year_of_birth

Any of the following could be used as a secondary index:

• by email (for fast search by email): (user_email => user_id)

• by year of birth: (user_year_of_birth => user_id)

• by postal code: (user_zip => user_id)

Searching for a user_name by user_email would be done in two steps:

1. search user_id by user_email

2. search user_name by user_id

An “insert” operation to this table could look like this:

user_id: 1000; user_name: "Sherlock Holmes"; user_email:
"sherlock@holmes.guru"; user_address: "221B Baker Street";
account_name: "sherlockh"; user_zip: "NW1 6XE"; user_year_
of_birth: 1854

The transactions for this operation would be:

1. Insert into primary data storage (or primary key):
(1000 => “Sherlock Holmes”; “sherlock@holmes.
guru”; “221B Baker Street”; “sherlockh”;
“NW1 6XE”, 1854)

2. Insert into email index:
(“sherlock@holmes.guru” => 1000)

3. Insert into year_of _birth index
(1854 => 1000)

4. Insert into postal code index
(“NW1 6XE” => 1000)

After the initial insert operation, there would be three
additional operations behind the scenes (known as “index
maintenance” overhead). This overhead can contribute to
performance degradation.

Let’s say we want to update an email record for a user (user_id:
2000; new email: “newm@example.com”). The following
transactions would occur:

1. Primary data storage: find user_id:2000; read email to
old_email; rewrite email to “newm@example.com”

2. Email index:
A. Find record with key = old_email; delete it
B. Insert record (“newm@example.com” => 2000)

Sequential keys (or monotonically increasing functions)
generally don’t cause problems for B-tree structures—it’s

Data Size

Th
ro

ug
hp

ut

Memory Size

Flash Storage

Hard Drives

Target area for
write optimized structures

DZONE’S 2016 GUIDE TO DATA PERSISTENCE1 0

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO DATA PERSISTENCE

random operations that cause performance hits. An email
address is a good example of a random insertion.

So random operations make B-trees problematic, performance-
wise, due to hardware limitations—random “modify”
operations cause multiple disk IOs.

Both LSM and Fractal Trees attempt to improve performance by
making key operations less random. These data structures also
provide better compression and smaller write amplification,
which is better for f lash/solid-state storage.

LSM TREES
The first mention of LSM trees dates back to 1996, and
corresponds to Google BigTables. Later it was implemented in
products such as Cassandra, LevelDB, and most recently in
RocksDB.

An LSM tree works by:
• Storing incoming modify operations in a buffer (usually

named “memtable”)

• Sorting and storing the data when the buffer is full

What does this look like? Using our previous examples, let’s
assume we have the following users registered:

(user_id: 5000; user_email: "aku.m@rnplplf.com")
(user_id: 5001; user_email: "3lca4g3eaagucf7@kl5u558kg.
com")
(user_id: 5002; user_email: "xz3uhs7@irvoizpi70.com")
(user_id: 5003; user_email: "6wmyfg@qbqwnb.com")
(user_id: 5004; user_email: "63hkw@p2f505jh1hr1.com)

After being sorted and written to disk, the email index looks
something like:

(key=>value)
3lca4g3eaagucf7@kl5u558kg.com => 5001
63hkw@p2f505jh1hr1.com => 5004
6wmyfg@qbqwnb.com => 5003
aku.m@rnplplf.com => 5000
xz3uhs7@irvoizpi70.com => 5002

This results in the entire buffer being written to memory in one
sequential operation:

key -> value

memtable (sorted by keys)

SST file

3lca4g3eaagucf7@kl5u558kg.com => 5001
63hkw@p2f505jh1hr1.com => 5004

6wmyfg@qbqwnb.com => 5003
aku.m@rnplplf.com => 5000

xz3uhs7@irvoizpi70.com => 5002

insert

write when full

That’s the benefit, but what are the drawbacks?

As we continue to insert users and write to the disk, LSM creates
an increasing number of “SST files.” Each of these files are
sorted, and there is no global order. Moreover, the same key (for
non-unique indexes) can end up in different files. The following
diagram illustrates how SST files for “Year_of_birth” indexes
might look:

This organization makes searching an individual file fast, but
searching globally slow. For example, if we want to find the
“user_id” for a user with email w7hl@125msxuyf7.com, we
would need to look in each file individually.

This presents two problems:

• Searching data by an individual key

• Searching data by a range of keys (e.g., all users with “year_of_
birth” between 1970 and 1990)

In order to address SST files’ distributed nature, production
software often implements different maintenance logic:

• File compaction: merging files into one

• File levels: making file hierarchies, to avoid checking each file
for an existing key

SST file
....
....

1854 => 1000
....

SST file
....
....

1854 => 1055
....

SST file
....
....

1854 => 3855
....

search 1854 year

Result: 1000, 1055, 3855

SST file
....
....

1854 => 1000
....

SST file
....
....

1854 => 1055
....

SST file
....
....

1854 => 3855
....

SST file
....
....

no 1854 key entry
....

http://dzone.com/guides

DZONE’S 2016 GUIDE TO DATA PERSISTENCE DZONE’S 2016 GUIDE TO DATA PERSISTENCE1 1

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO DATA PERSISTENCE

• Bloom filters: helps lookup individual keys faster (but doesn’t
help with ranges)

FRACTAL TREE
Fractal Tree data structures are closer to traditional B-tree
structures—but instead of applying changes immediately,
changes are buffered. As information exceeds the limits of
the main index memory, the tree data structure buffers large
groups of messages. The buffered data is slowly pushed down
the tree as the buffers fill up. When data gets to a leaf node,
there is a single IO applied to the data. This helps avoid random
operations causing performance degradation by performing
buffer changes all at once.

Data compression reduces read IO further.

The following diagram demonstrates the buffering process:

By combining all writes, Fractal Trees save time by performing
a single transaction rather than a number of random ones.
However, because a huge number of messages reside in the
buffer, SELECT functions now must traverse through all the
messages in order to find the correct one (and this is especially
bad for point SELECT queries).

Remember: Primary key or unique key constraints require
a HIDDEN POINT SELECT lookup! This means that both
a UNIQUE KEY and a non-sequence PRIMARY KEY are
performance killers for Fractal Tree data structures.

Fractal Trees are a good structure for databases with a lot of
tables, indexes (preferably non-unique indexes), and a heavy write
workload. It is also good for systems with slow storage times, or
for saving space when the storage is fast but expensive.

Lastly, this is often a good fit for cloud-based database environments,
where again storage is often slow (or if fast, expensive).

IMPLICATION FOR SLOW READS
Unfortunately for performance, LSM and Fractal Trees are less
friendly for read operations.

Direct and implicit read operations are slower for LSM and
Fractal Tree structures. Things like unique key constraints

make insert and update transactions slower (because the
background data is checked to see if the value exists).

Foreign key constraints will also slow down insert and update
transactions on corresponding tables. Some schemas don’t
support foreign keys (or unique keys, for that matter).

Finally, select index and join operation transactions can also
be affected. One way around this issue is to use covering
indexes. A covering index contains all of or more of the
columns you need for your query.

For example, let’s assume you want to execute query:

SELECT user_name FROM users WHERE user_email='sherlock@
holmes.guru'

or in MongoDB notation:

db.users.find({user_email: "sherlock@holmes.guru" } ,
{user_name : 1})

The index { user_email => user_id } results in two operations:

• Lookup user_id by user_email

• Lookup user_name by user_id

One solution instead is to create an index (in SQL syntax):

CREATE INDEX idx_email (user_email, user_name)

This query:

SELECT user_name FROM users WHERE user_email='sherlock@
holmes.guru'

can now be resolved by accessing the index idx_email, as
“user_name” is now the part of index.

This “trick” can also be used with B-trees, but it works best
with LSM and Fractal Trees for additional index overhead.

CONCLUSION
As we’ve discussed, the three data structure that can be
used (B-tree, LSM tree, and Fractal Tree) can affect data
performance in relation to applications. Using a database
system based on one of these algorithms can affect the way
your queries perform. The storage method affects the data
performance—and data performance is a key component
to application performance. Your business depends on
application performance, and how your customers view how
well your applications respond.

VADIM TKACHENKO is the CTO of Percona. He is an expert in LAMP
performance, especially optimizing MySQL and InnoDB internals to take
full advantage of modern hardware using his multi-threaded programming
background. Vadim co-founded Percona in 2006 after four years in the High
Performance Group within the official MySQL Support Team. He serves on
Percona’s Executive Team. He also co-authored the book, High Performance
MySQL 3rd Edition,

Message
Queue (FIFO) ...

MESSAGE
MESSAGE

Message
Queue

MESSAGE

pi
vo

t 1 Message
Queue

MESSAGE

pi
vo

t 2

MESSAGE
MESSAGE

Message
Queue ...

Message
Queue

MESSAGE

pi
vo

t 1,1 Message
Queue

MESSAGEpi
vo

t 1,
F-

1

k ≤ pivot1 pivot1 < k ≤ pivot2

 k ≤ pivot2,1

More levels
as needed

pi
vo

t 1,
2

MESSAGE
MESSAGE

Message
Queue ...

Message
Queue

MESSAGE

pi
vo

t x,
1 Message

Queue

MESSAGEpi
vo

t x,
F-

1

pi
vo

t x,
2

MESSAGE
MESSAGE

Message
Queue ...

Message
Queue

MESSAGE

Message
Queue

MESSAGE

Message
Queue

MESSAGE

Message
Queue

MESSAGE

pi
vo

t F-
1

...

pi
vo

t 3

pi
vo

t y,
1

pi
vo

t y,
2

pi
vo

t y,
F-

1

pivot2, 1 < k ≤ pivot2, 2

pivotF-2 < k ≤ pivotF-1 pivotF-1 < k

MESSAGE
MESSAGE

Message
Queue ...

Message
Queue

MESSAGE

pi
vo

t 2,
1 Message

Queue

MESSAGEpi
vo

t 2,
F-

1

pi
vo

t 2,
2

...

Basement ModeBasement Mode

Leaf Node

Basement Mode

Ke
y

 V

al
ue

˿

Ke
y

 V

al
ue

˿

Ke
y

 V

al
ue

˿

Ke
y

 V

al
ue

˿

Ke
y

 V

al
ue

˿

Ke
y

 V

al
ue

˿

Ke
y

 V

al
ue

˿

Ke
y

 V

al
ue

˿

Ke
y

 V

al
ue

˿

Ke
y

 V

al
ue

˿

Ke
y

 V

al
ue

˿

Ke
y

 V

al
ue

˿

...

Ke
y

 V

al
ue

˿

Ke
y

 V

al
ue

˿

Ke
y

 V

al
ue

˿

Ke
y

 V

al
ue

˿

Ke
y

 V

al
ue

˿

Ke
y

 V

al
ue

˿

Ke
y

 V

al
ue

˿

Ke
y

 V

al
ue

˿

Ke
y

 V

al
ue

˿

Ke
y

 V

al
ue

˿

Ke
y

 V

al
ue

˿
Ke

y

 V
al

ue
˿

Basement nodes per leaf node =
block_size

read_block_size

default = = 64
4MiB
64KiB

DZONE’S 2016 GUIDE TO DATA PERSISTENCE1 2

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO DATA PERSISTENCE

A Survey of
ORM Libraries
for Android
and iOS

B Y A G N I E S Z K A K O Z U B E K - K R Y C U Ń +

P A W E Ł P O S K R O B K O

H ow do you persist data in a mobile
application? Mobile platforms offer a

variety of storage options: shared preferences,
files, relational databases, network servers, and
others. The choice of an appropriate storage
option is not straightforward. Even if you decide
to use a relational database, you still have to
decide which API to use. In this article, we’ll do a
survey of available relational database libraries
for Android and iOS.

SQLITE ON ANDROID AND IOS
SQLite is available and natively supported by all Android
devices. It is also deployed on every iOS device. However, the
choice of SQLite as a persistence layer for iOS is certainly a non-
standard decision; the suggested choice is CoreData. In a typical
configuration, CoreData is backed up by an SQLite database, but
there is no direct access to an SQLite instance. When you develop
the same application for Android and iOS in parallel, though,
using the same persistence layer allows you to have similar
software architecture on both platforms.

THE BENEFITS OF USING AN ORM
An Object-Relational Mapping (ORM) is a software library
which—generally speaking—knows how to translate table rows
into objects and vice versa. The discussion of whether you can
write a really good ORM is as old as ORMs themselves. In spite of
the controversies, ORMs are widely used in virtually all object-
oriented languages.

What are the benefits of ORMs? First, they offer an object-oriented
model of the database. The developers of an object-oriented
language do not have shift paradigms each time they access the
database, making their job easier. And while a query builder is not
necessarily part of an ORM library, most mature ORMs come with
an SQL query builder. ORMs also often help manage the database
creation process and database schema changes.

ORM PATTERNS
Two of the most common patterns in ORM implementations
are Active Record and Data Access Object. In the Active Record
pattern, each table is represented as a class, while table rows are
translated to the object of the corresponding class. The objects
know how to persist themselves in a database.

In the Data Access Object pattern, database access is delegated to
dedicated Data Access Objects (or DAOs). DAOs know how to persist
each object and how to construct objects from the database.

ORM LIBRARIES IN ANDROID
Only four years ago, there were hardly any ORM libraries for
Android. Nowadays, the number of ORM libraries for Android is
constantly growing.

Since Java is the language you use to program an Android
application, it seems natural to consider porting an existing
Java ORM library to Android. The main problem with such a
port is that there is still no official JDBC driver for Android and
SQLite. (Some third-party JDBC drivers are available.) Moreover,
mobile devices’ limited memory and processor capabilities makes
porting the all-powerful Hibernate infeasible.

GreenDAO is an open-source ORM library for Android developed
by the German company greenrobot. First released in 2012 and

Q U I C K V I E W

01
The choice of SQLite as a
persistence layer for iOS is
certainly a non-standard decision.

02
There is still no official JDBC driver
for Android and SQLite.

03
Surprisingly, there aren’t many ORM
libraries which support both Android
and iOS.

http://dzone.com/guides
https://github.com/greenrobot/greenDAO
http://greenrobot.org/

DZONE’S 2016 GUIDE TO DATA PERSISTENCE DZONE’S 2016 GUIDE TO DATA PERSISTENCE1 3

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO DATA PERSISTENCE

still actively maintained, it is one of the most popular ORMs
for Android. As its name suggests, GreenDAO uses the Data
Access Object pattern. The entity classes are generated with a
code generator in a separate Java project. With this approach,
GreenDAO avoids the runtime processing of annotations
(extremely time-consuming on mobile devices). This library
has the reputation of being the fastest Android ORM. It has
a f luent interface query builder; it’s also thread-safe and
supports transactions. In GreenDAO, database tables are created
automatically but migrations between database schema versions
have to be handled manually. An interesting feature of this ORM
is its asynchronous API (still in the beta phase).

ORMLite is an open-source Java ORM which supports relational
database engines like MySQL, PostgreSQL, SQL Server, SQLite
(via JDBC), and others. It has been ported to Android with the help
of low-level SQLite API calls. It was first released in 2011, making
it one of the first popular Android ORMs. The latest activity in its
Github repository was mid-2015.

Like GreenDAO, ORMLite follows the Data Access Object pattern,
though the entity classes have to be coded manually. Their
database representation comes with annotations; these are
processed at runtime, which makes the library quite slow. The
database tables have to be created manually, but there is a utility
class to help things along. Schema migrations must be handled
manually with ALTER statements. ORMLite has a f luent interface
query builder.

DBFlow, first released in 2014, is one of the newest ORM libraries
for Android, and it’s gaining in popularity. DBFlow uses Active
Record patterns, and database tables are created automatically.
The entity classes are coded manually and are set up with
annotations. DBFlow supports migrations and usage of multiple
databases; it also offers functions like lazy loading, caching,
observable models, and more. Its f luent interface query builder is
powerful and supports JOINs and other advanced features.

ActiveAndroid (as the name suggests) uses the Active Record
pattern. In fact, ActiveAndroid was the first Android ORM to
use that pattern; however, it is no longer maintained. Its author,
Michael Pardo, recommends switching to his new Android ORM,
Ollie. (Ollie is not very popular yet.)

ActiveAndroid requires you to hand-code entity classes. They
inherit from a Model class, and table and column properties are
set using annotations. Database tables are created automatically.
ActiveAndroid supports very simple migrations: new tables are
added automatically, but changes in the existing tables have to be
handled with a manually-created SQL script. ActiveAndroid has
no real query builder.

SugarORM is another Android ORM that uses the Active Record
pattern. Released in 2012, it is still regularly maintained. The
entity classes have to be written manually; they inherit from the
SugarRecord class or are set up with annotations. The database
tables are created automatically by the ORM. SugarORM knows
how to handle migrations, but actual SQL scripts have to be
provided. This ORM has a f luent interface query builder.

DATABASE ACCESS LIBRARIES IN IOS
Since the standard persistence layer for the iOS platform is
CoreData, there aren’t many ORM (or even database) libraries

for iOS. SQLite is written in C, so you can use its native API
directly in an Objective-C application in iOS.

FMDB is the most popular still-actively-maintained SQLite
library for iOS. Unlike all other libraries mentioned in this article,
this is not an ORM library. FMDB is a wrapper over an SQLite
API, and it provides some convenient functions. You can only
execute raw queries—there is no query builder—but you can use
binding syntax to prevent from SQL injection. There are many
other libraries built on top of FMDB. One example (no longer
maintained) is EGODatabase, a thread-safe version of FMDB.

DBAccess is a free, albeit closed-source, ORM library for iOS.
It was first released in 2014, and it is still actively maintained.
DBAccess uses the Active Record pattern, it has a f luent interface
query builder, and it is thread-safe. Entity classes are coded
manually by the developer, and database properties are set up
using the appropriate @dynamic and @synthesize properties.
DBAccess automatically creates the database tables.

DBAccess also offers more advanced features like JOINs or
asynchronous queries. Its most interesting feature is events.
These can register asynchronous blocks of code, which are
executed after database events (i.e. inserts, updates, or deletes).

DATABASE LIBRARIES FOR BOTH ANDROID + IOS
Surprisingly, there aren’t many ORM libraries which support both
Android and iOS. One example of such a library is the newly-
released Vertabelo Mobile ORM. This library uses the Data Access
Object pattern. It has a unique approach to generating entity
classes. You start with the database model in Vertabelo, a visual
database modeling tool. The entity classes, DAO classes, and other
runtime classes are generated from the diagram and downloaded
as a zip file. The modeling tool lets you generate the SQL script file,
which has to be run against the database. Vertabelo Mobile ORM
has a f luent interface query builder.

The newest alternative to ORM libraries for Android and iOS,
Realm, is rapidly gaining popularity. Realm is a mobile database,
meant as a replacement for SQLite and CoreData. It is based
on Realm Core, its own non-relational storage engine. Realm
provides database access libraries for Android, Objective-C, and
Swift. The libraries are free and open-source; the storage engine
is currently closed-source, but the authors plan to open-source it.

Even though non-relational storage engines are an important
part of the storage engines landscape for mobile platforms,
there is a lot going on in the world of relational database access
libraries. It is worth keeping an eye on both sides of this coin.

AGNIESZKA KOZUBEK-KRYCUŃ is the editor-in-chief of the
Vertabelo blog. She has 7 years experience as a Java developer. Her most
notable projects were OneWebSQL, a Java ORM offered by e-point SA, and
Vertabelo, a database modeling tool. She holds a PhD in Mathematics and
teaches programming courses at the University of Warsaw.

PAWEŁ POSKROBKO is a developer at Vertabelo and a student
of Computer Science at the University of Warsaw. He was responsible for
the development of the iOS version of Vertabelo Mobile ORM - experience
and knowledge gained during the process of its development gave him an
extensive view on the available database solutions for mobile platforms.

http://ormlite.com/
https://github.com/Raizlabs/DBFlow
http://www.activeandroid.com/
http://satyan.github.io/sugar/
https://github.com/ccgus/fmdb
http://www.db-access.org/
http://mobile-orm.vertabelo.com/
https://realm.io/news/introducing-realm/

DZONE’S 2016 GUIDE TO DATA PERSISTENCE1 4

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO DATA PERSISTENCE

www.FairCom.com

It’s not Magic, it’s FairCom.

http://dzone.com/guides
http://www.faircom.com

DZONE’S 2016 GUIDE TO DATA PERSISTENCE DZONE’S 2016 GUIDE TO DATA PERSISTENCE1 5

DZONE’S 2016 GUIDE TO DATA PERSISTENCE

Remember that 3D art made famous with the trademark Magic
Eye? That colorful abstract art appears to be nothing more
than a rush of shapes and colors. Except there is more than
meets the eye. If you focus in just the right way, suddenly—like
magic—the art comes into focus and the meaning becomes
clear, transforming your experience.

The emergence of NoSQL and IoT has brought on a rush of
Big Data. It’s unstructured. It’s different data models and it’s
coming from everywhere. Big Data can feel a lot like Magic Eye.
You don’t know what you’re looking at and you’re going crossed-
eyed trying to decipher the meaning. But the right tools can
transform your experience and bring your data into focus.

By bringing data into focus companies can decipher meaning
through BI for opportunities to monetize the data by delivering
value to customers.

Transforming NoSQL with ACID – Very few NoSQL-oriented
databases allow ACID-compliant transactions with unstructured

data. Databases are starting to do more to allow flexibility in
their handling of ACID properties. NoSQL has already shown
us the advantages of a relaxed C mode—most NoSQL systems
are eventually consistent. Yet, many are starting to offer tunable
consistency. At FairCom we innovated with durability to allow for
a relaxed D mode.

Transforming NoSQL with SQL – Combining two or more data
models in a single database management system will allow an
organization to expand the data types an application can handle.
FairCom is unique in the way we handle multi-schema data—our
NoSQL and SQL APIs run on the same datasets. FairCom allows
analytical applications to access unstructured, NoSQL data
through relational interfaces.

It’s not magic that brings your data into focus—it’s the right tools.

S P O N S O R E D O P I N I O N

The kicker is that the capabilities are multimodel rather than just relational.
From the developer’s perspective, what you see is flexibility.

BLOG www.faircom.com/developers WEBSITE faircom.com TWITTER @faircom_corp

c-treeACE BY FAIRCOM CORPORATION

CASE STUDY

FairCom’s innovation is in its adoption of a multimodel approach

to databases, which currently embraces both the relational model

and a variety of NoSQL capabilities, employing virtual tables to

deliver SQL access to unstructured data. The c-treeACE multimodel

capabilities are built in at the physical level. The database is ACID

compliant, irrespective of the mode of data access and update or the

specific API that is used. From a relational perspective, c-treeACE

looks very much like a fully-functional relational database. The kicker

is that the capabilities are multimodel rather than just relational.

From the developer’s perspective, what you see is flexibility.

STRENGTHS

• An advanced, multimodel database offering an ACID-compliant,
key-value store and full SQL engine operating on the same data

• Nearly zero-administration database, ideal for ISVs

• High availability through hot backups, replication, and auto-recovery

• Unprecedented performance through sophisticated tuning facilities

• Advanced security and encryption capabilities

NOTABLE CUSTOMERS

CATEGORY
Multimodel NoSQL
+ SQL

NEW RELEASES
Version 11
November 2015

OPEN SOURCE?
No

• Visa

• Tealeaf

• Totvs

• ACI Worldwide

• UPS

• CA

Bringing Data Into Focus

WRITTEN BY EVALDO HORN DE OLIVEIRA
DIRECTOR OF BUSINESS DEVELOPMENT AT FAIRCOM

http://www.faircom.com/developers
http://www.faircom.com
http://www.percona.com
http://twitter.com/faircom_corp

DZONE’S 2016 GUIDE TO DATA PERSISTENCE1 6

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO DATA PERSISTENCE

How to Choose
a DBaaS
B Y W I L L S H U L M A N

W ith the rise of cloud infrastructure, cloud-
based services are available for almost

every component of the modern application
stack. The database layer is no exception.

Called DBaaS (Database-as-a-Service), cloud database services exist
for almost all of the modern relational databases (MySQL, Postgres,
etc.), as well as for NoSQL databases such as MongoDB, CouchDB,
and Neo4J.

But what is a DBaaS and how should you go about evaluating all of
the various DBaaS platforms out there?

This article will explain DBaaS and outline all of the important
characteristics one must consider when hosting a production
database in the cloud.

WHAT IS A DBAAS?
DBaaS providers host your database infrastructure and handle all of
the low-level operational aspects of managing your database so that
you can focus on application development.

To achieve this, DBaaS providers not only host your database
software and your data, but also manage all of the hardware and
networking infrastructure beneath it. They also automate all
management activities such as provisioning, scaling, failover, and
backup / restore, as well as offer support for when you need help.

HOW TO SELECT A DBAAS
First, you want to make sure you have selected your database
technology. Evaluating DBaaS providers ahead of this step would be
putting the cart before the horse. You should select the right database
technology to meet your application’s technical requirements and
then seek out a DBaaS provider for that database technology.

Once you know what database(s) you will be using, you will want to
consider the following when assessing DBaaS providers.

DATABASE LOCATION
Not all cloud services need to be physically proximate to your application
servers, but your database layer does. This is for two reasons:

• Latency: You want to minimize the amount of time it takes to send
a request to your database and get a response, as this latency has a
huge impact on overall application performance.

• Security: Ideally the network between your application and your
database is private and data is not travelling over the open internet.

This is why, for the majority of applications, you should place your
application servers and your database servers (via your DBaaS
provider) in the same datacenter.

For example, if your application tier is in Microsoft Azure’s West US
datacenter you want a DBaaS that can provision your database in
Azure West US.

Also, you should consider the extent to which your DBaaS provider
locks you into a particular cloud or geographic region. A provider
that offers a variety of clouds to run on (e.g., AWS, Azure, Google),
can give you peace of mind that you will be able to change cloud
providers, or use multiple cloud providers, without needing to
change DBaaS solutions.

FAULT TOLERANCE, AVAILABILITY + REDUNDANCY
If you are running a production application, your database should
always be available, even in the face of hardware failure and
maintenance. Your DBaaS provider is instrumental in making
High Availability a practical reality, regardless of your underlying
database technology.

To achieve fault tolerance, DBaaS providers usually provide multi-
node database clusters that can withstand node failures.

Things to consider:

• Does the provider offer fault tolerance via clustering?

• If so, how isolated are the nodes in the database cluster? Some
providers simply spread database nodes across multiple racks in the
same datacenter while others have more physically isolated zones
such (i.e., AWS Availability Zones). Proper isolation is critical to
minimizing the likelihood of downtime.

• How does system failover work? Is it automatic or do you
have to intervene?

Q U I C K V I E W

01
Managing application
infrastructure, particularly the
database tier, is hard.

02
DBaaS (Database-as-a-Service)
is a new category of cloud
infrastructure that abstracts away
all of the complexities of database
management.

03
Selecting the right DBaaS provider
for your application can dramatically
reduce the time and effort required
to build and run your production
applications.

http://dzone.com/guides

DZONE’S 2016 GUIDE TO DATA PERSISTENCE DZONE’S 2016 GUIDE TO DATA PERSISTENCE1 7

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO DATA PERSISTENCE

• How are faulty components replaced? Is it automatic or do
you have to intervene?

• Does the provider offer an availability SLA?

• Does the provider offer global disaster recovery (DR) in the
event of a regional datacenter outage?

DATA DURABILIT Y + BACKUPS
Your DBaaS provider should have a robust backup and recovery
system. You must ensure that you can recover from a catastrophic
failure and, more likely, human error (e.g., a developer accidentally
deletes data).

Things to consider:

• Does the provider automatically take backups of your data?

• Does the provider have tools for managing backups?

• Can you create recurring backup plans to automatically take
backups on a custom schedule?

• Can you easily and quickly restore from backup?

• Does the provider support point-in-time restores, allowing you to
restore to any time in the past or only to the time of last backup?

MONITORING, PERFORMANCE ANALY TICS + ALERTING
You need to ensure that your database is always available and fast.
Monitoring, performance analytics, and alerting features that give
you insight into the health of your database deployment are crucial.

Your DBaaS provider should provide both uptime and performance
monitoring, with the ability to generate alerts that get delivered to your
team if any important metrics are outside normal operating range.

Things to consider:

• Does the provider automatically alert you when there is a
component failure in your deployment?

• Does the provider offer real-time insight into database
performance metrics?

• Does the provider offer historical reporting of database
performance metrics?

• Does the provider let you create custom alerts based on
database performance metrics?

• Does the provider support easy access to database log files?

PERFORMANCE + SCALING
Your provider should provide a platform that not only performs well
for your workload but also can scale to maintain that performance
as your data volume grows.

If your application has demanding performance requirements, the
best way to assess the service is to test it with your workload. This
means, to the best of your abilities, you should try to simulate the
operation mix and load that will come from your production app.
Beware of benchmarks, as they are usually so particular to the
workload being tested that they may not give a good picture of how
the service will perform for you.

If you expect significant growth in either the volume of your data or
the amount of database traffic your application generates, you will
want to make sure the provider makes it easy to scale.

There are two general techniques to scaling. One is vertical scaling,
where you add resources (RAM, CPU, Disk) as your deployment grows.
The second is horizontal scaling, where you add more nodes to the
system to handle the growth in data volume and / or database traffic.

Ultimately, if you plan to have a relatively large dataset (hundreds of
GBs), you will want to make sure your provider has a solution that scales
horizontally. While vertical scaling can be very effective, and even
preferred at small scale, there is a limit to how much hardware can fit in
one box. Horizontal scaling is essential for larger deployments.

SECURIT Y
Your data may be the single most important asset of your business.
As such, your DBaaS provider must be expert in security and able
to provide you with tools to ensure that your data is secure from
unauthorized access.

Things to consider:

• Is authentication required to connect to your cloud-hosted database?

• Is all access to the database logged?

• Can you configure firewalls so that only your application has
network access to your database?

• Does the provider support communicating with your database via
SSL with certificate validation?

• Does the provider support encryption at rest?

• Does the management interface you use to manage your cloud
database deployment support two-factor authentication?

• Does the provider undergo third-party penetration testing and
security audits to ensure they follow security best practices?

• Does the provider have any security and compliance certifications
that are required for your organization, such as HIPAA?

SUPPORT
Fast, helpful support is a crucial component to ensuring your
database and your application run smoothly. Your provider must
offer great support, particularly when giving advice and responding
to emergencies.

Things to consider:

• Does the provider offer support as part of the subscription or is it an
additional fee?

• Does the provider offer premium or emergency support with
guaranteed quick response times?

• Does the provider offer an SLA around support response times?

• Is the support actually thoughtful and helpful? (Contact them with
database or vendor-specific questions and see how timely and
helpful their response is.)

• Does the provider have a good reputation for outstanding support?

CONCLUSION
The right DBaaS provider can be an invaluable partner, but finding
the right cloud service for your application requires research and
forethought. Hopefully this mini-guide will help you frame your
investigation and offer some guidance on what to look for.

WILL SHULMAN is CEO/Co-founder of mLab, a DBaaS for MongoDB,
and is a technologist and entrepreneur with over 15 years of experience
in building innovative software platforms and products. Before mLab, he
was CTO and co-founder of Merced Systems, a high-growth enterprise
analytics software company serving Global 2000 customers in more than
20 countries worldwide (acquired by NICE Systems for $190 million). Will
holds a B.S. in Computer Science from Stanford University.

DZONE’S 2016 GUIDE TO DATA PERSISTENCE1 8

DB TYPE

Relational DB
Examples: MySQL, PostgreSQL, SQL Server

Key-Value Store
Examples: Redis, Riak, DynamoDB

Document Store
Examples: MongoDB, Couchbase, RavenDB

Column Store
Examples: Cassandra, HBase, Accumulo

Graph Store
Examples: Neo4j, Titan, Giraph

STRONG USE CASES

• When ACID transactions are required (also a feature of several
NoSQL DBs, e.g. Neo4j)

• Looking up data by different keys with secondary indexes (also a
feature of several NoSQL DBs)

• When strong consistency for results and queries is required

• Conventional online transaction processing

• Risk-averse projects seeking very mature technologies and widely
available skills

• Products for enterprise customers more familiar with relational DBs

• Handling lots of small, continuous, and potentially volatile reads
and writes (also look for any DB with fast in-memory access or
SSD storage)

• Storing session information, user preferences, configurations, and
e-commerce carts

• Simplifying the upgrade path of your software with the support of
optional fields, adding fields, and removing fields without having to
build a schema migration framework

• Handling a wide variety of access patterns and data types

• Handling reads with low latency

• Handling frequently changing, user generated data

• Simplifying the upgrade path of your software with the support of
optional fields, adding fields, and removing fields without having to
build a schema migration framework

• Rapid prototyping

• Blogs, profiles, and other entities that don’t require relationships

• Deployment on a mobile device (Mobile Couchbase)

• When high availability is crucial, and eventual consistency is tolerable

• Event Sourcing

• Logging continuous streams of data that have no consistency
guarantees

• Storing a constantly growing set of data that is accessed rarely

• Deep visitor analytics

• Handling frequently expiring data (Redis can also set values to expire)

• Handling entities that have a large number of relationships, such as
social graphs, networks, tag systems, or any link-rich domain

• Routing and location services

• Recommendation engines or user data mapping

• Dynamically building relationships between objects with dynamic
properties

• Allowing a very deep join depth

• MDM solutions, CMDBs

WEAK USE CASES

• Systems that need to tolerate partition failures

• Schema-free management

• Handling any complex / rich entities that
require you to do multiple joins to get the entire
entity back

• Large changes in scale are predicte

• Correlating data between different sets of keys

• Saving multiple transactions (Redis is exempt
from this weakness)

• Performing well during key searches based on
values (DynamoDB is exempt)

• Returning only partial values is required

• Atomic cross-document operations (RavenDB
is exempt)

• Querying large aggregate data structures that
frequently change

• Returning only partial values is required

• Partial updates of documents (especially child/
sub-documents)

• Joins are desired

• Foreign key usage is desired

• Early prototyping or situations where there will
be significant query changes (high cost for
query changes compared to schema changes)

• Referential integrity required

• Processing many columns simultaneously

• High volume write situations

• Serving and storing binary data

• Querying unrestricted across massive data sets

• Storing large and/or orphaned, disconnected
documents

FINDING THE DATABASE FOR YOUR USE CASE

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO DATA PERSISTENCE

Sources: NoSQL Distilled, High Availability
Edited by Duncan Brown

http://dzone.com/guides
http://www.amazon.com/NoSQL-Distilled-Emerging-Polyglot-Persistence/dp/0321826620
http://highscalability.com/blog/2011/6/20/35-use-cases-for-choosing-your-next-nosql-database.html

DZONE’S 2016 GUIDE TO DATA PERSISTENCE DZONE’S 2016 GUIDE TO DATA PERSISTENCE1 9

Performance Zone
dzone.com/performance

Scalability and optimization are constant
concerns for the developer and operations
manager. The Performance Zone focuses on all
things performance, covering everything from
database optimization to garbage collection,
tool and technique comparisons, and tweaks
to keep your code as efficient as possible.

DIVING DEEPER
TOP 10 #DATA TWITTER FEEDS

DZONE DATA-RELATED ZONES

Big Data Zone
dzone.com/big-data

The Big Data/Analytics Zone is a prime resource
and community for Big Data professionals of
all types. We’re on top of all the best tips and
news for Hadoop, R, and data visualization
technologies. Not only that, but we also give
you advice from data science experts on how to
understand and present that data.

TOP DATABASE
WEBSITES

TOP DATABASE
RESOURCES

Database Partitioning With
MySQL bit.ly/mysqldatapart

NoSQL and Data Scalability
bit.ly/nosql20scalability

Essential PostgreSQL
bit.ly/essentialpostgresql

The Real World of the
Database Administrator
bit.ly/DBAdminTrends

Fundamentals of Database
Management Systems
bit.ly/DBMgmtSys

DB-Engines db-engines.com

Database Trends and
Applications dbta.com

Database Journal

databasejournal.com

Database Zone
dzone.com/database

The Database Zone is DZone’s portal for
following the news and trends of the database
ecosystems, which include relational (SQL)
and non-relational (NoSQL) solutions such
as MySQL, PostgreSQL, SQL Server, NuoDB,
Neo4j, MongoDB, CouchDB, Cassandra, and
many others.

@MERV @BRENTO

@KELLABYTE @MYSQL

@SQLNIKON @PINALDAVE @AL3XANDRU

@EMILEIFREM @SQLPERFTIPS @SVE_SIC

I N T O D A T A P E R S I S T E N C E

TOP DATABASE
REFCARDZ

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO DATA PERSISTENCE

https://dzone.com/apm-tools-performance-monitoring-optimization
https://dzone.com/big-data-analytics-tutorials-tools-news
https://dzone.com/big-data-analytics-tutorials-tools-news
http://bit.ly/mysqldatapart
http://bit.ly/mysqldatapart
http://bit.ly/partnosql
http://bit.ly/mysqldatapart
http://bit.ly/nosql20scalability
http://bit.ly/nosql20scalability
http://bit.ly/essentialpostgresql
http://bit.ly/essentialpostgresql
http://bit.ly/DBAdminTrends
http://bit.ly/DBAdminTrends
http://bit.ly/DBAdminTrends
http://bit.ly/DBMgmtSys
http://bit.ly/DBMgmtSys
http://bit.ly/DBMgmtSys
http://db-engines.com
http://db-engines.com
http://dbta.com
http://dbta.com
http://dbta.com
http://databasejournal.com
http://databasejournal.com
https://dzone.com/database-sql-nosql-tutorials-tools-news
https://twitter.com/merv
https://twitter.com/merv
http://twitter.com/merv
http://twitter.com/BrentO
http://twitter.com/BrentO
http://twitter.com/BrentO
https://twitter.com/kellabyte
https://twitter.com/kellabyte
https://twitter.com/MySQL
https://twitter.com/MySQL
http://twitter.com/MySQL
https://twitter.com/sqlnikon
https://twitter.com/sqlnikon
http://twitter.com/sqlnikon
https://twitter.com/pinaldave
https://twitter.com/pinaldave
https://twitter.com/al3xandru
https://twitter.com/al3xandru
https://twitter.com/emileifrem
https://twitter.com/emileifrem
https://twitter.com/SQLPerfTips
https://twitter.com/SQLPerfTips
http://twitter.com/SQLPerfTips
https://twitter.com/sve_sic
https://twitter.com/sve_sic

DZONE’S 2016 GUIDE TO DATA PERSISTENCE2 0

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO DATA PERSISTENCE

Executive Insights
on Data Persistence
B Y T O M S M I T H

Q U I C K V I E W

01
The number and diversity of
specialization of databases has
increased exponentially over the
recent past.

02
Applications are tending to use
multiple databases to provide
polyglot persistence of data.

03
The future of databases is the
continuing growth of data and the
demand for real-time analysis and
predictive analytics on the edge.

I n order to gauge the state of the
Persistent Data and Databases in the

“real world,” we interviewed 16 executives,
from 13 companies, actively involved in
databases and persistent data. All of the
executives have extensive experience in
data and data management.

Satyen Sangani CEO, ALATION

Sam Rehman CTO, ARXAN

Andy Warfield CO-FOUNDER/CTO, COHO DATA

Rami Chahine V.P. PRODUCT MANAGEMENT, DATAWATCH

Dan Potter CMO, DATAWATCH

Eric Frenkiel CO-FOUNDER/CEO, MEMSQL

Will Shulman CEO, MLAB

Philip Rathle V.P. OF PRODUCT, NEO TECHNOLOGY

Paul Nashawaty PRODUCT MARKETING AND STRATEGY, PROGRESS

Joan Wrabetz CTO, QUALI

Yiftach Shoolman CO-FOUNDER AND CTO, REDIS LABS

Leena Joshi V.P. PRODUCT MARKETING, REDIS LABS

Partha Seetala CTO, ROBIN SYSTEMS

Dale Lutz CO-FOUNDER, SAFE SOFTWARE

Paul Nalos DATABASE TEAM LEAD, SAFE SOFTWARE

Jon Bock V.P. OF PRODUCT AND MARKETING, SNOWFLAKE COMPUTING

Here’s what we learned from the executives:

01

Companies tend to use their own databases as well as those
their clients are using. Service providers are agnostic with
regards to the databases they use. They also have a good
understanding of the specific strengths of each database.
Specific mentions of non-proprietary databases included:
MongoDB, Cassandra, Spark SQL, MySQL, PostgreSQL,
Teradata, Vertica, Oracle, AWS RDS for Aurora, Geodatabase,
Smallworld, and even Microsoft Excel.

02

There’s a consistent definition of persistent data as data that
doesn’t change across time, systems, and memory; data that’s
considered durable at rest with the coming and going of
software and devices; master data that’s stable, that is set and
recoverable whether in f lash or in memory.

03

The most important elements of the database depend on what is
needed. Foremost is storing data in some form of durability to
maintain asset properties with the ability to access it. There’s
a tradeoff between speed, scale, and usability. Ultimately
databases must be consistent, available, and able to tolerate
partitions. The ability to support a broad variety of data for
aggregation, analysis, and reporting. Performance, scalability,
and the ability to process more data more quickly is becoming
more important as data becomes more prolific. Databases have
bifurcated into what’s most relevant for the use case—“the
consumerization of databases.”

http://dzone.com/guides
https://alation.com/
https://www.arxan.com/
http://www.cohodata.com/
http://www.datawatch.com/
http://www.datawatch.com/
http://www.memsql.com/
http://www.mlab.com
http://neo4j.com/
https://www.progress.com/
http://www.qualisystems.com/
https://redislabs.com/
https://redislabs.com/
http://robinsystems.com/
http://www.safe.com/
http://www.safe.com/
http://www.snowflake.net/

DZONE’S 2016 GUIDE TO DATA PERSISTENCE DZONE’S 2016 GUIDE TO DATA PERSISTENCE2 1

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO DATA PERSISTENCE

There are six features critical to ensuring high availability and
safeguard against every type of failure or outage event: 1) in-
memory replication; 2) multi-rack/zone/data center replication;
3) instant auto-failover; 4) AOF (append-only file) data
persistence; 5) backup; and 6) multi-region/cloud replication.

04

Databases are enabling companies to use data to inform real-
time decisions about their business as well as to use predictive
analytics to make better informed, real-time decisions. The
macro-trend is that more data is being analyzed in real-time.
The internet of connected things enables you to see how things
interact. Applications are tending to use multiple databases to
provide polyglot persistence.

05

There were a number of skills mentioned by executives that
make someone good at working with databases. These include:
understanding the proper design structure, knowing what’s
in the database you’re working with, and understanding data
science and what data scientists are looking for. As the number
of databases grow, it’s important to understand the strengths
and weaknesses of the different tools and to choose the right
database for what you’re trying to accomplish. More Big Data
jobs are requiring a broader set of skills.

06

Data management has evolved very rapidly since the
introduction of Hadoop and Big Data. We’ve gone from
gigabytes to zettabytes of data that is distributed across—and
needs to be accessed from—several sources very quickly.
Organizations are building cultures with data scientists and
data management now has visibility in the C-suite with the
Chief Data Officer reporting to the CEO or the CTO.

07

The obstacles to success are consistent with the growth of data
and the growth of databases. Data resides in a number of different
places and you need access to the data sources regardless of where
they are. There’s an explosion of new database technologies,
and someone in the organization needs to stay abreast of what’s
available and what’s the best solution to the problem at hand,
someone with more diverse data literacy with different databases
and languages. Given the growth and variety of options, it’s rare
for an enterprise to have the resources they need to analyze
Big Data themselves. This has led to the growth of companies
providing databases as a service (DBaaS), since these companies
have the bandwidth to keep up with all of the latest technologies,
know their strengths and weaknesses, and employ professionals
who know the nuances of each database.

08

The only concerns around data management are the
tremendous growth in the number of databases and the

inherent complexity therein. Several people expressed
concern that it’s more complex than it needs to be, as marketers
create confusion with different terminology and have a
tendency to overpromise and under-deliver. There’s agreement
that many of the database options will coalesce over time, and
there will be SQL and NoSQL options—with those in the know
realizing that all NoSQL databases are not the same.

09

The future for databases involves consolidation around Big
Data down to around 10 core technologies that make data easy
to access and leads to more data-driven analytics and services.
Data will be easier to access and use. More processing will
be done on the edge to facilitate real-time computations and
decision making. Polyglot persistence will ensure the safety of
persistent data. Data science will improve research by defining
the questions that need to be asked.

10

What developers need to keep in mind when working with
different databases is consistent with what they need to keep
in mind when working with all technologies: use best practices
that are already established, proven, and tested; don’t reinvent
the wheel if you already have the right technology for the job;
understand how the data will be used so it’s in the right data
store and language for the required analysis; and, there’s no
such thing as “one size fits all,” so don’t become too attached to
a single solution. Specific recommendations include: knowing
SQL while learning as many other languages as you can;
exploring JSON; getting up to speed on predictive analytics;
and considering geospatial data, given the growth of mobile.

11

Other trends mentioned by the executives are the importance
of supporting SQL, and understanding when one database is
more cost efficient than another as the data quickly scales.
Lastly, open source, and the role it plays, is a very big trend
since open source has democratized the database layer.

The executives we spoke with are fully invested in the
evolution of databases and data management and want to
continue to lead its evolution and success to meet business
and consumer needs. We’re interested in hearing from
developers, and other IT professionals, to see if these insights
offer real value. Is it helpful to hear others’ perspectives
from an executive point of view? Are their experiences and
perspectives consistent with yours?

We welcome your feedback at research@dzone.com.

TOM SMITH is a Research Analyst at DZone who excels at gathering
insights from analytics—both quantitative and qualitative—to drive
business results. His passion is sharing information of value to help people
succeed. In his spare time, you can find him either eating at Chipotle or
working out at the gym.

mailto:research%40dzone.com?subject=

DZONE’S 2016 GUIDE TO DATA PERSISTENCE2 2

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO DATA PERSISTENCE

Solutions
Directory

PRODUCT CATEGORY OPEN SOURCE? WEBSITE

ActiveObjects by Atlassian ORM
Included in Jira and
Confluence

atlassian.com

ActiveRecord ORM Included in Rails rubyonrails.org

Adabas by Software AG Stream Processing Free tier available softwareag.com

Aerospike Server In-Memory, KV Open source aerospike.com

Altibase HDB In-Memory, NewSQL Free tier available altibase.com

Apache Cassandra KV, Wide Column Open source cassandra.apache.org

Apache Hbase Wide Column Open source hbase.apache.org

Apache Ignite In-Memory, Hadoop, Data Grid Open source ignite.apache.org

Apache OpenJPA ORM Open source openjpa.apache.org

ArangoDB Graph, Document, KV Open source arangodb.com

Aster Database by Teradata Specialist Analytic Available by request teradata.com

c-treeACE by FairCom NewSQL, KV Direct Access Available by request faircom.com

Cache by Intersystems Object-Oriented Free tier available intersystems.com

CakePHP ORM Open source cakephp.org

ClustrixDB NewSQL Available by request clustrix.com

Solutions
Directory

This directory contains databases and database

performance tools to help you store, organize, and

query the data you need. It provides free trial data

and product category information gathered from

vendor websites and project pages. Solutions are

selected for inclusion based on several impartial

criteria, including solution maturity, technical

innovativeness, relevance, and data availability.

http://dzone.com/guides
http://atlassian.com
http://rubyonrails.org
http://softwareag.com
http://aerospike.com
http://altibase.com
http://cassandra.apache.org
http://hbase.apache.org
http://ignite.apache.org
http://openjpa.apache.org
http://arangodb.com
http://teradata.com
http://faircom.com
http://intersystems.com
http://cakephp.org
http://clustrix.com

DZONE’S 2016 GUIDE TO DATA PERSISTENCE DZONE’S 2016 GUIDE TO DATA PERSISTENCE2 3

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO DATA PERSISTENCE

PRODUCT CATEGORY OPEN SOURCE? WEBSITE

Core Data by Apple ORM
Included in iOS and
OS X

developer.apple.com

Couchbase Server KV, Document, Data Caching Open source couchbase.com

Django ORM ORM Open source djangoproject.com

DynamoDB by Amazon KV, DBaaS Free tier available aws.amazon.com

EclipseLink ORM Open source eclipse.org

EDB Postgres Advanced Server by
EnterpriseDB RDBMS Free tier available enterprisedb.com

Entity Framework ORM Part of .NET Framework msdn.microsoft.com

Hazelcast In-Memory, Data Grid Open source hazelcast.com

Hibernate by Red Hat ORM Open source hibernate.org

IBM DB2 RDBMS Free tier available ibm.com

In-Memory Data Fabric by GridGain In-Memory, Hadoop, Data Grid Free tier available gridgain.com

Infinispan by Red Hat In-memory, KV, Data Grid and Cache Open Source infinispan.org

Ingres by Actian RDBMS 30-day free trial actian.com

InterBase by Embarcadero RDBMS Free tier available embarcadero.com

JDBC by Oracle Java API Part of Java SE oracle.com

jOOQ SQL Mapper Open source jooq.org

MariaDB RDBMS, MySQL Family Open source mariadb.com

MemSQL In-Memory, NewSQL Free tier available memsql.com

MongoDB Document Open source mongodb.org

MyBatis SQL Mapper Open source mybatis.org

MySQL Community Edition by
Oracle RDBMS Open source mysql.com

Neo4j by Neo Technology Graph Free tier available neo4j.com

http://developer.apple.com
http://couchbase.com
http://djangoproject.com
http://aws.amazon.com
http://eclipse.org
http://enterprisedb.com
http://msdn.microsoft.com
http://hazelcast.com
http://hibernate.org
http://ibm.com
http://gridgain.com
http://infinispan.org
http://actian.com
http://embarcadero.com
http://oracle.com
http://jooq.org
http://mariadb.com
http://memsql.com
http://mongodb.org
http://mybatis.org
http://mysql.com
http://neo4j.com

DZONE’S 2016 GUIDE TO DATA PERSISTENCE24

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO DATA PERSISTENCE

PRODUCT CATEGORY OPEN SOURCE? WEBSITE

Nhibernate ORM Open source nhibernate.info

NuoDB NewSQL Free tier available nuodb.com

Oracle Database RDBMS, Graph, Document Free solution oracle.com

OrientDB RDBMS, Document, Graph Open source orientechnologies.com

OrmLite ORM Open source ormlite.com

Percona Server RDBMS, MySQL Family Free solution percona.com

Pivotal Gemfire In-Memory, Data Grid Free solution pivotal.io

PostgreSQL Object-Relational Open source postgresql.org

RavenDB by Hibernating Rhinos Document Open source ravendb.net

Redis In-Memory, KV, Data Caching Open source redislabs.com

Redis Labs Enterprise Cluster In-Memory, KV, Data Caching Free tier available redislabs.com

Riak by Basho Document, KV Open source basho.com

SAP HANA Platform In-Memory, Column-Oriented RDBMS Available by request hana.sap.com

ScaleOut StateServer In-Memory, Hadoop, Data Grid 30-day free trial scaleoutsoftware.com

Splice Machine NewSQL, Hadoop Free tier available splicemachine.com

SQL Server 2016 by Microsoft RDBMS
180-day preview
available

microsoft.com

SQLAlchemy ORM Open source sqlalchemy.org

SQLite RDBMS Open source sqlite.org

Storm by Canonical ORM Open source storm.canonical.com

Toplink by Oracle ORM Free solution oracle.com

Versant Object Database by Actian Object-Oriented 30-day free trial actian.com

VoltDB In-Memory, NewSQL 30-day free trial voltdb.com

http://dzone.com/guides
http://nhibernate.info
http://nuodb.com
http://oracle.com
http://orientechnologies.com
http://ormlite.com
http://percona.com
http://pivotal.io
http://postgresql.org
http://ravendb.net
http://redislabs.com
http://redislabs.com
http://basho.com
http://hana.sap.com
http://scaleoutsoftware.com
http://splicemachine.com
http://microsoft.com
http://sqlalchemy.org
http://sqlite.org
http://storm.canonical.com
http://oracle.com
http://actian.com
http://voltdb.com

DZONE’S 2016 GUIDE TO DATA PERSISTENCE DZONE’S 2016 GUIDE TO DATA PERSISTENCE2 5

D Z O N E . C O M /G U I D E S DZONE’S 2016 GUIDE TO DATA PERSISTENCE

AGGREGATE A cluster of domain objects
that can be treated as a single unit.
An ideal unit for data storage on large
distributed systems.

ACID (ATOMICITY, CONSISTENCY,
ISOLATION, DURABILITY) A term that
refers to the model properties of database
transactions, traditionally used for SQL
databases.

BASE (BASIC AVAILABILITY, SOFT
STATE, EVENTUAL CONSISTENCY)
A term that refers to the model properties
of database transactions, specifically for
NoSQL databases needing to manage
unstructured data.

B-TREE A data structure in which all
terminal nodes are the same distance from
the base, and all nonterminal nodes have
between n and 2n subtrees or pointers. It
is optimized for systems that read and write
large blocks of data or perform mostly reads.

COMPLEX EVENT PROCESSING An
organizational process for collecting data
from multiple streams for the purpose of
analysis and planning.

DATABASE CLUSTERING Connecting
two or more servers and instances to a
single database, often for the advantages of
fault tolerance, load balancing, and parallel
processing.

DATA MANAGEMENT The complete
lifecycle of how an organization handles
storing, processing, and analyzing datasets.

DATA MINING The process of discovering
patterns in large sets of data and
transforming that information into an
understandable format.

DATABASE MANAGEMENT SYSTEM
(DBMS) A suite of software and tools that
manage data between the end user and the
database.

DATA WAREHOUSE A collection of
accumulated data from multiple streams
within a business, aggregated for the
purpose of business management.

DISTRIBUTED SYSTEM A collection
of individual computers that work together
and appear to function as a single system.
This requires access to a central database,
multiple copies of a database on each
computer, or database partitions on each
machine.

DOCUMENT STORE A type of database
that aggregates data from documents rather

than defined tables and is used to present
document data in a searchable form.

EVENTUAL CONSISTENCY The idea that
databases conforming to the BASE model
will contain data that becomes consistent
over time.

FAULT-TOLERANCE A system’s ability
to respond to hardware or software failure
without disrupting other systems.

GRAPH STORE A type of database used for
handling entities that have a large number
of relationships, such as social graphs, tag
systems, or any link-rich domain; it is also
often used for routing and location services.

HADOOP An Apache Software Foundation
framework developed specifically for high-
scalability, data-intensive, distributed
computing. It is used primarily for batch-
processing large datasets very efficiently.

HIGH AVAILABILITY (HA) Refers to
the continuous availability of resources in
a computer system even after component
failures occur. This can be achieved with
redundant hardware, software solutions, and
other specific strategies.

IN-MEMORY As a generalized industry
term, it describes data management tools
that load data into RAM or flash memory
instead of hard-disk or solid-state drives.

JOURNALING Refers to the simultaneous,
real-time logging of all data updates in a
database. The resulting log functions as an
audit trail that can be used to rebuild the
database if the original data is corrupted or
deleted.

KEY-VALUE STORE A type of database
that stores data in simple key-value pairs.
They are used for handling lots of small,
continuous, and potentially volatile reads
and writes.

LIGHTNING MEMORY-MAPPED
DATABASE (LMDB) A copy-on-write
B-Tree database that is fully transactional,
ACID compliant, small in size, and uses
MVCC.

LOG-STRUCTURED MERGE (LSM)
TREE A data structure that writes and edits
data using immutable segments or runs
that are usually organized into levels. There
are several strategies, but the first level
commonly contains the most recent and
active data.

MAPREDUCE A programming model
created by Google for high scalability and
distribution on multiple clusters for the
purpose of data processing.

MULTI-VERSION CONCURRENCY
CONTROL (MVCC) A method for handling

situations where machines simultaneously
read and write to a database.

NON-FIRST NORMAL FORM QUERY
LANGUAGE (N1QL) Developed by
Couchbase, it offers a common query
language and JSON-based data model for
distributed document-oriented databases.

NEWSQL A shorthand descriptor for
relational database systems that provide
horizontal scalability and performance on par
with NoSQL systems.

NOSQL A class of database systems that
incorporates other means of querying outside
of traditional SQL and does not use standard
relational structures.

OBJECT-RELATIONAL MAPPER
(ORM) A tool that provides a database
abstraction layer to convert data between
incompatible type systems using object-
oriented programming languages instead of
the database’s query language.

PERSISTENCE Refers to information from
a program that outlives the process that
created it, meaning it won’t be erased during
a shutdown or clearing of RAM. Databases
provide persistence.

POLYGLOT PERSISTENCE Refers to an
organization’s use of several different data
storage technologies for different types of data.

RELATIONAL DATABASE A database that
structures interrelated datasets in tables,
records, and columns.

REPLICATION A term for the sharing of
data so as to ensure consistency between
redundant resources.

SCHEMA A term for the unique data
structure of an individual database.

SHARDING Also known as “horizontal
partitioning,” sharding is where a database is
split into several pieces, usually to improve
the speed and reliability of an application.

STRONG CONSISTENCY A database
concept that refers to the inability to commit
transactions that violate a database’s rules
for data validity.

STRUCTURED QUERY LANGUAGE
(SQL) A programming language designed
for managing and manipulating data; used
primarily in relational databases.

WIDE-COLUMN STORE Also called
“BigTable stores” because of their relation
to Google’s early BigTable database,
these databases store data in records that
can hold very large numbers of dynamic
columns. The column names and the record
keys are not fixed.

glossary

