
http://tomitribe.com
http://tomcat.apache.org
http://tomee.apache.org
https://twitter.com/tomitribe
http://facebook.com/tomitribe
http://tomitribe.com

© DZONE, INC. | DZONE.COM

Apache Tomcat
By Alex Soto Bueno and Romain Manni-Bucau

» Installation
» Configuration
» Logging
» Clustering
» IDEs
» I/O... and more!C

O
N

T
E

N
T

S

JA
V

A
 E

N
T

E
R

P
R

IS
E

 E
D

IT
IO

N
 7

A BOUT A PACHE TOMC AT

Apache Tomcat is a pure Java open-source web server that
implements the Java Servlet, JavaServer Pages, and Expression
Language specifications.

According to the JRebel report, Tomcat is one of the most used
web servers in the Java world with more than 50% of the market
share.

INSTA LL ATION

DOWNLOAD
The quickest way to run Tomcat is to download and run a
compiled version. Go to http://tomcat.apache.org/ and in the
Download section choose the Tomcat version that fits your
requirements and package file depending on your OS.

TOMCAT VERSION SPECIFICATION

Tomcat 8.0.x
Servlet 3.1 / JSP 2.3 / EL 3.0 /
WebSocket 1.1 / Java 7 and later

Tomcat 7.0.x
Servlet 3.0 / JSP 2.2 / EL 2.2 /
WebSocket 1.1 / Java 6 and later
(WebSocket requires Java 7)

Tomcat 6.0.x
Servlet 2.5 / JSP 2.1 / EL 2.1 / Java 5
and later

To run Tomcat, you have to first install a Java Runtime
Environment (JRE). Make sure to install the right version
depending on the Tomcat version you want to run (see table
above).

$ wget http://repo.maven.apache.org/maven2/org/apache/
tomcat/tomcat/8.0.24/tomcat-8.0.24.tar.gz
$ tar -zxvf apache-tomcat-8.0.24.tar.gz
$ cd apache-tomcat-8.0.24

The root directory is known as CATALINA_HOME. Optionally,
Tomcat may be configured for multiple instances by defining
CATALINA_BASE for each instance. For a single installation,
CATALINA_BASE is the same as CATALINA_HOME.

RUNNING
The main script to start Tomcat is ${CATALINA_HOME}/bin/
catalina.sh and the most used start-up commands are:

COMMAND DESCRIPTION

debug [-security] Starts in a debugger

start [-security]
Starts in a separate window (or in the
background)

run [-security]
Starts in the current window (in the
foreground)

G
et

 M
or

e
Re

fc
ar

dz
! V

is
it

 D
Zo

ne
.c

om
/r

ef
ca

rd
z

BROUGHT TO YOU BY:212
A

P
A

C
H

E
 T

O
M

C
A

T

stop [-force]

Stops server waiting up to 5 seconds

-force option kills the process if not
stopped after 5 seconds

jpda start

Starts under JPDA debugger
– Environment variable JPDA_
ADDRESS defines the debug address
(often just a port) and JPDA_
SUSPEND to suspend execution
immediately after start-up

When Tomcat is started in the foreground, it can be stopped by
pressing Ctrl+C.

There is a Windows package distribution that installs Tomcat
as a Service on Windows operating systems. Most Linux
distributions have their own packaging.

DIRECTORY LAYOUT

DIRECTORY DESCRIPTION

/bin
Stores executable files for
Windows/*nix systems to start and
stop server.

/conf Stores configuration files.

/lib
Stores libraries to share between all
applications. By default, only Tomcat
libraries are in this directory.

/logs Stores Tomcat log files.

/temp
Stores temporary files created using
the Java File API.

/webapps
Deploys .war files or exploded web
applications.

/work
Stores intermediate files (such as
compiled JSP files) during its work.

join the tribe

https://twitter.com/angularjs
http://tomcat.apache.org/
https://groups.google.com/forum/%23%21forum/angular
http://dzone.com/refcardz
http://arquillian.org/modules/arquillian-tomcat-managed-7-container-adapter/
http://www.tomitribe.com/
http://tomcat.apache.org
http://tomee.apache.org
http://tomitribe.com
http://tomitribe.com

© DZONE, INC. | DZONE.COM

2 APACHE TOMCAT

CLASSLOADING

bootstrap
($JAVA_HOME/jre/lib/ext)

system
(bin/boostrap.jar:bin/tomcat-juli.jar)

webapp1 webapp2

Common
(lip/*.jar)

In the case of web applications, and according to Servlet
specifications, when a classloader is asked to load a class or
resource, it will first try in its own classloader, and then in its parent
classloader(s).

EMBEDDING
An embedded Tomcat instance can be started within the same JVM
of the running application. Some dependencies must be added to a
class path.

Gradle file with dependencies required:

dependencies {
 //Minimal dependencies
 compile 'org.apache.tomcat.embed:tomcat-embed-core:8.0.9'
 compile 'org.apache.tomcat.embed:tomcat-embed-logging-
juli:8.0.9'
 //Optional dependency for JSP
 compile 'org.apache.tomcat.embed:tomcat-embed-
jasper:8.0.9'
 compile 'org.eclipse.jdt.core.compiler:ecj:4.4'
}

Then you can instantiate a new Tomcat instance as any other Java
class and call Tomcat operations such as registering Servlet, setting
a webapp directory, or configuring resources programmatically.

//create a Tomcat instance to 8080 port
Tomcat tomcat = new Tomcat();
tomcat.setPort(8080);

//adds a new context pointing to current directory as base
dir.
Context ctx = tomcat.addContext("/", new File(".").
getAbsolutePath());

//registers a servlet with name hello
Tomcat.addServlet(ctx, "hello", new HttpServlet() {
 protected void service(HttpServletRequest req,
HttpServletResponse resp) throws Exception {
 Writer w = resp.getWriter();
 w.write("Hello World");
 w.flush();
 }
 });

//adds a new mapping so any URL executes hello servlet
ctx.addServletMapping("/*", "hello");

//starts Tomcat instance
tomcat.start();

//waits current thread indefinitely
tomcat.getServer().await();

CONFIGUR ATION

Apache Tomcat’s main configuration is composed of four files:
server.xml, context.xml, web.xml, and logging.properties.

SERVER.XML
server.xml is located in ${CATALINA_BASE}/conf and represents
the server itself. Here is an example:

<?xml version='1.0' encoding='utf-8'?>
<Server port="8005" shutdown="SHUTDOWN">

 <Listener className="xxxxx" />
 <GlobalNamingResources>
 <Resource name="UserDatabase" auth="Container"
 type="org.apache.catalina.UserDatabase"
 description="User database" factory="org.
apache.catalina.users.MemoryUserDatabaseFactory"
 pathname="conf/tomcat-users.xml" />
 </GlobalNamingResources>

 <Service name="Catalina">
 <Executor name="tomcatThreadPool" namePrefix="catalina-
exec-"
maxThreads="150" minSpareThreads="4"/>

 <Connector port="8080" protocol="HTTP/1.1"
 connectionTimeout="20000"
 redirectPort="8443" />

 <Engine name="Catalina" defaultHost="localhost">
 <Realm className="..." />
 <Host name="localhost" appBase="webapps"
 unpackWARs="true" autoDeploy="true">
 <Valve className="..." />
 </Host>
 </Engine>
 </Service>
</Server>

The XML file represents almost a 1:1 layout of the server itself,
which conforms with Tomcat’s hierarchical design.

Tomcat’s Digester processes the XML files and allows for instances
of any Java type to be added to the XML and configured in a very
Spring-like fashion. Each node can get an attribute className to
specify which implementation you want to use, as well as a set of
attributes which will be set on the created instance.

These are the most important tags to know to use Tomcat:

NAME ROLE

Server
The server (aggregate instance) and
admin configuration (mainly shutdown
socket definition) and hierarchy

Listener
Tomcat internal events listener (see
org.apache.catalina.LifecycleListener)

GlobalNamingResources
Defines a set of container-wide resources
(as opposed to application ones)

Resource Defines a JNDI resource

Service A set of connectors and an engine

Connector
Defines a protocol to use and its
configuration (most common ones are
HTTP and AJP)

Engine

The “processor” of an incoming
request from a connector (a pipeline
starting from the host, going through
authentication if needed, the webapp
and finally the servlet)

https://twitter.com/angularjs

© DZONE, INC. | DZONE.COM

3 APACHE TOMCAT

NAME ROLE

Executor
The thread pool associated with a
Service to handle the request

Realm
Security repository (login/password/
roles), 0 or 1 can be linked to Host,
Engine, and/or Context

Host
Virtual host representation (“domain”).
It is a container of Contexts (explicit or
implicit using appBase).

Context A web application

Valve
An element of the request pipeline (can
be added on Engine, Host, or Context)

CONTEXT.XML
context.xml is a configuration file for a web application. You can
also use a Context element under the Host tag in server.xml, but it
is recommended (if necessary) that you provide them either in the
web application in META-INF/context.xml or (if the configuration is
local to the Tomcat instance) in ${CATALINA_BASE}/conf/<engine
name>/<hostname>/<warname>.xml.

This last option overrides the META-INF file if both exist. This
is convenient for overriding a packaged version, for instance
overriding a DataSource.

A shared web application configuration (across all applications)
is done in ${CATALINA_BASE}/conf/context.xml (global) and
${CATALINA_BASE}/conf/<engine name>/<hostname>/context.
xml.default (specific to a host).

The following are the main children tags of Context:

NAME ROLE

InstanceListener
Internal events listener specific to
filters/servlets

Listener
Tomcat internal events listener (see
org.apache.catalina.LifecycleListener)
for “Context scoped”

Loader
Defines the classloader to use for the
webapp

Manager Defines the session configuration

Parameter Defines a context parameter

Resources
 (PreResources, JarResources,

PostResources)

Where resources (JS, CSS, HTML, ….,
.class) are taken from

ResourceLink Link to a global JNDI entry

Valve Same as in server.xml

WatchedResource
If the defined resource changes, Context
will be reloaded (undeploy/deploy)

WrapperLifecycle
LifecycleListener for each wrapper
(servlet)

WrapperListener ContainerListener for each wrapper

JarScanner
The application scanner
implementation (which classloader
to scan and how to get JAR paths)

NAME ROLE

JarScanFilter
Which paths should be scanned/
ignored, should tag libraries (TLDs)
be scanned

Environment
Named values that will be made
visible to the web application as
environment entry resources

WEB.XML
This section does not refer to WEB-INF/web.xml, which is a
standard deployment descriptor of the Servlet specification, but
about ${CATALINA_BASE}/conf/web.xml.

This is a standard web.xml where mime types, default servlets/
filters, default welcome files, and default session timeouts are
defined. This configuration is inherited by all web applications.

Here are the default servlets and some examples of why you might
need to update them:

SERVLET GOAL

Default

Serves static resources.

Encoding, is listing folder allowed are
configurable.

JSP

Serves (and compiles if needed) JSP.

Compiling information, should JSP be
watched for updates (development),
and pooling are configurable.

SSL (exists as filter too)
Supports server side includes on
HTML pages; disabled by default.

CGI
Can execute an external binary to
acquire content; disabled by default.

LOGGING
Tomcat uses an enhanced version of the Java Util Logging (JUL) API
built into the JVM. As a container, Tomcat needs to support logging
configuration at the container level for itself, but it also needs to
support application specific configurations.

LOGGING.PROPERTIES
Tomcat uses a custom LogManager to be able to configure the
logging more finely: org.apache.juli.ClassLoaderLogManager

The default configuration is in ${CATALINA_BASE}/conf/logging.
properties. Each web application can embed its own configuration
by defining a logging.properties file under WEB-INF/classes
directory of the webapp.

CONFIGURATION OVERVIEW

my.logger.name.level = FINEST # a java.util.logging.Level
my.logger.name.handlers = myHandler1, myHandler2,...
my.logger.name.useParentHandlers = true # false by default

PREFIXES
You can prefix a logger name with a String starting with a digit
and ending with a dot (for instance 1prefix.my.logger.name). This
is useful to simultaneously configure the same handler (a file, for
instance) with different settings.

https://twitter.com/angularjs

© DZONE, INC. | DZONE.COM

4 APACHE TOMCAT

DYNAMIC VALUES
You can use place holders like ${xxx}. They get replaced
automatically at runtime with the value of the Java system property
with the key xxx.

ROOT LOGGER
Root logger is configured using an empty name:

.handlers = ….

HANDLER
Tomcat provides several additional handlers like org.apache.juli.
FileHandler, which supports log buffering; AsyncFileHandler, which is
asynchronous; and some formatters like JdkLoggerFormatter, which
uses the log4j equivalent format %r %-15.15c{2} %-1.1p %m %n.

SERVLETCONTEXT LOGGING
ServletContext.log(...) output is configurable using property
org.apache.catalina.core.ContainerBase.[${engine}].[${host}].
[${context}].

REPLACE JUL
You can use log4j for Tomcat itself. To do this, you need to add
log4j.jar, tomcat-juli-adapters.jar, and log4j.properties in
${CATALINA_HOME}/lib and replace tomcat-juli.jar from the bin/
directory with tomcat-juli.jar from the extras modules (See Tomcat
download page). Don’t forget to remove the conf/logging.properties
file so that JUL does not create empty files.

CLUSTERING

Tomcat supports clustering (session distribution and deployments)
out of the box. To activate it, add a Cluster tag in your Host or
Engine.

The cluster tag supports these configurations:

TAG ROLE

Cluster Defines the cluster class and configuration.

Manager
Session replication strategy (by default it
uses DeltaManager to send delta to nodes,
synchronously or not).

Channel

How cluster nodes are connected together
(backed by Apache Tribes).

Channel has sub tags like Membership
(discovery of nodes), Sender (send message on
the cluster), Receiver (how cluster messages
are received) and Interceptor (listen for/send
cluster messages).

Valve
Creates and replicates files when needed
within the cluster (end of request by default).

Deployer
Allows deploy/undeploy actions across the
entire cluster applications.

ClusterListener Observes cluster messages.

Here is the most basic example:

<Cluster className="org.apache.catalina.ha.tcp.
SimpleTcpCluster"/>

NOTE: Don’t forget your session attributes need to be Serializable.
This is also a requirement if you want the session to survive Tomcat
cycles (a.k.a. HTTP session serialization).

Apache Tomcat is supported by major IDE vendors.

ECLIPSE
To register Tomcat on Eclipse WTP (Web Tools Platform).

• Open Window -> Preferences -> Server -> Installed Runtimes

• Click on Add and in New Server Runtime, select Apache ->
Apache Tomcat v8.0

• Click Next and fill in your Tomcat installation directory

INTELLIJ IDEA
To register Tomcat in IntelliJ IDEA Ultimate Edition (communtiy
edition is not supported):

• Open File -> Settings -> (IDE Settings) Application Servers

• Click on the + symbol and select Tomcat Server

• In the dialog box fill Tomcat Home with your Tomcat
installation directory

NETBEANS
Apache Tomcat comes pre-bundled with the Java EE distribution of
Netbeans. Registering your own installation of Tomcat can be done
as well.

• Open Windows -> Services

• Right-Click on Servers -> Add Server

• In the dialog box choose Apache Tomcat

• Click Next then fill Server Location with your Tomcat
installation directory

I/O

Following today’s needs, Tomcat proposes several I/O solutions.

CONNECTORS
As explained in the Configuration section, Tomcat handles I/O
thanks to connectors. Most of them share a common configuration,
the full details of which are available at http://tomcat.apache.org/
tomcat-8.0-doc/config/http.html.

NIO/NIO2
The NIO and NIO2 connectors allow you to use Java NIO to handle
incoming requests. With the release of Tomcat 8, they are now the
default connectors to handle HTTP requests.

Note that to use NIO2 you need to specify the class org.apache.
coyote.http11.Http11Nio2Protocol on your Connector tag in the
class-name attribute. Keep in mind it is still a “beta” connector, but
it can bring your application some significant speed enhancements.

BIO
The BIO connector allows you to use the old blocking I/O. It was
the default connector to handle HTTP requests for prior Tomcat 8
versions.

The main difference between NIO and BIO is that with the BIO
connector you generally need more threads to handle requests
concurrently, and they don’t guarantee better performances. These
connectors impose you to get one thread by connection!

For Tomcat 9+ versions, the BIO connector has been completely
removed.

IDES

https://twitter.com/angularjs
http://tomcat.apache.org/tomcat-8.0-doc/config/http.html
http://tomcat.apache.org/tomcat-8.0-doc/config/http.html

© DZONE, INC. | DZONE.COM

5 APACHE TOMCAT

AJP
AJP is a protocol like HTTP. Its main goal is to get higher
performances. It is a binary version of HTTP, and also a connected
protocol as opposed to HTTP. It can be used with httpd (a.k.a Apache
Web Server) and most of the time with mod_jk or mod_proxy_ajp
httpd modules. If you are using SSL or have a lot of static resources,
this is the fastest connector!

COMETD
CometD is the old way to handle asynchronous I/O (i.e. let the
container call you when data are available). This only works with
APR or NIO connectors.

To use CometD, you first need to implement it within a servlet org.
apache.catalina.comet.CometProcessor (eliminating portability)
and then handle events in event(CometEvent):

public class MyCometDServlet extends HttpServlet
implements CometProcessor {
 @Override
 public void event(final CometEvent event)
 throws IOException, ServletException {

 final HttpServletRequest request = event.
getHttpServletRequest();
 final HttpServletResponse response = event.
getHttpServletResponse();

 if (event.getEventType() == CometEvent.EventType.BEGIN)
{ //keep the response to bulk send data to everybody
 } else
 if (event.getEventType() == CometEvent.EventType.
ERROR || event.getEventType() == CometEvent.EventType.END)
{
 // state cleanup if needed
 event.close();
 // we are done
 } else
 if (event.getEventType() == CometEvent.EventType.READ)
{
 final InputStream is = request.getInputStream();
 do {
 // read is
 } while (is.available() > 0);
 }
 }

WEBSOCKET
WebSockets (RFC 6455) have been supported by Tomcat since
version 7, but only versions 7.0.43 and later implement the
specification (a.k.a JSR-356). Before (version 7.0.27 and earlier)
Tomcat was using a proprietary API and implementation didn’t scale
as much as today -- so ensure you are using an up-to-date version.

The Tomcat WebSocket implementation needs at least Java 7. If you
are running on Java 7, it is activated by default and you just need to
deploy your code inside Tomcat:

@ServerEndpoint(“/tchat”)
public class TchatEndpoint {

 @OnMessage
 public void onMessage(Session session, String msg) {
 try {
 session.getBasicRemote().sendText(msg);
 } catch (IOException e) { ... }
 }
}

WebSocket doesn’t require you to use an APR or NIO connector like
CometD does, but it is highly recommended, as you will likely have a
high number of connections.

JNDI
Tomcat provides a JNDI InitialContext implementation instance for
each web application. As mentioned in the Configuration section,
JNDI resources can be registered in conf/server.xml, conf/web.xml,
or any context.xml file. But Tomcat also follows the Java EE standard
for /WEB-INF/web.xml file to reference/define resources.

In order to use a JNDI resource, specify the JNDI name defined in the
web application’s deployment descriptor:

context.xml
<context ...>
 <!-- Definition of DataSource in context.xml -->
 <Resource name="jdbc/employeeDB" type="javax.sql.
DataSource" global="jdbc/employeeDB" .../>
</context>
web.xml
<web-app>
 <!-- Declaring a reference to DataSource in web.xml -->
 <resource-ref>
 <description>Employee Datasource</description>
 <res-ref-name>jdbc/employeeDB</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
 <env-entry>
 <env-entry-name>message</env-entry-name>
 <env-entry-value>Hello World</env-entry-value>
 <env-entry-type>java.lang.String</env-entry-type>
 </env-entry>
</webapp>

 Java Code

Context initCtx = new InitialContext();
DataSource ds = (DataSource) initCtx.lookup("java:comp/env/
jdbc/EmployeeDB");
String message = (String)initCtx.lookup("java:comp/env/
message");

TOMC AT LISTENERS

A Listener element defines a component that performs actions when
specific events occur, usually Tomcat starting or Tomcat stopping.

Listeners are registered inside conf/server.xml inside Server, Engine,
Host, and Context tags.

Each Listener must implement org.apache.catalina.LifecycleListener
interface.

CUSTOM LISTENER

public class PrintLifecycleStatesListener implements
LifecycleListener {
 @Override
 public void lifecycleEvent(LifecycleEvent e) {
 System.out.println(e.getLifecycle().getStateName());
 }
}

 The JAR file containing this class is stored at $CATALINA_BASE/lib
directory.

Add the next line at conf/server.xml.

<Server ...>
 <Listener className="org.superbiz.
PrintLifecycleStatesListener"/>
</Server>

https://twitter.com/angularjs

© DZONE, INC. | DZONE.COM

6 APACHE TOMCAT

SHIPPED LISTENERS

LISTENER DESCRIPTION

org.apache.catalina.core.
AprLifecycleListener

Checks for the presence
of the APR/native library
and loads the library if it is
present.

org.apache.catalina.mbeans.
GlobalResourcesLifecycleListener

Initializes the Global JNDI
resources defined in server
.xml as part of the Global
Resources element.

org.apache.catalina.core.
JreMemoryLeakPreventionListener

Prevents memory leaks by
providing workarounds,
for instances where the
JRE uses the context
classloader to load a
singleton.

org.apache.catalina.security.
SecurityListener

Performs a number of
security checks when
Tomcat starts and prevents
Tomcat from starting if
they fail; not enabled by
default.

org.apache.catalina.core.
ThreadLocalLeakPreventionListener

Triggers the renewal
of threads in Executor
pools when a Context is
being stopped to avoid
ThreadLocal-related
memory leaks.

org.apache.catalina.startup.
UserConfig

Maps a request URI starting
with a tilde character
("~") and a username to
a directory in that user's
home directory on the
server; not enabled by
default.

org.apache.catalina.mbeans.
JmxRemoteLifecycleListener

Fixes the ports used by
the JMX/RMI Server; not
enabled by default.

DEPLOYING

After installing and configuring Tomcat, you will need to deploy web
applications.

DROP-IN WAR
Deploying an application to Tomcat can be as simple as dropping a
WAR file inside the $CATALINA_BASE/webapps directory; this will
deploy the application.

HOT DEPLOYMENT
To deploy a new application, you must restart the server in order for
the application to function. To fix this problem, Tomcat provides a
hot deployment option, which deploys an application without the
need to restart.

To enable hot deployment, the autoDeploy attribute from host tag in
server.xml must be set to true. See the configuration section for an
example.

TOMCAT MANAGER

WEB APPLICATION
Tomcat also comes with a web application called Manager, which
allows for deploying an application from the web console. To use
the Manager, you need to add a username and password to conf/
tomcat-users.xml with role manager-gui.

<tomcat-users>
 <role rolename="manager-gui"/>
 <user username="tomcat" password="s3cret"
roles="manager-gui"/>
</tomcat-users>

Next, access http://<host>:<port>/manager to access the web
console.

URI
The Tomcat Manager also provides URI commands to upload
applications. They follow this schema:

http://{host}:{port}/manager/text/{command}?{parameters}

Some examples of deploying an application using URI commands:

http://{host}:{port}/manager/text/deploy?path=/foo

The above uploads the WAR file with path /foo to the remote server.
The WAR is provided as the body of the HTTP PUT.

http://{host}:{port}/manager/text/deploy?path=/foo&war=file:/
path/to/foo.war

This deploys applications stored in the server directory path/to/
foo.war.

ARQUILLIAN
Arquillian is an integration and functional testing platform that can
be used for Java middleware testing. The main goal of Arquillian is to
make tests that require a server to be as simple as writing unit tests.

You can use Arquillian Tomcat adapters to write integration/functional
tests.

Arquillian Tomcat 8 adapter release is coming soon.

Maven coordinates can be found at:

http://arquillian.org/modules/arquillian-tomcat-embedded-7-
container-adapter/

http://arquillian.org/modules/arquillian-tomcat-managed-7-
container-adapter/

http://arquillian.org/modules/arquillian-tomcat-remote-7-
container-adapter/

http://arquillian.org/modules/arquillian-tomcat-embedded-8-
container-adapter/

When using the embedded adapter, Tomcat embedded
dependencies are required as well.

When using the remote adapter, the Tomcat instance has to expose
a remote JMX MbeanConnection.

JAVA_OPTS="$JAVA_OPTS -Dcom.sun.management.jmxremote.
port=8089"
JAVA_OPTS="$JAVA_OPTS -Dcom.sun.management.jmxremote.
ssl=false"
JAVA_OPTS="$JAVA_OPTS -Dcom.sun.management.jmxremote.
authenticate=false"

https://twitter.com/angularjs
http://arquillian.org/modules/arquillian-tomcat-embedded-7-container-adapter/
http://arquillian.org/modules/arquillian-tomcat-embedded-7-container-adapter/
http://arquillian.org/modules/arquillian-tomcat-managed-7-container-adapter/
http://arquillian.org/modules/arquillian-tomcat-managed-7-container-adapter/
http://arquillian.org/modules/arquillian-tomcat-remote-7-container-adapter/
http://arquillian.org/modules/arquillian-tomcat-remote-7-container-adapter/
http://arquillian.org/modules/arquillian-tomcat-embedded-8-container-adapter/
http://arquillian.org/modules/arquillian-tomcat-embedded-8-container-adapter/

© DZONE, INC. | DZONE.COM

7 APACHE TOMCAT

MAVEN
Maven is still one of the most used build tools and therefore Tomcat
integration is available.

This integration is mainly (in addition to deploying artifacts on
central) a Maven plugin.

Today, there are two plugins, tomcat6-maven-plugin for Tomcat 6
and tomcat7-maven-plugin for Tomcat 7; tomcat8-maven-plugin
is coming soon.

Their usage is more or less the same:

<plugin>
 <groupId>org.apache.tomcat.maven</groupId>
 <artifactId>tomcat7-maven-plugin</artifactId>
 <version>2.2</version>
 <configuration>
 <url>http://localhost:8080/manager</url>
 </configuration>
</plugin>

 Here are the main configurations of the Maven plugin:

PAR AMETER GOAL

url
Tomcat Manager URL (to deploy/undeploy/
start/stop/reload)

server
Use settings.xml server for authentication on
the Tomcat Manager application

charset
Encoding to use to communicate with the
Tomcat Manager application

Username/
password

Credential of the manager application

Once these configurations are set up, the available goals are as
follows:

 a

RECOMMENDED BOOKABOUT THE AUTHORS
Alex Soto Bueno is a Java EE software architect specializing in enterprise technologies,
test automation and continuous delivery on the Java platform. He is heavily involved in
the open source world, leading NoSQLUnit and Asciidoctor projects and contributing to
Arquillian and Tomitribe. He is an international speaker, having presented at conferences
like Devoxx, JavaOne, or JavaLand. Alex is the author of Arquillian in Action and also the
curator of lordofthejars.com blog.

Romain Manni-Bucau is a contributor of the Apache TomEE project since July 2010 and a
Senior Software Engineer at Tomitribe. In his plethora of Apache projects, he’s involved
in OpenEJB, OpenWebBeans, Geronimo, CFX, BVal and DeltaSpike. Romain is a founding
member of the Sirona and BatchEE project and brought JCache implementation to the
Apache Commons JCS project. He regularly speaks at JUG and conferences to spread
the word about all the Apache goodness. Since Java EE 6 he is convinced that REST
architectures and design are the future of Java EE and not only for web technologies.
Romain blogs at http://rmannibucau.wordpress.com.

Tomcat: The Definitive Guide is the best
available book-length introduction to
the world’s most popular open-source
implementation of Java Servlet and JSP
server technologies. Includes installation,
configuration, performance tuning,
debugging, integrations, security,
clustering, and more.

BROWSE OUR COLLECTION OF 250+ FREE RESOURCES, INCLUDING:
RESEARCH GUIDES: Unbiased insight from leading tech experts

REFCARDZ: Library of 200+ reference cards covering the latest tech topics

COMMUNITIES: Share links, author articles, and engage with other tech experts

JOIN NOW

BUY NOW

© DZONE, INC.

DZONE, INC.
150 PRESTON EXECUTIVE DR.
CARY, NC 27513

888.678.0399
919.678.0300

REFCARDZ FEEDBACK WELCOME
refcardz@dzone.com

SPONSORSHIP OPPORTUNITIES
sales@dzone.com

Copyright © 2015 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher. VERSION 1.0 $7.95

DZone communities deliver over 6 million pages each month to more than 3.3 million software
developers, architects and decision makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, research guides, feature articles, source code and more.

"DZone is a developer's dream," says PC Magazine.

GOAL DESCRIPTION

deploy/ undeploy/
redeploy

(Un)deploys a WAR

Exec-war /
standalone-war

Create a runnable JAR or WAR running
Tomcat and your application (java -jar
mytomcatapp.jar)

run
Start Tomcat embedded with current project
deployed as dynamic project

run-war
Same as run, using a WAR instead of
resources

shutdown
Stop started servers (useful if using pre-
integration-test phase to start Tomcat and
post-integration-test to stop it)

Note: Often goals will exist with the “-only” suffix. For example,
the deploy-only goal will not fork a Maven package lifecycle.

Each goal has further configurations, for example the “context”
path within the “deploy” application goal.

You can find more details at http://tomcat.apache.org/maven-
plugin-trunk/tomcat7-maven-plugin/plugin-info.html.

JAVA EE AND BEYOND
Tomcat is a Servlet container following Servlet/JSP/EL specification.
However, if you are required to use any other Java EE specifications
like CDI, JPA, EJB, JAX-RS, or Bean Validation, you can integrate
them yourself (assuming you understand the perils of doing it by
yourself), or you can simply use Apache TomEE. Apache TomEE
(pronounced “Tommy”) is the Java Enterprise Edition of Apache
Tomcat (Tomcat + Java EE = TomEE) and it is certified as Java EE 6
Web Profile. It maintains the lightness and simplicity of Tomcat but
with the full power of Java EE.

https://twitter.com/angularjs
http://lordofthejars.com
http://rmannibucau.wordpress.com
http://shop.oreilly.com/product/9780596101060.do#
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://tomcat.apache.org/maven-plugin-trunk/tomcat7-maven-plugin/plugin-info.html.
http://tomcat.apache.org/maven-plugin-trunk/tomcat7-maven-plugin/plugin-info.html.

