

GETTING STARTED WITH MQTT
A PROTOCOL FOR THE INTERNET OF THINGS

BY DOMINIK OBERMAIER

 » Why MQTT?

 » What is MQTT?

 » Publish / Subscribe

 » MQTT Message Types

 » Topics

 » QoS Levels and more...

W H Y M Q T T ?
The Internet of Things (IoT) has recently gained massive
traction. IoT challenges enterprises, small companies, and
developers with new problems to solve. While HTTP is
the de-facto protocol for the human web, communication
between machines at scale requires a paradigm shift—
steering away from request/response and leading towards
publish/subscribe. This is where the ultra-lightweight,
massively scalable, and easy-to-implement protocol MQTT
enters the picture.

W H AT I S M Q T T ?

MQTT is a binary client-server publish/subscribe messaging
transport protocol, standardized by OASIS. It is lightweight,
open, simple, and easy to implement. Designed with a minimal
protocol overhead, this protocol is a good choice for a variety
of Machine-to-Machine (M2M) and Internet of Things
applications, especially where a small code footprint is required
and/or network bandwidth is at a premium. MQTT utilizes
many characteristics of the TCP transport, so the minimum
requirement for using MQTT is a working TCP stack, which is
now available for even the smallest microcontrollers.

The most recent version of MQTT is 3.1.1, which has many
improvements over the first public MQTT release, MQTT 3.1.

USE CASES
MQTT excels in scenarios where reliable message delivery is
crucial for an application but a reliable network connection
is not necessarily available, e.g. mobile networks. Typical use
cases of MQTT include:

• Telemetry

• Automotive

• Smart Home

• Energy Monitoring

• Chat Applications

• Notification Services

• Healthcare Applications

P U B L I S H / S U B S C R IB E

MQTT implements the brokered publish / subscribe pattern.
The publish / subscribe pattern decouples a client (“publisher”),
which is sending a particular message from other clients

(“subscribers”), which are receiving the message. This means
that the publisher and subscribers don’t know about the
existence of one another. The clients do not know each other,
but they know the message broker, which filters all incoming
messages and distributes them to the correct subscribers.

	 Figure 1: MQTT Publish / Subscribe

This decoupling of sender and receiver can be differentiated
in three dimensions:

• Space decoupling: Publisher and subscriber do not
need to know each other (for example, by IP address
and port)

• Time decoupling: Publisher and subscriber do not
need to be connected at the same time

• Synchronization decoupling: Operations on both
components are not halted during publishing or
receiving messages

214

C
O

N
T

E
N

T
S

G
et

 M
or

e
Re

fc
ar

dz
! V

is
it

 D
Zo

ne
.c

om
/r

ef
ca

rd
z

G
E

T
T

IN
G

 S
TA

R
T

E
D

 W
IT

H
 M

Q
T

T

© DZONE, INC. | DZONE.COM

http://www.pivotpodcast.com/
http://dzone.com/refcardz
http://dzone.com/refcardz
http://dzone.com

https://www.predix.io/registration/

Predix empowers you with the tools to build and operate
apps for the Industrial Internet of Things. Transform your
company, your industry, and the world. Discover Cloud
Foundry-based microservices, machine connectivity, and
other resources to propel your Industrial Internet journey.
The sky's the limit.

Predix connects machines, big
data, and predictive analytics to
power the Industrial Internet.

Powering the Internet of
(Really Important) Things

GE Digital

https://www.predix.io/registration/

M Q T T M E S S A G E T Y P E S
MQTT has 14 different message types. Typically, end users
only need to employ the CONNECT, PUBLISH, SUBSCRIBE, and
UNSUBSCRIBE message types. The other message types are used
for internal mechanisms and message f lows.

MESSAGE TYPE DESCRIPTION

CONNECT Client request to connect to Server

CONNACK Connection Acknowledgement

PUBLISH A message which represents a new/separate publish

PUBACK QoS 1 Response to a PUBLISH message

PUBREC First part of QoS 2 message flow

PUBREL Second part of QoS 2 message flow

PUBCOMP Last part of the QoS 2 message flow

SUBSCRIBE
A message used by clients to subscribe to specific
topics

SUBACK Acknowledgement of a SUBSCRIBE message

UNSUBSCRIBE
A message used by clients to unsubscribe from specific
topics

UNSUBACK Acknowledgement of an UNSUBSCRIBE message

PINGREQ Heartbeat message

PINGRESP Heartbeat message acknowledgement

DISCONNECT
Graceful disconnect message sent by clients before
disconnecting.

T O P I C S
A topic is a UTF-8 string, which is used by the broker to filter
messages for each connected client. A topic consists of one or
more topic levels. Each topic level is separated by a forward
slash (topic level separator).

In comparison to a message queue, a topic is very lightweight.
There is no need for a client to create the desired topic before
publishing or subscribing to it, because a broker accepts each
valid topic without any prior initialization.

MQTT TOPIC WILDCARDS
MQTT Topic Wildcards can be used for topic filters when
subscribing to MQTT messages. These wildcards are useful
if a client wants to receive messages for different topics with
similar structure at once.

Wildcards are not allowed in topic names when publishing
messages. The wildcard characters are reserved and must not
be used in the topic. These characters cannot be escaped.

WILDCARD SYMBOL MEANING

Single-level
Wildcard

+

A wildcard that matches one complete topic
level. It must occupy an entire topic level. This
wildcard can be used more than once in a topic
subscription.

Multi-level
Wildcard

#
A wildcard that matches any number of levels
within a topic. It must be the last character of
a topic subscription.

VALID MQTT TOPIC EXAMPLES
• my/test/topic
• my/+/topic
• my/#
• my/+/+
• +/#
• #

Q O S L E V E L S
Each MQTT publish is sent with one of three Quality of Service
(QoS) levels. These levels are associated with different guarantees
with regards to the reliability of the message delivery. Both
client and broker provide additional persistence and redelivery
mechanisms to increase reliability in case of network failures,
restarts of the application, and other unforseen circumstances.

MQTT relies on TCP, which has reliability guarantees on its
own. Historically QoS levels were needed to overcome data loss
on older and unreliable TCP networks. This can st ill be a valid
concern for mobile networks today.

QOS LEVEL DESCRIPTION

0
At most once delivery: The sender tries with best effort to
send the message and relies on the reliability of TCP. No
retransmission takes place.

1

At least once delivery: The receiver will get the message at least
once. If the receiver does not acknowledge the message or the
acknowledge gets lost on the way, it will be resent until the
sender gets an acknowledgement. Duplicate messages can occur.

2

Exactly once delivery: The protocol makes sure that the
message will arrive exactly once at the receiver. This increases
communication overhead but is the best option when neither
loss nor duplication of messages are acceptable.

L A S T W IL L A ND T E S TA M E N T
A Last Will and Testament (LWT) message can be specified by an
MQTT client when connecting to the MQTT broker. If that client
does not disconnect gracefully, the broker sends out the LWT
message on behalf of the client when connection loss is detected.

R E TA INE D M E S S A G E S
Each sent MQTT message can be sent as a retained message.
A retained message is a last known good value and persists
at the MQTT broker for the specified topic. Every time a new

3

© DZONE, INC. | DZONE.COM

GETTING STARTED WITH MQTT

http://dzone.com/refcardz
http://dzone.com

client subscribes to that specific topic, it will instantly receive
the last retained message on that topic. This is also the case for
matching wildcards.

C L E A N / P E R S I S T E N T S E S S I O N S

When a client connects to an MQTT broker, it has the choice of
requesting a persistent session. The broker is responsible for
storing session information of the client if the client requested a
persistent session. The session information of a client includes:

• All subscriptions of the client

• All QoS 1 / 2 messages which are not processed yet

• All QoS 1 / 2 messages the client missed while off line

Persistent sessions are often used for MQTT clients on constrained
devices and clients who must not miss any messages for certain
topics—not even when they are disconnected. When a client
reconnects, the broker will send all missed messages for a
subscription with a QoS Level of 1 or 2. Persistent sessions are
most useful for clients that subscribe to topics; publishing-only
clients don’t profit from persistent sessions.

Clean sessions are often used by publishing-only MQTT clients
that are not interested in any state.

HE A R T B E AT S

An MQTT CONNECT message contains a keepAlive value in
seconds where the client can specify the maximum timeout
between message exchanges. This allows the broker to detect a
half-open connection and close the connection to the (already
disconnected) client if the keepAlive value is exceeded by more
than 150% of the value.

So if a connection between broker and client is still established,
the client sends a PINGREQ message to the broker within the
keepAlive interval if no other message exchange occurred. The
broker responds with a PINGRESP message.

Every client specifies its keepAlive value when connecting and
the maximum value is 65535 seconds (18h 12m 15s).

M Q T T B R O K E R IM P L E M E N TAT I O N S

A variety of high-quality MQTT brokers are available. The
following table shows the most popular open source and
commercial broker implementations.

BROKER DESCRIPTION

mosquitto

mosquitto is an open source MQTT broker written in C.
It fully supports MQTT 3.1 and MQTT 3.1.1 and is very
lightweight. Due to its small size, this broker can be used on
constrained devices.

Apache
ActiveMQ

ActiveMQ is an open-source multi-protocol message broker
with a core written around JMS. It supports MQTT and maps
MQTT semantics over JMS.

BROKER DESCRIPTION

HiveMQ

HiveMQ is a scalable, high-performance MQTT broker
suitable for mission critical deployments. It fully supports
MQTT 3.1 and MQTT 3.1.1 and has features like
websockets, clustering, and an open-source plugin system
for Java developers.

RabbitMQ

RabbitMQ is a scalable, open-source message queue
implementation, written in Erlang. It is an AMQP message
broker but has an MQTT plugin available. Does not support
all MQTT features (e.g. QoS 2).

mosca

mosca is an open-source MQTT broker written in Node.js. It
can operate as standalone or be embedded into any Node.
js application. Does not implement all MQTT features (e.g.
QoS 2).

RSMB
RSMB is a message broker by IBM available for personal
use. It is written in C and is one of the oldest MQTT broker
implementations available.

WebsphereMQ /
IBM MQ

Websphere MQ is a commercial message-oriented
middleware by IBM. Fully supports MQTT.

M Q T T C L IE N T S

A variety of MQTT client implementations are available for
most of the popular operating systems and programming
languages. These lists give an overview of the most popular
MQTT client libraries and MQTT client tools.

MQTT CLIENT LIBRARIES
LIBRARY LANGUAGE DESCRIPTION

Eclipse Paho
C, C++, Java,
Javascript,
Python, Go, C#

Paho clients are among the most popular
client library implementations.

M2MQTT C#
M2MQTT is an MQTT client library for
.NET and WinRT.

Fusesource
MQTT Client

Java

The Fusesource MQTT client is a Java
MQTT client with 3 different API styles:
Blocking, Future-based, and Callback-
based.

Machine Head Clojure
Machine Head is an MQTT client for
Clojure. It implements the basic MQTT
3.1 features.

MQTT.js Javascript
MQTT.js is an MQTT client library for
Node.js and web applications, available as
a npm module.

ruby-mqtt Ruby
ruby-mqtt is an MQTT client available as a
Ruby gem. It does not support QoS > 0.

MQTT CLIENT TOOLS
CLIENT TOOL OS DESCRIPTION

MQTT.fx
Windows,
Linux,
MacOSX

MQTT.fx is a JavaFX application with a
clean interface and advanced features like
scripting, broker statistics, and templates.

mqtt-spy
Windows,
Linux,
MacOSX

mqtt-spy is a JavaFX application that is
easy to use and focused on analyzing MQTT
subscriptions. There is also a CLI-based
daemon application available, which does not
need a graphic interface.

4

© DZONE, INC. | DZONE.COM

GETTING STARTED WITH MQTT

http://dzone.com/refcardz
http://dzone.com

CLIENT TOOL OS DESCRIPTION

MQTT
Inspector

iOS

MQTT Inspector is an iOS app that allows
detailed analysis of MQTT traffic. Use of the
publish/subscribe message types, and complex
filterings of received messages, are available.

HiveMQ
Websocket Client

Web
browser

The HiveMQ websocket client runs on any
modern browser and connects to MQTT brokers
via websockets. Very useful if it’s not possible
to install a client application on the machine in
use, as well as for quick MQTT tests.

MyMQTT Android

MyMQTT is an MQTT test application for
Android devices. It allows the creation of
templates for publishing, which makes it very
useful for testing MQTT “on-the-go.”

MQTTLens
Google
Chrome

MQTTLens is a Chrome Webapp that can
connect to MQTT brokers via TCP and over
websockets. This app is easy to grasp and
equipped with all the basic MQTT features
needed for quick tests.

mosquitto_pub /
mosquitto_sub

Linux,
Windows,
MacOSX

mosquitto_pub and mosquitto_sub are the
best options for publish/subscribe on servers
without GUI. It is also great for MQTT task
automation.

M Q T T O N T HE C O MM A ND L INE
L I N U X A N D M A C O S X

Trying MQTT on the command line is very easy. Install
either mosquitto or HiveMQ as the MQTT broker and start it.
Download HiveMQ at hivemq.com/download and download the
mosquitto client tools with the package manager of choice or
via mosquitto.org.

To try MQTT without even installing a broker, the following
hosted brokers are available for free:

ADDRESS PORT BROKER

broker.mqttdashboard.com 1883 HiveMQ

test.mosquitto.org
1883, 8883,
8884, 8885

mosquitto

iot.eclipse.org 1883 mosquitto

Open two terminal windows, one for publishing and one for
subscribing.

Publishing an MQTT message with QoS 2

mosquitto_pub –h broker.mqttdashboard.com –t ‘my/topic’ –m
‘my_message’ –q 2

Subscribing to an MQTT topic with QoS 2 and debug output

mosquitto_sub –h broker.mqttdashboard.com –t ‘my/topic’ –q
2 -d

Now you should receive the message the publisher sent with the
subscribing client.

P U B / S U B W I T H PA H O

Eclipse Paho is an umbrella project which provides scalable
open-source MQTT client implementations for various
languages. The following examples use the Eclipse Paho Java
library for the MQTT client.

OBTAINING THE LIBRARY
With Maven: pom.xml

......
<repositories>
 <repository>
 <id>Eclipse Paho Repo</id>
 <url>https://repo.eclipse.org/content/repositories/
paho-releases/</url>
 </repository>
</repositories>
....
<dependencies>
 <dependency>
 <groupId>org.eclipse.paho</groupId>
 <artifactId>org.eclipse.paho.client.mqttv3</
artifactId>
 <version>1.0.2</version>
 </dependency>
</dependencies>

With Gradle: build.gradle
repositories {
 maven { url ‘https://repo.eclipse.org/content/
repositories/paho-releases/’ }
}

dependencies {
 compile([group: ‘org.eclipse.paho’, name: ‘org.eclipse.
paho.client.mqttv3’, version: ‘1.0.2’])
}

PUBLISH A MESSAGE
Publishing messages is straightforward. After connecting,
publishing is a one-liner with the publish() method.

MqttClient mqttClient = new MqttClient(
 "tcp://broker.mqttdashboard.com:1883", //1
 "refcard-client"); //2

mqttClient.connect();

mqttClient.publish(
 "topic", //3
 "message".getBytes(), //4
 0, //5
 false); //6
mqttClient.disconnect();

1. The server URI
2. The MQTT client ID
3. The MQTT topic
4. The payload as byte array
5. The QoS Level
6. Retained Flag

SUBSCRIBE TO TOPICS
In order to subscribe to topics, an MqttCallback must be
implemented. This callback is triggered every time an
event (like messageArrived) occurs. This callback must be
implemented before connecting to the broker.

5

© DZONE, INC. | DZONE.COM

GETTING STARTED WITH MQTT

http://dzone.com/refcardz
http://dzone.com

mqttClient.setCallback(new MqttCallback() { //1
 @Override
 public void connectionLost(Throwable throwable) {
 //Called when connection is lost.
 }

 @Override
 public void messageArrived(String topic, MqttMessage
 mqttMessage) throws Exception {
 System.out.println("Topic: " + topic);
 System.out.println(new String(mqttMessage.
 getPayload()));
 System.out.println("QoS: " + mqttMessage.
 getQos());
 System.out.println("Retained: " + mqttMessage.
isRetained());
 }

 @Override
 public void deliveryComplete(final IMqttDeliveryToken
iMqttDeliveryToken) {
 //When message delivery was complete
 }
});

mqttClient.connect();

mqttClient.subscribe("my/topic", 2); //2

1. Implement the MqttCallback in order to process
messages which match the subscription

2. Subscribe to a topic with Quality of Service level 2

CONNECTING WITH ADDITIONAL OPTIONS
For more sophisticated MQTT applications, there are additional
options for establishing a connection to the broker available.
MqttConnectOptions options = new MqttConnectOptions();
options.setCleanSession(true); //1
options.setKeepAliveInterval(180); //2
options.setMqttVersion(MqttConnectOptions.MQTT_
VERSION_3_1_1); //3
options.setUserName("username"); //4
options.setPassword("mypw".toCharArray()); //5
options.setWill(
 "will/topic", //6
 "message".getBytes(), //7
 1, //8
 true); //9

mqttClient.connect(options);

1. If a clean or persistent session should be used

2. Interval in seconds for heartbeats

3. MQTT version (3.1 or 3.1.1)

4. Username for authentication

5. Password for authentication

6. Topic for Last Will and Testament

7. Last Will and Testament message

8. Last Will and Testament QoS

9. Last Will and Testament Retained Flag

M Q T T O V E R W E B S O C K E T S

HTML5 websockets provide a full-duplex communication over
a TCP connection. Most modern web browsers implement this
specification, even on mobile devices. MQTT can be used in

conjunction with websockets to allow any web application to
behave like a full-featured MQTT client. A library that utilizes
websockets for MQTT like the Paho Javascript Client is needed.

The advantages of using MQTT in web applications are:

• Quality of Service semantics: With QoS 1 and 2, there’s an
assurance that a message arrives on the client or broker
at least once/exactly once, even if the Internet connection
dropped in the meantime.

• Queuing: When using QoS 1 or 2 and a persistent session,
the broker will queue all messages a client misses from its
subscriptions when it is not connected. On reconnect, all
messages are delivered instantly to that client.

• Retained messages: Messages that are retained on the
server are delivered instantly when a web application
subscribes to one of these topics.

• Last Will and Testament: If a client doesn’t disconnect
gracefully, it’s possible to publish a message to a topic in
order to notify all subscribers that the client went off line.

CONNECTING WITH PAHO JAVASCRIPT
A website can be connected to an MQTT broker easily by using
the Paho Javascript library. Typically the following code is
executed as soon as the page is loaded.

var client = new Messaging.Client(hostname, port, clientid);

var options = {
 //connection attempt timeout in seconds
 timeout: 3,

 /*Called if the connection has successfully been
established*/
 onSuccess: function () {
 alert("Connected");
 },
 /*Gets Called if the connection could not be
established*/
 onFailure: function (message) {
 alert(“Connection failed: “ + message.
errorMessage);
 }
 };

//Connect the MQTT client
client.connect(options);

6

© DZONE, INC. | DZONE.COM

GETTING STARTED WITH MQTT

	 Figure 2: MQTT Over Websockets

http://dzone.com/refcardz
http://dzone.com

PUBLISHING WITH PAHO JAVASCRIPT
After a connection is established, the client object can be used to
publish messages.

var message = new Messaging.Message(payload);
 message.destinationName = topic;
 message.qos = qos;
 client.send(message);

SUBSCRIBING WITH PAHO JAVASCRIPT
In order to process messages, a callback is needed for handling
each arriving message. After assigning the callback, subscribing
to concrete topics is possible.

/*Gets called whenever a message is received for a
subscription*/
 client.onMessageArrived = function (message) {
 //Do something with the push message you received
 };
client.subscribe("testtopic", {qos: 2});

S C A L IN G M Q T T
In a brokered architecture it’s critical to avoid a single point
of failure and to think about scaling out, since typically only
one broker node is used. In the context of MQTT there are two
different popular strategies applicable:

BRIDGING
Some brokers implement an unofficial bridging protocol
which makes it possible to chain brokers together. Bridging
allows forwarding messages on specific topics to other MQTT
brokers. Bridge connections between brokers can be uni- or
bidirectional. Technically, a bridge connection to another
broker is a connection where the broker behaves like an MQTT
client and subscribes to specific topics.

Pros:

• Great for forwarding messages on specific topics

• Different broker products can be chained

• Hierarchical broker architectures possible

Cons:

• No shared state between brokers

• Bridge protocol is not officially specified

Brokers which implement bridging: HiveMQ, mosquitto, RSMB,
Websphere MQ / IBM MQ

CLUSTERING
Many enterprise MQTT brokers implement clustering, which
supports high availability configurations and also allows for
scaling out by adding more broker nodes. When a cluster node
is no longer available, other cluster nodes can take over so that
no data or messages are lost. Often brokers implement elastic
clustering, and nodes can be added or removed any time.

Pros:
• High availability and scalability

• MQTT semantics across cluster nodes

Cons:
• No standard

• Broker-specific

Brokers which implement clustering: Apache Act iveMQ, HiveMQ,
RabbitMQ

If broker implementation allows, clustering and bridging can be
used together, enabling messages from one broker cluster to be
forwarded to another isolated cluster.

M Q T T A ND S E C U R I T Y
Security is a very important part of any communication.
MQTT itself keeps everything as simple as possible and
relies on other proven technologies for safeguards instead of
reinventing the wheel.

USERNAME / PASSWORD AUTHENTICATION
An MQTT CONNECT message can contain a username and
password. The broker can authenticate and authorize with
this information if such a mechanism is implemented. Many
open-source brokers rely on Access Control Lists while other
enterprise brokers allow coupling with user databases and/or
LDAP systems.

TRANSPORT SECURITY: TLS
A best practice when using MQTT is to add transport layer
security if possible. With TLS, the complete communication
between client and broker is encrypted, and no attacker can
read any message exchanged. If feasible, X509 client certificate
authentication adds an additional layer of security to the
clients: trust. Some MQTT brokers, like HiveMQ, allow the use
of X509 certificates in the plugin system for further processing
(e.g. authorization).

OTHER SECURITY MECHANISMS
Most enterprise MQTT brokers add additional security
mechanisms, e.g. a plugin system where concrete logic can be
hooked in. Additional security for MQTT communications can
be gained when adding the following to clients / brokers:

• Payload encryption: This is application-specific. Clients
can encrypt the payload of their PUBLISH messages. The
shared secret has to be provisioned to all communication
participants beforehand.

• Payload signing: If the MQTT broker of choice supports
intercepting MQTT messages (e.g. with a plugin system),
every received message payload can be intercepted
and signed with a private key before distributing. The
distributed messages can then be verified by the MQTT
clients to make sure no one has modified the message.

7

© DZONE, INC. | DZONE.COM

GETTING STARTED WITH MQTT

http://dzone.com/refcardz
http://dzone.com

© DZONE, INC. | DZONE.COM

• Complex authentication protocols: For many enterprise
MQTT brokers, additional authentication methods can be
implemented (e.g. OAuth 2, Kerberos, OpenID Connect, etc.).

• Authorization / Topic Permissions: Securing access to
topics is often done with a permission concept. Some
brokers offer restricting publish / subscribe permissions
with a plugin system. This makes sure no one can subscribe
to more information than needed, and that only specific
clients can publish on specific topics.

NEW FEATURES IN THE MQTT 3.1.1 STANDARD

MQTT 3.1.1 is the most recent MQTT release and was published
in October 2014. While most popular MQTT brokers and MQTT
client libraries support MQTT 3.1.1, some older implementations
still use 3.1. While mainly backwards-compatible, the two
versions have subtle differences.

The following features were added to MQTT 3.1.1:

• Session present f lag: If a client connects with a persistent
session (which means it doesn’t use a clean session), an

additional f lag was introduced in the CONNACK message to
indicate that the broker already has prior session information
of the client like subscriptions and queued messages.

• Error codes on failed subscriptions: Prior to MQTT 3.1.1, it
was impossible for clients to find out if the MQTT broker
didn’t approve a subscription, which could be the case
when using fine-grained permissions for MQTT topics. The
new spec changes that and adds a new error (0x80) in the
MQTT SUBACK message, so clients can react on forbidden
subscriptions.

• Anonymous MQTT clients: The MQTT client identifier can
be set to zero byte length. The MQTT broker will assign a
random client identifier to the client temporarily.

• Immediate publishes: MQTT clients now have the ability
to send MQTT PUBLISH messages before waiting for a
CONNACK response of the MQTT broker.

• No client identifier restrictions: MQTT 3.1 had a limit of 23
bytes per client identifier. With the removal of this artificial
restriction, client IDs can now use up to 65535 bytes.

© DZONE, INC. | DZONE.COM© DZONE, INC. | DZONE.COM

DZONE, INC.
150 PRESTON EXECUTIVE DR.
CARY, NC 27513

888.678.0399
919.678.0300

REFCARDZ FEEDBACK WELCOME
refcardz@dzone.com

SPONSORSHIP OPPORTUNITIES
sales@dzone.com

Copyright © 2015 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher. VERSION 1.0 $7.95

DZone communities deliver over 6 million pages each month to more than 3.3 million software
developers, architects and decision makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, research guides, feature articles, source code and more.

"DZone is a developer's dream," says PC Magazine.

BROWSE OUR COLLECTION OF 250+ FREE RESOURCES, INCLUDING:
RESEARCH GUIDES: Unbiased insight from leading tech experts

REFCARDZ: Library of 200+ reference cards covering the latest tech topics

COMMUNITIES: Share links, author articles, and engage with other tech experts

JOIN NOW

8 GETTING STARTED WITH MQTT

DOMINIK OBERMAIER is the co-founder and CTO of dc-
square. Besides designing high-scalability server software
for the distributed and mobile world, he has several years
of experience as an architect of JavaEE applications. His
main interests are IoT, M2M communication, and highly
scalable software on the JVM. He is a frequent speaker at
Java & IoT conferences, writes articles for several Java & IoT
magazines, and helped standardize MQTT 3.1.1 at OASIS.
He blogs at forkbomb-blog.de, and you can contact him via
dominik.obermaier@gmail.com.

MQTT 3.1.1 Specification:
docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

MQTT.org: MQTT news and entry point for starting with MQTT:
www.mqtt.org

HiveMQ Blog: In-depth MQTT explanations and articles:
www.hivemq.com/blog

MQTT Mailing List:
groups.google.com/forum/#!forum/mqtt

ABOUT THE AUTHOR ADDITIONAL RESOURCES

mailto:refcardz%40dzone.com?subject=
mailto:sales%40dzone.com?subject=
http://dzone.com
http://dzone.com
http://dzone.com/refcardz
http://forkbomb-blog.de
mailto:dominik.obermaier%40gmail.com
http://groups.google.com/forum/%23%21forum/mqtt
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html%20
http://www.mqtt.org
http://www.hivemq.com/blog

