
© DZONE, INC. | DZONE.COM

GETTING STARTED WITH

Domain-Driven Design
BY ASLAM KHAN, UPDATED AND REVISED BY OBI OBEROI

» About Domain-Driven Design

» Representing the Model

» Ubiquitous Language

» Strategic Design

» Modeling the Domain... and more!C
O

N
T

E
N

T
S

A B O U T D O M A IN - D R I V E N D E S I G N

This is a quick reference for the key concepts, techniques, and
patterns described in detail in Eric Evans’ book Domain Driven
Design: Tackling Complexity in the Heart of Software and Jimmy
Nilsson’s book Applying Domain-Driven Design and Patterns with
Examples in C# .NET. In some cases, it has made sense to use the
wording from these books directly, and I thank Eric Evans and
Jimmy Nilsson for giving permission for such usage.

While it is useful to present the patterns themselves, many
subtleties of DDD are lost in just the description of the patterns.
These patterns are your tools, and not the rules. They are a language
for design and useful for communicating ideas and models amongst
the team. More importantly, remember that DDD is about making
pragmatic decisions. Try not to “force” a pattern into the model, and,
if you do “break” a pattern, be sure to understand the reasons and
communicate that reasoning too.

Often, it is said that DDD is object orientation done right, but DDD
is a lot more than just object orientation. DDD also deals with the
challenges of understanding a problem space and the even bigger
challenge of communicating that understanding.

Importantly, DDD also encourages the inclusion of other areas
such as Test-Driven Development (TDD), usage of patterns, and
continuous refactoring.

R E P R E S E N T IN G T HE M O D E L

Domain-Driven Design is all about design and creating highly
expressive models. DDD also aims to create models that are
understandable by everyone involved in the software development,
not just software developers.

Since non-technical people also work with these models, it is
convenient if the models can be represented in different ways.
Typically, a model of a domain can be depicted as a UML sketch, as
code, and in the language of the domain.

USING LANGUAGE
A person that is looking at attending a training course searches for
courses based on topic, cost, and the course schedule. When a course
is booked, a registration is issued, which the person can cancel or
accept at a later date.

USING CODE

class Person {
 public Registration bookCourse(Course c) { ... }
}

abstract class Registration {
 public abstract void accept();
 public abstract void cancel();
}

class ReservedRegistration extends Registration { ... }
class AcceptedRegistration extends Registration { ... }
interface CourseRepository {
 public List<Course> find(...);
}

G
et

 M
or

e
R

ef
ca

rd
z!

 V
is

it
 D

Zo
ne

.c
om

/R
ef

ca
rd

z
076

G
E

T
T

IN
G

 S
TA

R
T

E
D

 W
IT

H
 D

O
M

A
IN

-D
R

IV
EN

 D
E

S
IG

N

USING A UML SKETCH

U B I Q U I T O U S L A N G U A G E
The consistent use of unambiguous language is essential in
understanding and communicating insights discovered in the
domain. In DDD, it is less about the nouns and verbs and more
about the concepts. It is the intention of the concept, its significance
and value that is important to understand and convey. How that
intention is implemented is valuable, but for every intention,
there are many implementations. Everyone must use the language
everywhere and at every opportunity to understand and share
these concepts and intentions. When you work with a ubiquitous
language, the collaboration with domain experts is more creative
and valuable for everyone.

Watch out for technical and business obstructions in the language
that may obscure vital concepts hidden or assumed by domain
experts. Often these terms deal with implementations, and not the
domain concepts. DDD does not exclude the implementation, but it
values the intention of the higher model.

Consider the following conversation:

When a person books a course, and the course is full, then the person has
a status of “wait ing”. If there was space available, then the person’s details
must be sent via our message bus for processing by the payment gateway.

Here are some potential obstructions for the above conversation.
These terms don’t add value but they are excellent clues to dig
deeper into the domain.

person has a
status

Status seems to be a flag or field. Perhaps the domain expert
is familiar with some other system, maybe a spreadsheet, and
is suggesting this implementation.

sent via our
message bus

This is a technical implementation. The fact that it is sent via
a message bus is of no consequence in the domain.

processing
This is ambiguous and obscure. What happens during
processing?

payment gateway
Another implementation. It is more important that there is
some form of payment but the implementation of the payment
is insignificant at this point.

http://www.dzone.com?refcardz
http://www.refcardz.com
https://DZone.com/Refcardz

© DZONE, INC. | DZONE.COM

2 GE T TING S TA R TED W ITH

DOMAIN-DRIVEN DESIGN

AIM FOR DEEP INSIGHTS
Keep a watch out for implementations and dig around for the real
concepts and the intention of the concepts.

Let’s review the same conversation, paying attention to clues that may be
hidden in the conversation, behind some of the implementations.

When a person books a course, and the course is full, then the person has a
status of “wait ing.” If there was space available, then the person’s details must
be sent via our message bus for processing by the payment gateway.

Digging deeper, we find that the person booking the course does not
have a status. Instead, the outcome of a person registering for the course
is a registration. If the course is full, then the person has a standby
registration. All standby registrations are managed on a waiting list.

REFACTOR THE LANGUAGE
Remember that the language is used to build a representation of the
model of the domain. So is the code. When the code is refactored,
refactor your language to incorporate the new term. Ensure that the
concept represented by the term is defined and that domain experts
agree with its intention and usage.

Let’s refactor the conversation to book a course.

When a person registers for a course, a reserved registrat ion is issued. If
there is a seat available, and payment has been received, then the reserved
registrat ion is accepted. If there are no seats available on the course, then the
reserved registrat ion is placed on a wait ing list as a standby registrat ion. The
wait ing list is managed on a first-come, first-served basis.

WORKING WITH CONCRETE EXAMPLES
It is often easier to collaborate with domain experts using concrete
examples. Quite often, it is convenient to describe the domain examples
using Behavior-Driven Development (BDD) story and scenario templates
(see dannorth.net/whats-in-a-story).

Let’s look at the same story from earlier using concrete examples,
rephrased using the BDD templates.

Story: Register for a course
As a person looking for training
I want to book a course
So that I can learn and improve my skills.

In the story, a role is described (the “person looking for training”) that
wishes to achieve something (“to book a course”) so that some benefit is
gained (“learn and improve my skills”).

Now that we have the story, there are many scenarios for that story. Let
us consider the scenario of the course being full.

Scenario: Course is full
Given that the Python 101 course accommodates 10 seats
and there are already 10 people with confirmed registrat ions for Python 101
When I register for “Python 101”
Then there should be a standby registrat ion for me for Python 101
and my standby registrat ion should be on the wait ing list.

The “Given” clause describes the circumstances for the scenario. The
“When” clause is the event that occurs in the scenario, and the “Then”
clause describes the outcome that should be expected after the event occurs.

S T R AT E G I C D E S I G N
Strategic design is about design that is large and complex that focuses
on the many parts that make up the large model, and how these parts
relate to each other. This facilitates the design up front, enough to make
progress without falling into the “my model is cast in stone” trap.

In DDD, these smaller models reside in bounded contexts. The manner
in which these bounded contexts relate to each other is known as
context mapping.

BOUNDED CONTEXTS
For each model, deliberately and explicitly define the context in which
it exists. There are no rules to creating a context, but it is important that
everyone understands the boundary conditions of the context.

Teams that don’t have a good understanding of the different contexts
within a system, and their relationships to one another, run the risk of
compromising the models at play when integrating bounded contexts.
Lines between models can become blurred resulting in a Big Ball
of Mud if teams don’t explicitly map and understand relationships
between contexts.

Contexts can be created from (but not limited to) the following:

• how teams are organized

• the structure and layout of the code base

• usage within a specific part of the domain

Aim for consistency and unity inside the context, and don’t be distracted
by how the model is used outside the context. Other contexts will have
different models with different concepts. It is not uncommon for another
context to use a different dialect of the domain’s ubiquitous language.

CONTEXT MAPS
Context mapping is a design process where the contact points and
translations between bounded contexts are explicitly mapped out.
Focus on mapping the existing landscape, and deal with the actual
transformations later.

Use continuous integration within a single bounded context to
smoothen splinters that arise from different understandings.
Frequent code merges, automated tests, and applying the
ubiquitous language will highlight fragmentation inside the
bounded context quickly.

PATTERNS FOR CONTEXT MAPPING
There are several patterns that can be applied during context mapping.
Some of these context mapping patterns are explained below.

SHARED KERNEL
This is a bounded context that is a subset of the domain that different
teams agree to share. It requires really good communication and
collaboration between the teams. Remember that it does not conform to
the lowest common denominator.

Be careful with shared kernels! They are difficult to design and
maintain and are most effective with highly mature teams!

http://www.dzone.com?refcardz
http://dannorth.net/whats-in-a-story

© DZONE, INC. | DZONE.COM

3

CUSTOMER/SUPPLIER DEVELOPMENT TEAMS
When one bounded context serves or feeds another bounded context,
then the downstream context has a dependency on the upstream
context. Knowing which context is upstream and downstream makes
the role of supplier (upstream) and customer (downstream) explicit.

The two teams should jointly develop the acceptance tests for the
interfaces and add these tests to the upstream bounded context’s
continuous integration. This will give the customer team confidence to
continue development without fear of incompatibility.

CONFORMIST
When the team working with the downstream context has no inf luence or
opportunity to collaborate with the team working on the upstream context,
then there is little option but to conform to the upstream context.

There may be many reasons for the upstream context “dictating”
interfaces to the downstream context, but switching to a conformist
pattern negates much pain. By simply conforming to the upstream
interfaces, the reduction in complexity often outweighs the complexity
of trying to change an unchangeable interface.

The quality of the downstream model, in general, follows that of the
upstream model. If the upstream model is good, then the downstream
model is good also. However, if the upstream model is poor, then the
downstream will also be poor. Regardless, the upstream model will not
be tailored to suit the downstream needs, so it won’t be a perfect fit.

ANTI-CORRUPTION LAYER
When contexts exist in different systems, and attempts to establish a
relationship result in the “bleeding” of one model into the other model,
then the intention of both will be lost in the mangled combination of the
models from the two contexts. In this case, it is better to keep the two
contexts well apart and introduce an isolating layer in between that is
responsible for translating in both directions. This anti-corruption layer
allows clients to work in terms of their own models.

SEPARATE WAYS
Critically analyze the mappings between bounded contexts. If there are no
indispensable functional relationships, then keep the contexts separate.
The rationale is that integration is costly and can yield very low returns.

This pattern eliminates significant complexity since it allows developers
(and even the business managers) to find highly focused solutions in a
very limited area of scope.

M O D E L IN G T HE D O M A IN

Within the bounded contexts, effort is focused on building really
expressive models; models that reveal the intention more than the
implementation. When this is achieved, concepts in the domain surface
naturally and the models are f lexible and simpler to refactor.

The DDD patterns are more of an application of patterns from GoF,
Fowler, and others, specifically in the area of modeling subject domains.

The most common patterns are described here.

The conformist pattern calls for a lot of pragmatism! The quality
of the upstream model, along with the fit of the upstream model
may be “good enough.” That suggests you would not want
a context where you were working on the core domain in a
conformist relationship.

Anti-corruption Layer is a great pattern for dealing with legacy
systems or with code bases that will be phased out.

GE T TING S TA R TED W ITH

DOMAIN-DRIVEN DESIGN

http://www.dzone.com?refcardz

© DZONE, INC. | DZONE.COM

4

DEALING WITH STRUCTURE
ENTITIES
Entities are classes where the instances are globally identifiable and
keep the same identity for life. There can be a change of state in other
properties, but the identity never changes.

In this example, the Address can change many times but the identity of the
Client never changes, no matter how many other properties change state.

VALUE OBJECTS
Value objects are lightweight, immutable objects that have no identity.
While their values are more important, they are not simple data transfer
objects. Value objects are a good place to put complex calculations,
off loading heavy computational logic from entities. They are much easier
and safer to compose, and by off loading heavy computational logic from
the entities, they help entities focus on their role of life-cycle trackers.

In this example, when the address of the Client changes, then a new
Address value object is instantiated and assigned to the Client.

CARDINALITY OF ASSOCIATIONS
The greater the cardinality of associations between classes, the more
complex the structure. Aim for lower cardinality by adding qualifiers.

Bi-directional associations also add complexity. Critically ask questions
of the model to determine if it is absolutely essential to be able to
navigate in both directions between two objects.

In this example, if we rarely need to ask a Person object for all its projects,
but we always ask a Project object for all people in the roles of the project,
then we can make the associations one directional. Direction is about
honoring object associations in the model in memory. If we need to find all
Project objects for a Person object, we can use a query in a Repository (see
below) to find all Projects for the Person.

SERVICES
Sometimes it is impossible to allocate behavior to any single class, be
it an entity or value object. These are cases of pure functionality that
act on multiple classes without one single class taking responsibility
for the behavior. In such cases, a stateless class, called a service class, is
introduced to encapsulate this behavior.

AGGREGATES
As we add more to a model, the object graph can become quite large and
complex. Large object graphs make technical implementations such as
transaction boundaries, distribution, and concurrency very difficult.
Aggregates are consistency boundaries such that the classes inside the
boundary are “disconnected” from the rest of the object graph. Each
aggregate has one entity which acts as the “root” of the aggregate.

When creating aggregates, ensure that the aggregate is still treated
as a unit that is meaningful in the domain. Also, test the correctness
of the aggregate boundary by applying the “delete” test. In the delete
test, critically check which objects in the aggregate (and outside the
aggregate) will also be deleted, if the root was deleted.

Follow these simple rules for aggregates:

• The root has global identity and the others have local identity

• The root checks that all invariants are satisfied

• Entities outside the aggregate only hold references to the root

• Deletes remove everything in the aggregate

• When an object changes, all invariants must be satisfied.

DEALING WITH LIFE CYCLES
FACTORIES
Factories manage the beginning of the life cycle of some aggregates. This
is an application of the GoF factory or builder patterns. Care must be
taken that the rules of the aggregate are honored, especially invariants
within the aggregate. Use factories pragmatically. Remember that
factories are sometimes very useful, but not essential.

REPOSITORIES
While factories manage the start of the life cycle, repositories manage
the middle and end of the life cycle. Repositories might delegate
persistence responsibilities to object-relational mappers for retrieval of
objects. Remember that repositories work with aggregates too. So the
objects retrieved should honor the aggregate rules.

Value Objects have simple life cycles and can greatly simplify
your model. They also are great for introducing type safety
at compile time for statically typed languages, and since the
methods on value objects should be side effect free, they add
a bit of functional programming flavor too.

GE T TING S TA R TED W ITH

DOMAIN-DRIVEN DESIGN

Remember that aggregates serve two purposes: domain
simplification, and technical improvements. There can be
inconsistencies between aggregates, but all aggregates are
eventually consistent with each other.

http://www.dzone.com?refcardz

© DZONE, INC. | DZONE.COM

5

DEALING WITH BEHAVIOR
SPECIFICATION PATTERN
Use the specification pattern when there is a need to model rules,
validation and selection criteria. The specification implementations test
whether an object satisfies all the rules of the specification. Consider the
following class:

class Project {
 public boolean isOverdue() { ... }
 public boolean isUnderbudget() { ... }
}

The specification for overdue and underbudget projects can be decoupled
from the project and made the responsibility of the other classes.

public interface ProjectSpecification {
 public boolean isSatisfiedBy(Project p);
}

public class ProjectIsOverdueSpecification implements
ProjectSpecification {

 public boolean isSatisfiedBy(Project p) { ... }
}

This makes the client code more readable and f lexible too.

If (projectIsOverdueSpecification.isSatisfiedBy(theCurrentProject) {
... }

STRATEGY PATTERN
The strategy pattern, also known as the Policy Pattern is used to make
algorithms interchangeable. In this pattern, the varying “part” is
factored out.

Consider the following example, which determines the success of a
project, based on two calculations: (1) a project is successful if it finishes
on time, or (2) a project is successful if it does not exceed its budget.

public class Project {
 boolean isSuccessfulByTime();
 boolean isSuccessfulByBudget();
}

By applying the strategy pattern we can encapsulate the specific
calculations in policy implementation classes that contain the algorithm
for the two different calculations.

interface ProjectSuccessPolicy {
 Boolean isSuccessful(Project p);
}

class SuccessByTime implements ProjectSuccessPolicy { ... }
class SuccessByBudget implements ProjectSuccessPolicy { ... }

Refactoring the original Project class to use the policy, we encapsulate
the criteria for success in the policy implementations and not the Project
class itself.

class Project {
 boolean isSuccessful(ProjectSuccessPolicy policy) {
 return policy.isSuccessful(this);
 }
}

COMPOSITE PATTERN
This is a direct application of the GoF pattern within the domain being
modeled. The important point to remember is that the client code should
only deal with the abstract type representing the composite element.
Consider the following class:

public class Project {
 private List<Milestone> milestones; private List<Task> tasks;
 private List<Subproject> subprojects;
}

A Subproject is a project with Milestones and Tasks. A Milestone is a Task
with a due date but no duration. Applying a composite pattern, we can
introduce a new type Activity with different implementations.

interface Activity {
 public Date due();
}

public class Subproject implements Activity {
 private List<Activity> activities;
 public Date due() { ... }
}

public class Milestone implements Activity {
 public Date due() { ... }
}

public class Task implements Activity {
 public Date due() { ... }
 public int duration() { ... }
}

Now the model for the Project is much simpler.

public class Project {
 private List<Activity> activities;
}

A UML representation of this model is shown below.

A P P L I C AT I O N A R C HI T E C T U R E

When the focus of design is on creating domain models that are rich in
behavior, then the architecture in which the domain participates must
contribute to keeping the model free of infrastructure too. Typically, a
layered architecture can be used to isolate the domain from other parts
of the system.

GE T TING S TA R TED W ITH

DOMAIN-DRIVEN DESIGN

http://www.dzone.com?refcardz

© DZONE, INC. | DZONE.COM

6

R E C E N T LY A D D E D PAT T E R N S

Big Ball of Mud

This is a strategic design pattern to deal with existing systems
consisting of multiple conceptual models mixed together, and
held together with haphazard, or accidental, dependent logic.
In such cases, draw a boundary around the mess and do not
attempt to try sophisticated modeling within this context. Be
wary of this context sprawling into other contexts.

The original pattern was written by Brian Foote and Joseph
Yoder and is available at www.laputan.org/mud/mud.html

Domain Events

Sometimes domain experts want to track the actual events
that cause changes in the domain. Domain events are not to be
confused with system events that are part of the software itself.
It may be the case that domain events have corresponding
system events that are used to carry information about the
event into the system, but a domain event is a fully- fledged
part of the domain model.

Model these events as domain objects such that the state of
entities can be deduced from sets of domain events. Event
objects are normally immutable since they model something
in the past. In general, these objects contain a timestamp,
description of the event and, if needed, some identity for the
domain event itself.

In distributed systems, domain events are particularly useful
since they can occur asynchronously at any node. The state
of entities can also be inferred from the events currently
known to a node, without having to rely on the complete set of
information from the entire system.

BROWSE OUR COLLECTION OF FREE RESOURCES, INCLUDING:

RESEARCH GUIDES: Unbiased insight from leading tech experts

REFCARDZ: Library of 200+ reference cards covering the latest tech topics

COMMUNITIES: Share links, author articles, and engage with other tech experts

JOIN NOW

DZONE, INC.
150 PRESTON EXECUTIVE DR.
CARY, NC 27513

888.678.0399
919.678.0300

REFCARDZ FEEDBACK WELCOME
refcardz@dzone.com

SPONSORSHIP OPPORTUNITIES
sales@dzone.com

Copyright © 2016 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher. VERSION 1.0

DZone communities deliver over 6 million pages each month to more than 3.3 million software
developers, architects and decision makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, research guides, feature articles, source code and more.

"DZone is a developer's dream," says PC Magazine.

OBI OBEROI is a Principal Developer Evangelist and a
Software Architect at Paree Labs Inc., a company that
specializes in designing, developing and maintaining enterprise
level distributed applications including mobile apps using
mainly Microsoft centric and hybrid technologies. Obi has been
working with .NET since the first betas and has been engaged
in the agile space since 2006. Obi has a Master’s degree in
Computer Science and runs a local Dot Net User Group in

the greater Toronto area and is actively involved in organizing
Developer Workshops, Code Camps et. al., and speaks at User
Groups and Conferences besides being a passionate member
of the developer community. Oberoi has worked on many
projects from medium to large scale engagements including
architecture, design, and development. Over the course of his
career, he has designed and helped to create systems for the
Financial, Retail, Health and Logistics sectors.

ABOUT THE AUTHOR

Each layer is aware of only those layers below it. As such, a layer at a
lower level cannot make a call (i.e. send a message) to a layer above
it. Also, each layer is very cohesive and classes that are located in
a particular layer pay strict attention to honoring the purpose and
responsibility of the layer.

User Interface
Responsible for constructing the user interface and managing
the interaction with the domain model. Typical implementation
pattern is model-view- controller.

Application

Thin layer that allows the view to collaborate with the domain.
Warning: it is an easy “dumping ground” for displaced domain
behavior and can be a magnet for “transaction script” style
code.

Domain

An extremely behavior-rich and expressive model of the
domain. Note that repositories and factories are part of the
domain. However, the object- relational mapper to which the
repositories might delegate are part of the infrastructure,
below this layer.

Infrastructure

Deals with technology specific decisions and focuses more
on implementations and less on intentions. Note that domain
instances can be created in this layer, but, typically, it is the
repository that interacts with this layer, to obtain references to
these objects.

Aim to design your layers with interfaces and try to use these interfaces
for “communication” between layers. Also, let the code using the domain
layer control the transaction boundaries.

GE T TING S TA R TED W ITH

DOMAIN-DRIVEN DESIGN

http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com

